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A B S T R A C T

Work-related musculoskeletal disorders (WRMSDs) are the most reported work-related health problem in the
European Union, representing an economic burden equivalent to 2% of its gross domestic product. Awkward
postures are one of the main risk factors. Several postural assessment tools try to identify ergonomic exposure
factors for evaluating WRMSD risk, yet these are commonly based on observation. Replacing observations
with objective measurements can bring more accuracy and reproducibility to this analysis; hence, a direct
measurement approach for the assessment is desired. This review looks for two-fold solutions, able to not
only monitor workers’ posture using inertial sensors but also to return that information to the user, in a
biofeedback loop. It presents systems for posture risk assessment, regarding ergonomic methods, sensors’ and
actuators’ characteristics, and validation protocols. In particular, this review advances previous manuscripts by
exploring the literature regarding different biofeedback strategies and ways to encode meaningful information
in the cues, i.e., able to deliver intuitive ergonomic guidance so that the user becomes aware and changes
into a more neutral posture. The combination of inertial sensors and vibrotactile motors stood out, due to its
effectiveness in reducing postural risk. Directional feedback to guide users’ segments individually was found to
be a promising strategy, although its validation is still limited. The results of the reviewed manuscripts pointed
out the relevant practices, potentialities, and limitations of the existing solutions, allowing the identification
of future challenges.
1. Introduction

Work-related musculoskeletal disorders (WRMSDs) are the most
prevalent work-related health problem in the European Union (De Kok
et al., 2019). Despite the economy’s advances towards automation,
many jobs still consist of risky and physically demanding tasks. In
many situations, manual handling activities have not lost expression
since their higher flexibility and lower investment costs still make them
the suitable solution (Lind, Diaz-Olivares, Lindecrantz and Eklund,
2020). Working conditions that include repetitive motions, manual
handling tasks, excessive force, sustained or regular awkward postures,
prolonged sitting and standing, or vibrations from hand tools are risk
factors for developing WRMSDs (Da Costa & Vieira, 2010; De Kok et al.,
2019; Lee et al., 2021; Lins, Fudickar, Gerka, & Hein, 2018). Among
WRMSDs, the most frequent type reported is backache, followed by
muscular pain in the upper limbs (De Kok et al., 2019).
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WRMSD consequences are associated with a work-limiting pain that
decreases psychological health, job satisfaction, and productivity, and
may lead to worker absenteeism or even to early retirement (De Kok
et al., 2019; Lee et al., 2021). In 2015, for example, 53% of the workers
with WRMSDs reported being absent from work for at least one day.
These workers are not only more prone to be absent from work, but
they are also usually absent for more days (De Kok et al., 2019). It was
estimated that the total costs of WRMSDs represent up to 2% of the
gross domestic product of the European Union, or e240 billion (Bevan,
2015).

Ergonomics tries to address the issue of how to lower the risk of
WRMSDs by taking proper preventive measures. It ensures that work
is designed considering workers’ capabilities and constraints, trying
to optimise health, safety and productivity (Great Britain. Health and
Safety Executive, 2002). Besides interventions such as the redesign of
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the workplace or shift schedules, it is important to obtain an exact
overview of the types and frequency of the workers’ postures, identify
the non-neutral ones, and change them, improving the ergonomics of
the job (Lins et al., 2018). Indeed, musculoskeletal disorders have been
proven to be less frequent when an ergonomic risk analysis that leads to
the adoption of interventions is conducted (Pimparel, Madaleno, Ollay,
& Gabriel, 2022).

In the process of assessing the WRMSD risk, there are multiple
mechanisms for evaluating exposure to risk factors that underlie these
injuries. This evaluation can be done in three main ways, listed next
by increasing precision and invasiveness to the worker: self-reports,
observational studies and direct measurements. Self-reports collect data
regarding exposure to both physical and psychosocial factors, resorting
to diaries, interviews and questionnaires, in which workers are asked
to estimate the prevalence of postures or the frequency of movements,
but it lacks precision since workers’ perceptions are subjective and un-
reliable (David, 2005; Lee et al., 2021; Spielholz, Silverstein, Morgan,
Checkoway, & Kaufman, 2001).

Observational methods rely on an observer (an ergonomist) and
may be field-based or video-based. The former are mostly used for static
or repetitive jobs and rely on checklists, although a more comprehen-
sive report of the worker actions can also be performed (David, 2005;
Spielholz et al., 2001). Several tools can be found, e.g., Ovako Working
Posture Analysing System (OWAS), Postural Loading Upper Body As-
sessment (LUBA), Rapid Upper Limb Assessment (RULA), Rapid Entire
Body Assessment (REBA), NIOSH Lifting Equation, or Quick Exposure
Check. Like self-reports, these methods are widely used, but they have
the drawback of intra- and inter-observer variability (David, 2005). In
turn, video-based approaches are targeted to the assessment of posture
in dynamic activities and empower more detailed evaluations, since
they presuppose dedicated software to objectively analyse the relevant
data that the observer visualises in the video and introduces in that
software. Yet, they are not so convenient, are time-consuming, require
highly specialised staff, and their cost is higher than that of field-based
methods (David, 2005).

Direct measurements are based on sensors that are placed directly
on the subject for the quantification of exposure risk, namely, 3D
motion capture (MoCap) systems. These record movements and insert
them in a 3D model (David, 2005; Nogueira, 2011). Postures, defined
by position and angular movement of body segments, can be tracked
using marker-based methods, which attach optical, sonic or electromag-
netic markers to specific points of the body, whose coordinates can
be computed accurately in real time (David, 2005). Regarding optical
MoCap technologies, they can use either active (light-emitting LED)
or passive markers (which reflect the light back to the cameras), like
Vicon (Dutta, 2012; Nogueira, 2011). However, these gold standard
techniques are expensive, and require specialised software; moreover,
they are more suitable for laboratory simulated scenarios rather than
real working conditions in the workers’ natural environment, which
has non-replicable stress factors and/or demands, and this hampers
the identification of the usual postures (Cerqueira, Da Silva, & San-
tos, 2020; David, 2005; Lee et al., 2021). More recently, markerless
technology, such as Microsoft Kinect, which integrates depth cameras
and computer vision algorithms, has emerged in kinematic analysis.
Additionally, advances in wearable technology turned inertial measure-
ment units (IMUs) as promising devices (Cerqueira et al., 2020; Lee
et al., 2021). Research indicates that both vision-based methods and
wearable inertial sensors are effective on ergonomic assessment tools,
however camera-based methods (either based on reflective markers or
not) require constrained environments, highly depend on camera po-
sitions and light conditions, and may suffer from occlusion (Cerqueira
et al., 2020; Yan, Li, Li, & Zhang, 2017), which is likely to happen in
dynamic tasks. Both inertial and marker-based MoCaps’ measurements
can be affected by noise from artifacts inherent to skin movement. In
2

turn, inertial sensors are lightweight, small-sized and, thus, portable
and easily embedded in smart garments; also, they are relatively low-
cost and low-power devices (Cerqueira et al., 2020; Vignais et al.,
2013); moreover, contrary to camera-based motion trackers, IMUs do
not suffer from data privacy issues since these latter do not record
image/video (Ponce, Martínez-Villaseñor, & Miralles-Pechuán, 2016).
Yet, it should be noted that inertial sensors may be affected by a diver-
gence of the output values, drift, over time (Lorenzini, Lagomarsino,
Fortini, Gholami, & Ajoudani, 2023), as a result of the integration
of the gyroscope data (Lim & D’Souza, 2020). Notwithstanding, due
to the best trade-off between accuracy and portability they provide,
IMUs are becoming very attractive for the estimation of body seg-
ments’ orientation and joint angles (Carbonaro et al., 2021). Hence,
this literature review focuses on the use of wearable inertial MoCap
systems. These rigorous kinematic evaluations can help to manage
and prevent WRMSDs by improving the knowledge of the underlying
human motions (Lee et al., 2021).

Humans tend to internalise movement patterns, which are hard to
correct (Sword Health, 2020). Biofeedback for posture correction may
increase self-awareness (Lee et al., 2021), and the training of the work
technique is an important aspect in the prevention of WRMSD (Lins
et al., 2018). Learning the principles of ergonomics allows workers to
become more aware of what may lead to pain or injury (Occupational
Safety and Health Administration, 2022), hence, trained workers are
less likely to adopt bad postures (Lins et al., 2018). In this context,
the amplification of error perception arising from haptic feedback has
proved to be successful in inducing motor learning (Lind et al., 2020).
Wearable actuator technology, allied with inertial sensors, can provide
real-time biofeedback of the error to the worker, empowering him/her
with greater posture self-awareness (Lee et al., 2021). This allows a
quicker correction of bad postures, without having to wait for the
person’s intrinsic feedback to come into operation, when pain starts to
act, thus avoiding musculoskeletal injuries.

In this context, the concepts of feedback and biofeedback should be
clarified. Feedback consists of providing a measure of the outcome (bi-
ological or not) of the system, comparing it with the desired reference,
and using this information to let one knows what is happening. On
the other hand, biofeedback is based on biological signals and allows
the subject to learn to control them, modifying physiological processes
people are usually unaware of Beatty and Legewie (1977) and Morone
et al. (2021). In the context of this paper, the desired outcome of the
system is the ergonomic score, which is computed using inertial signals
(the input, considered biological signals). Hence, a biofeedback system
is a feedback system, but the reverse may not be true.

Recent reviews provided an overview of the state of the art con-
cerning the application of wearable devices on ergonomics. For in-
stance, Stefana, Marciano, Rossi, Cocca, and Tomasoni (2021) con-
ducted a systematic review exploring the sensors’ types and locations,
the ergonomic risk factors typically assessed, and the criteria for those
assessments. Lim and D’Souza (2020) drew a conceptual framework to
review the scientific literature on the use of inertial sensors for biome-
chanical exposure assessment, regarding modelling, sensing, analysis,
assessment and interventions. Although these two reviews demon-
strated the potential of using IMUs for ergonomic assessments, they did
not concentrate specifically on posture assessment, nor on biofeedback
strategies for posture correction. Likewise, Lind, Abtahi and Forsman
(2023) dissected the automation of observational risk assessment tools
with ambulatory MoCap systems for increasing the accuracy and pre-
cision of the measurements, and feedback for work technique training,
but the analysis of feedback was limited to the definition of its charac-
teristics and not to the evaluation of its effectiveness. Lee et al. (2021)
performed a scoping review regarding the effectiveness of the various
types of feedback on the upper body and the devices’ wearability
during work, revealing improvements in posture but with a low level of
evidence, and no improvements in pain; yet, no other haptic feedback
modality besides the vibrotactile one was presented. To the best of

our knowledge, no review has addressed simultaneously the analysis
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of inertial-based ergonomic assessment systems and the investigation
of distinct biofeedback strategies to provide a more informative alert
regarding posture risk.

This narrative review seeks inertial-based systems capable of as-
sessing the ergonomics of workers’ postures and providing clear cues
for posture correction. This can potentially help to redesign tasks and,
thus, prevent musculoskeletal disorders. With this work, we aim to
answer the following questions: (i) ‘‘What types, number, locations and
settings of wearable devices were adopted in the literature studies?’’;
(ii) ‘‘Which ergonomic criteria govern these postural assessments?’’;
(iii) ‘‘When to trigger biofeedback cues and what information can be
encoded in them?’’; and (iv) ‘‘Has biofeedback proved to be effective
in posture correction?’’.

The remainder of this review is organised as follows: Section 2
outlines the search strategy. Section 3 provides an overview of sys-
tems for postural ergonomic assessment. Section 4 exposes biofeedback
modalities and strategies. In Section 5, state-of-the-art limitations and
challenges are discussed. Lastly, Section 6 presents the conclusions
drawn from this review.

2. Methods

An electronic search was conducted in the IEEE Xplore and Sco-
pus databases. This search was driven according to the guidelines of
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA), and analysed studies from 2013 (the year of pioneer pa-
per (Vignais et al., 2013) in this review’s topics) to 2023, using the fol-
lowing combination of keywords: ((‘‘ergonomic∗’’ AND (‘‘assessment’’
OR ‘‘risk’’)) OR ‘‘posture’’) AND (‘‘wearable’’ OR ‘‘inertial-based’’) AND
(‘‘feedback’’ OR ‘‘biofeedback’’). The search on the IEEE database in-
cluded all metadata, whereas, on the Scopus database, it was restricted
to the article title, abstract and keywords. The selected articles (i) were
all written in English and (ii) involved wearable inertial technologies.
The exclusion criteria were studies: (i) mentioning optical MoCap sys-
tems, (ii) addressing balance/gait training/rehabilitation, (iii) focused
on sitting postures, (iv) presenting only a simple/binary assessment or
with lack of information (algorithms or experimental protocol), or (v)
with a primary focus on human–robot collaboration without further
innovation in ergonomics and/or feedback. Review articles were also
excluded from the search results. Yet, reviews’ references were exam-
ined, as well as the references of other selected articles, and the relevant
ones were included.

After a preliminary search, completed on 7 June 2023 and revised
on 2 January 2024, 62 articles were found in IEEE Xplore, 257 articles
in Scopus, and 43 through other sources, as reported in Fig. 1. After
removing the duplicates, a screening process by title and by abstract
was carried out, until only 30 articles were left to be fully read, in order
to find out if they met the inclusion criteria or if they were suitable for
this section. Finally, only 20 articles were included.

The included studies were divided into two main topics for greater
clarity: the first has a focus on posture monitoring and ergonomic
risk assessment (Section 3), and the other on biofeedback strategies
(Section 4). Some of the articles were analysed in both, regarding the
way the ergonomic assessment is performed and the actuation system,
respectively.

3. Postural ergonomic assessment

This section aims to identify the current ergonomic methods em-
ployed in posture assessment and to understand how workers’ postures
are assessed, i.e., whether multiple body parts are assessed individually
or as a whole.

A summary of the relevant manuscripts found in the search on
ergonomics is presented in Tables 1 and 2. The first divides the
manuscripts according to the study goal, the ergonomic method/scale
3

Fig. 1. PRISMA flow diagram for the search strategy.

applied, highlighting the sensors used (their type, location and sam-
pling frequency) and the biofeedback system (concurrently, i.e., in real
time; or terminal, that is, presented after the trial). Table 2 summarises
the algorithms used and the validation methodology of the identified
studies, presenting the experimental protocols, ground truths, and
metrics used for the validation.

The main targets of these studies are industry (Cerqueira et al.,
2020; Huang et al., 2020; Martinez et al., 2022; Merlo et al., 2023;
Vignais et al., 2013); the construction sector (Martins et al., 2023;
Valero et al., 2017; Yan et al., 2017; Zhao & Obonyo, 2021; Zhao et al.,
2021); in one, it was the agricultural sector (Martins et al., 2023); and,
in another, health care delivery (Carbonaro et al., 2021).

3.1. Ergonomic methods adopted

Distinct levels of postural ergonomic assessment were found: mul-
tiple segments can be assessed separately, assigning a risk level to
each of them (local approach), which can help to prevent WRMSDs
by identifying the body segments exposed to a higher ergonomic risk;
or a global risk can be assigned to the whole body, considering the
combination of the different segments (global assessment). In three of
the included articles, the risk assessment was performed globally: in
two of them, it was based on subjective/qualitative postures (Zhao
& Obonyo, 2021; Zhao et al., 2021), whereas, in the other, it was
based directly on angular ranges (Valero et al., 2017). Furthermore,
these two studies also performed posture classification (in the case
of Zhao et al. (2021), that classification was needed to carry out the
ergonomic assessment). Most of the studies based their assessment on
angular values, and this was the case for the ones that employed a
local assessment. In four studies, the assessment was only segment-
specific (local) (Cerqueira et al., 2020; Merlo et al., 2023; Valero et al.,
2017; Yan et al., 2017); whereas in another five, those local scores
allowed obtaining a global score too, for a wider view of the WRMSD
risk (Carbonaro et al., 2021; Huang et al., 2020; Martinez et al., 2022;
Martins et al., 2023; Vignais et al., 2013). Four studies carried out
the assessment in real time (Cerqueira et al., 2020; Merlo et al., 2023;
Vignais et al., 2013; Yan et al., 2017).

Several ergonomic criteria were found to be the basis of the posture
assessments: Standard ISO 11226 (Valero et al., 2017; Yan et al., 2017),
RULA (Carbonaro et al., 2021; Cerqueira et al., 2020; Huang et al.,
2020; Merlo et al., 2023; Vignais et al., 2013), LUBA (Cerqueira et al.,
2020; Martins et al., 2023), REBA (Huang et al., 2020; Martinez et al.,
2022), OWAS (Zhao & Obonyo, 2021; Zhao et al., 2021), Maximum
Holding Time (MHT) (Zhao & Obonyo, 2021; Zhao et al., 2021), and a
novel K-score proposed by Martinez et al. (2022). With respect to the
ergonomic methods that assess individual segments, the majority focus
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Table 1
Summary of the included studies on postural ergonomics monitoring, regarding their goals, ergonomic methods, sensing systems, and biofeedback systems.

Reference Study goal Ergonomic Sensors Biofeedback

method Number and type Location Sampling
frequency

system

Yan et al.
(2017)

Real-time local
ergonomic risk
assessment

Standard ISO
11226

2 Bluetooth YEI 3-Space
IMUs (3-axis acc, 3-axis
gyr and 3-axis mag)

Back of head and thoracic
level

10 Hz Visual and
auditory (both
concurrent)

Cerqueira et al.
(2020)

Real-time local
ergonomic risk
assessment

RULA com-
plemented
with LUBA

4 MPU-9250 IMUs (3-axis
acc and 3-axis gyr)

Back of head, T4 and upper
arms

100 Hz Haptic
(concurrent) and
visual (terminal)

Merlo et al.
(2023)

Real-time local
ergonomic risk
assessment

RULA 17 wireless Xsens MVN
Awinda IMUs (3-axis acc,
3-axis gyr and 3-axis mag)

Head, sternum, pelvis,
shoulders, upper arms,
forearms, hands, upper
legs, lower legs and feet

20 Hz N/A

Martins,
Cerqueira,
Vieira,
Pombeiro, and
Santos (2023)

Local and global
ergonomic risk
assessment

RULA 17 wireless Xsens MVN
Awinda IMUs (3-axis acc,
3-axis gyr and 3-axis mag)

Head, sternum, pelvis,
shoulders, upper arms,
forearms, hands, upper
legs, lower legs and feet

60 Hz N/A

Vignais et al.
(2013)

Real-time local and
global ergonomic risk
assessment

RULA 7 wireless Colibri IMUs
(3-axis acc, 3-axis gyr and
3-axis mag) and 2 bi-axial
SG65 goniometers

- IMUs: head, chest,
sacrum, upper arms and
forearms;
- Goniometers: hands

100 Hz Visual and
auditory (both
concurrent)

Carbonaro
et al. (2021)

Local and global
ergonomic risk
assessment

RULA 3 wireless Xsens MTw
IMUs (3-axis acc, 3-axis
gyr and 3-axis mag)

Back of head, thoracic level
and sacral level

75 Hz N/A

Huang, Kim,
Zhang, and
Xiong (2020)

Local and global
ergonomic risk
assessment

RULA and
REBA

17 Xsens MVN Link IMUs
(3-axis acc, 3-axis gyr and
3-axis mag)

Head, sternum, pelvis,
shoulders, upper arms,
forearms, hands, upper
legs, lower legs and feet

N/M Visual (terminal)

Martinez,
Nazarahari,
and Rouhani
(2022)

Local and global
ergonomic risk
assessment

REBA and
K-score

9 wireless Xsens MTw
IMUs (3-axis acc, 3-axis
gyr and 3-axis mag)

Head, sternum, sacrum,
right upper arm, right
forearm, right hand, right
thigh, right shank and right
foot

100 Hz N/A

Valero,
Sivanathan,
Bosché, and
Abdel-Wahab
(2017)

Local and global
ergonomic risk
assessment +
qualitative postures
classification

Standard ISO
11226

8 wireless proprietary
IMUs (3-axis acc, 3-axis
gyr and 3-axis mag)

Upper back, lower back,
upper arms, upper legs and
lower legs

50 Hz Visual (terminal)

Zhao, Obonyo,
and Bilén
(2021)

Qualitative postures
classification + global
ergonomic risk
assessment

OWAS and
MHT

5 MetaMotionC IMUs
(3-axis acc and 3-axis gyr)

Head, chest centre, right
upper arm, right thigh and
right calf

N/M Visual (every 30
min and
terminal) and
auditory
(concurrent)

Zhao and
Obonyo (2021)

Qualitative postures
classification + global
ergonomic risk
assessment

OWAS and
MHT

5 MetaMotionC IMUs
(3-axis acc and 3-axis gyr)

Forehead, chest centre,
right upper arm, right thigh
and right crus

25 Hz
(subject 1);
50 Hz
(others)

N/A

N/A: Not Applicable; N/M: Not Mentioned; IMU: inertial measurement unit; acc: accelerometer; gyr: gyroscope; mag: magnetometer;RULA: Rapid Upper Limb Assessment;
LUBA: Postural Loading Upper Body Assessment; REBA: Rapid Entire Body Assessment; OWAS: Ovako Working Posture Analysing System; MHT: Maximum Holding Time.
only on the sagittal plane. In connection with this, Carbonaro et al.
(2021) pointed out some gaps in the RULA tool, namely, the lack of
angular thresholds to evaluate torsion and lateral bending. In order to
mitigate that, they chose a threshold of three times the precision of the
IMUs, for robust recognition, and Cerqueira et al. (2020) combined two
ergonomic methods, with RULA assessing the sagittal plane and LUBA
the coronal plane.

3.2. Hardware and system characteristics

With regard to the sensors used to record body movement, all
reported studies used IMUs, containing 3-axis accelerometers and 3-axis
gyroscopes (Cerqueira et al., 2020; Zhao & Obonyo, 2021; Zhao et al.,
2021), or combining those with a 3-axis magnetometer (Carbonaro
et al., 2021; Huang et al., 2020; Martinez et al., 2022; Martins et al.,
2023; Merlo et al., 2023; Valero et al., 2017; Vignais et al., 2013; Yan
et al., 2017). There is no agreement about the number and location of
4

sensors. The number of sensing units varied between 2 and 9, except for
3 studies that used commercial systems which contain 17 IMUs: Xsens
MVN Link, which embeds the sensors in a suit (Huang et al., 2020),
and Xsens MVN Awinda (Martins et al., 2023; Merlo et al., 2023). The
IMUs were incorporated into a personal protective equipment by Yan
et al. (2017). Cerqueira et al. (2020) developed a smart garment to
embed the sensors, actuators and remaining hardware. Fig. 2 displays
the sensor placement in the studies, where it stands out that all but one
placed a sensing unit on the head. Regarding limbs, 6 studies placed
inertial sensors on both left and right limbs, whereas 3 collected data
from the right limbs only. Two goniometers on the hands were added
in a study to record wrist angles (Vignais et al., 2013), in order to
complement the inertial system, since distal segments are the most
challenging segments to achieve a lower joint angle estimation error.
The sampling frequency also varies across studies, with the smallest
value being 10 Hz and the highest 100 Hz.
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Table 2
Summary of the studies included on postural ergonomics monitoring, regarding their algorithms, validation protocols, ground truths, and metrics.

Reference Algorithms Experimental protocol Ground truth Metrics

Yan et al.
(2017)

- Joint angle estimation using
tilt–twist method;
- Calculation of MHT for
real-time warning threshold

- 𝑁 = N/M;
- Typical operations of
construction workers on a
construction site

Technical validation: N/A.
Ergonomic tool validation:
N/A

N/A

Cerqueira
et al. (2020)

- Joint angle estimation using a
Kalman filter;
- Computation of the risk level
through joint angles’
discretisation based on thresholds
(state machine)

- 𝑁 = 5;
- 5 general tasks, containing
different working postures;
- Each trial performed 4 times: 2
without biofeedback and 2 with it

Technical validation:
- Collaborative robot arm.
Ergonomic tool validation:
N/A

Technical validation:
- RMSE.
User performance:
- Trial execution time;
- Time spent at each risk level.
System usability:
- Questionnaires following SUS

Merlo et al.
(2023)

- Joint angle estimation: N/M;
- Computation of the risk level
through joint angles’
discretisation based on thresholds;
- Calculation of an index that
integrates the present and past
risk scores

- 𝑁 = 1;
- Assembly of a corner joint with
three aluminium profiles

Technical validation: N/A.
Ergonomic tool validation:
N/A

User performance:
- Kinematic wear index

Martins et al.
(2023)

- Computation of the risk level
through joint angles’
discretisation based on thresholds;
- Calculation of an index that
integrates the present and past
risk scores

- 𝑁 = 3;
- Isolated postures, construction
task circuit, and agriculture task
circuit

Technical validation: N/A.
Ergonomic tool validation:
N/A

User performance:
- LUBA scores;
- Time spent at each risk level;
- Kinematic wear index

Vignais et al.
(2013)

- Biomechanical model of the
upper body;
- Joint angle estimation through
loosely coupled extended Kalman
filters;
- Computation of the risk level
through joint angles’
discretisation based on thresholds

- 𝑁 = 12;
- Industrial manual task,
composed of 4 subtasks;
- 6 subjects without real-time
biofeedback and 6 with it

Technical validation: N/A.
Ergonomic tool validation:
N/A

User performance:
- Trial execution time;
- Time spent at each risk level;
- Frequency of threshold breaching.
System usability:
- 5-point Likert scale questionnaire;
- Subjective observations

Carbonaro
et al. (2021)

- Joint angle estimation: N/M;
- Time window segmentation, and
joint angles’ discretisation based
on thresholds;
- Computation of the risk level
considering a time threshold

- 𝑁 = 1 (surgeon);
- Real laparoscopic surgery
operation

Technical validation: N/A.
Ergonomic tool validation:
- Camera recording

User performance:
- RULA score;
- Time spent at each risk level

Huang et al.
(2020)

- Joint angle estimation: N/M;
- Computation of the risk level
through joint angles’
discretisation based on thresholds;
- Estimation of joint contact
forces and moments;
- Computation of lower-back
compression force and joint
strength percent capable

- 𝑁 = 20 (healthy);
- 15 experimental tasks derived
from three common jobs in the
shipbuilding process (manual
handling, painting and welding)

Technical validation: N/A.
Ergonomic tool validation:
- For posture: expertise
assessment through video
camera recordings;
- For biomechanical analysis:
3DSSPP

Ergonomic tool validation:
- For posture: ICC; absolute
difference between scores; accuracy;
- For biomechanical analysis: CMC;
relative error.
User performance:
- RULA and REBA scores;
- Time spent at each risk level

Martinez
et al. (2022)

- Joint angle estimation: Xsens
proprietary sensor fusion;
- Computation of the risk level
through joint angles’
discretisation based on thresholds

- 𝑁 = 10;
- Material handling task

Technical validation:
- Camera-based MoCap
(Vicon).
Ergonomic tool validation:
- EMG (Trigno, Delsys)

Technical validation:
- RMSE;
- Cohen’s Kappa coefficient.
Ergonomic tool validation:
- Spearman correlation coefficient.
User performance:
- REBA and K-score scores

Valero et al.
(2017)

- Joint angle estimation: N/M;
- Computation of the risk level
through joint angles’
discretisation based on thresholds
(state machine)

- 𝑁 = 6 (not seriously injured in
the last year);
- Bricklaying routine tasks,
replicating real working
environments

Technical validation: N/A.
Ergonomic tool validation:
- Expertise assessment through
video camera recordings

User performance:
- Productivity score;
- Posture score

Zhao et al.
(2021)

- Deep neural network model for
posture recognition;
- Time threshold-based
application of the ergonomic rules

- 𝑁 = 30 (18 construction
workers + 12 managers);
- Routine construction tasks (6
trades)

Technical validation: N/A.
Ergonomic tool validation:
- Postures manually labelled
through video camera
recordings

User performance:
- Count of MHT breach;
- Total duration of MHT breach;
- Detected MHT time;
- Posture frequency and proportion.
System usability:
- 5-point Likert scale questionnaire

(continued on next page)
5
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Table 2 (continued).
Zhao and
Obonyo
(2021)

- Incremental learning model for
posture recognition;
- Time threshold-based
application of the ergonomic rules

- 𝑁 = 9 (construction workers);
- Routine construction tasks (5
trades)

Technical validation: N/A.
Ergonomic tool validation:
- Postures manually labelled
through video camera
recordings

User performance:
- Count of MHT breach;
- Total duration of MHT breach;
- Detected MHT time;
- Posture frequency and proportion;
- OWAS ergonomic risk level

𝑁 : number of participants; RMSE: root mean squared error; SUS: System Usability Scale; ICC: intraclass correlation coefficient; CMC: coefficient of multiple correlation.
Fig. 2. Body locations of the sensors and number of included studies that chose them.
Circles represent sensors in the anterior (𝑎) part of the body, squares the ones in the
posterior (𝑝) part of the body, filled symbols the ones placed bilaterally (𝑏), and empty
ones unilaterally (either left, 𝑙 , centre, 𝑐 , or right, 𝑟).

3.3. Algorithms for ergonomic assessment

Concerning the algorithms used to estimate the risk considering
the collected inertial data, the majority of the studies applied angular
thresholds to discretise the joint angle values, because the assess-
ments were based on ergonomic methods that provide predefined angle
ranges (Carbonaro et al., 2021; Cerqueira et al., 2020; Huang et al.,
2020; Martinez et al., 2022; Martins et al., 2023; Merlo et al., 2023;
Valero et al., 2017; Vignais et al., 2013; Yan et al., 2017).

Starting by the way the joint angles were obtained from the in-
ertial data, Yan et al. (2017) employed the tilt–twist method for an-
gle estimation. In turn, Cerqueira et al. (2020) and Vignais et al.
(2013) used a Kalman filter. However, Vignais et al. (2013) also in-
cluded a biomechanical model of the upper body composed of ten rigid
segments connected by anatomically restricted articulations. Martinez
et al. (2022) applied a sensor-to-segment transformation to the orien-
tation data obtained from the Xsens proprietary sensor fusion, aligning
the IMUs’ technical frame to the corresponding segments’ anatomical
frame. Martins et al. (2023) directly used the angles computed by the
commercial MoCap system. The remaining manuscripts did not provide
information about sensor fusion algorithms.

Cerqueira et al. (2020) implemented a real-time upper-body er-
gonomic risk assessment by following a RULA-LUBA-based finite state
machine approach and assigning one of four risk levels to each joint
movement continuously. In turn, Carbonaro et al. (2021) and Vignais
et al. (2013) calculated both local scores and a global one, by means
of RULA scale. However, Carbonaro et al. (2021) used a time window
approach, where the risk level assigned was the highest value main-
tained for more than a time threshold. Huang et al. (2020), in turn,
included not only a postural ergonomic analysis (RULA or REBA) but
a two-dimensional static biomechanical analysis, addressing the issue
of oversimplification by those ergonomic methods in the assessment of
some critical anatomical body segments, such as the lower back, which
plays an important role in inducing WRMSDs. The authors calculated
6

the lower back compression force, a particularly important and useful
indicator of lower-back risk. Martinez et al. (2022) introduced a novel
index, K-score, which is the sum of an upper-limb posture score and a
lower-limb one. This method differs from the typical ones in that it has
higher resolution to joint angle changes, providing a greater sensitivity
to the posture assessment.

Based on a state machine, Valero et al. (2017) combined the primary
states defined by ISO 11226 for trunk inclination, knee flexion and
arm elevation into twelve whole-body postures. Moreover, they defined
a global metric to condense postural information, the posture score
(or risk score), computed as a weighted average of the states for all
measured body parts, considering the angle values and the elapsed
time. Furthermore, the authors introduced a productivity score to
highlight worker performance more objectively, considering the actual
work performed.

Merlo et al. (2023), inspired by the RC circuit-like behaviour of
muscle fatigue, presented a joint kinematic wear index that reflects not
only the current risk, based on RULA criteria, but also the previous
ones, thus, having memory of the time previously spent in hazardous
postures as well as the repetitions. The index increases during work
time and decreases during recovery (when the robot is performing the
task and the worker is resting). Martins et al. (2023) replicated this idea
but they separated the joint assessment into different plans, defined by
LUBA method, unlike Merlo et al. (2023). Besides that, Martins et al.
(2023) established that the user’s joint recovers when it is assigned the
minimum LUBA score and accumulates posture hazard otherwise.

Other works used time thresholds, in order to identify the maximum
time during which each posture can be held (Yan et al., 2017; Zhao
et al., 2021), or to assign the risk level considering a certain minimum
accumulated time (Carbonaro et al., 2021). Zhao and Obonyo (2021)
and Zhao et al. (2021) used deep learning-based approaches, in spe-
cific, Zhao and Obonyo (2021) built an incremental model based on
the deep neural network of Zhao et al. (2021), to recognise qualita-
tive postures, which were decomposed and associated with an OWAS
classification. Each body part had an associated threshold concerning
the maximum posture proportion in working time, and the criterion
adopted for the risk assessment was the strictest threshold among all
the affected parts, with three levels of ergonomic risk for awkward
postures. Furthermore, another ergonomic method was used, in which
the prolonged postures should not be maintained more than 20% of
the MHT (30 s for uncomfortable postures and 3 min for comfortable
postures). Yan et al. (2017) conducted a real-time local ergonomic
assessment of the head, neck and trunk, following the standard ISO
11226. According to the joint angular values and the accumulated
MHT, three ergonomic zones were defined for each joint plane of
motion: an ‘‘acceptable’’ zone, where the user could be for an unlimited
time; a ‘‘not recommended’’ zone, where an auditory warning was
given; and a middle zone, where the accumulated MHT was determined
by a linear relationship between the joint angle and the holding time.
A different alarm sound was sent when that accumulated MHT was
reached.

3.4. System’s validation

The systems projected for ergonomic monitoring were validated
with experimental protocols where the tasks performed were, in most
cases, related to construction (Huang et al., 2020; Martins et al., 2023;
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Valero et al., 2017; Yan et al., 2017; Zhao & Obonyo, 2021; Zhao
et al., 2021) since it is one of the leading activity sectors in WRMSD
reports (De Kok et al., 2019). In the cases of Yan et al. (2017), Zhao
and Obonyo (2021) and Zhao et al. (2021), the participants were actual
construction workers, whereas in the others they had no construction
experience. Besides simulating construction task circuits, Martins et al.
(2023) also designed an agriculture task circuit and a set of trials
with isolated postures. One of the studies evaluated posture during a
real surgery operation, with an experienced surgeon (Carbonaro et al.,
2021). In others (Martinez et al., 2022; Merlo et al., 2023; Vignais
et al., 2013), the subjects performed industrial tasks; in particular, the
experiment carried out by Merlo et al. (2023) was integrated into an
ergonomic role allocation framework for dynamic human–robot collab-
oration. Cerqueira et al. (2020) chose more general tasks, containing
different working postures from several professions besides industrial
ones. None of the authors chose participants with musculoskeletal
disorders to carry out the trials. The number of participants varied
between 1 (Carbonaro et al., 2021; Merlo et al., 2023) and 30 (Zhao
et al., 2021); and Yan et al. (2017) did not mention this number.

Regarding metrics, in this review, they were separated into four
different types: technical validation, ergonomic tool validation, user per-
formance and system usability metrics. Technical validation metrics are
mostly associated with sensor accuracy and joint angle estimation
(benchmarked against a ground truth). Only two studies did this kind
of validation of the results, by calculating the root mean squared
error (RMSE) between their estimated angles and a ground truth
— the angles from a collaborative robot arm in a controlled move-
ment (Cerqueira et al., 2020), or the ones computed with a camera-
based MoCap system with reflective markers (Martinez et al., 2022).
Cerqueira et al. (2020) reported a RMSE between 2.57◦ and 4.95◦,
corresponding to an error between 1.43% and 2.5% in relation to the
full angle range. Martinez et al. (2022) obtained mean RMSE values
below 4◦ for all joint angles except for the neck. The authors also
demonstrated that the ergonomic scores obtained with IMUs’ were
in substantial agreement with the ones obtained with Vicon (mean
Cohen’s Kappa coefficient of 0.67 or higher). This study, contrary
to Cerqueira et al. (2020), performed this technical validation during
the experimental tasks. Huang et al. (2020), who used the joint angles
and segments’ positions provided by a commercial inertial MoCap
system (contrary to Cerqueira et al. (2020) and Martinez et al. (2022)),
underlined that the results were highly influenced by the accuracy of
the collected motion data and that the same type of input data acquired
from other systems, like low-cost inertial sensors combined with sensor
fusion algorithms, could lead to worse results.

Ergonomic tool validation metrics measure how trustworthy the pre-
ented tools are in the assessment, i.e., in the computed ergonomic
core. From the selected studies, five recorded the trials with a video
amera (Carbonaro et al., 2021; Huang et al., 2020; Valero et al., 2017;
hao & Obonyo, 2021; Zhao et al., 2021), and, excluding Carbonaro
t al. (2021), they mentioned an expertise assessment of the postures
ased on those videos as a ground truth for the ergonomic tool validation.

Furthermore, Huang et al. (2020) calculated the intraclass correlation
coefficient, to evaluate the level of consistency, and also the absolute
difference between the ergonomic scores from the system and experts’
ratings, and the accuracy, whose results were, respectively, around
0.83, below 1.0, and above 88%, demonstrating a high consistency with
experts’ ratings. Additionally, the intersystem coefficient of multiple
correlation and relative RMSE were the metrics used to validate the
computation of the lower-back compression force, by comparing to
a commercial program, 3DSSPP (VelocityEHS, 2020), which was in
good agreement with the reference system since the values of these
metrics were above 0.89 and below 9.5%, respectively. Martinez et al.
(2022) inspected the potential relationship between electromyography
(EMG) amplitude and REBA/K-score, through Spearman’s correlation
7

coefficient. The results showed no significant correlation between the
changes in the REBA score and the EMG amplitude induced by fa-
tigue, a significant correlation with fatigue-induced change of EMG
amplitude, but K-score showed a significant correlation with fatigue-
induced change in EMG amplitude, meaning that K-score may also be
used for fatigue detection. In turn, Valero et al. (2017) concluded that
basic harmful postures were correctly classified by the state machine,
although they did not provide a specific metric, which was the case
of Carbonaro et al. (2021) too. Four studies (Martins et al., 2023; Merlo
et al., 2023; Vignais et al., 2013; Yan et al., 2017) did not compare their
approaches either regarding the ergonomic assessment or the angle
estimation, so there was no ground truth.

User performance metrics, on the other hand, were used to quantify
how well or poorly the subject performed ergonomically; usually, these
were defined by the ergonomic methods used, e.g., RULA, LUBA or
REBA scores (continuous or averaged), and other derived and the
percentage of time spent at the ergonomic risk levels, or the risk
distribution over time, were computed by Carbonaro et al. (2021),
Cerqueira et al. (2020), Huang et al. (2020), Martinez et al. (2022),
Martins et al. (2023) and Vignais et al. (2013). Conversely, Martins
et al. (2023) and Merlo et al. (2023) used a kinematic wear index
which takes into account the joints’ ergonomic history. The trial’s
execution times with and without biofeedback were also recorded
and compared by Cerqueira et al. (2020) and Vignais et al. (2013).
Additionally, Vignais et al. (2013) computed the frequency of threshold
breaching. Valero et al. (2017) introduced a productivity score, which
seemed to improve with the worker’s experience, but the posture score,
which relied on the joint angles and on the finite-state machine score,
did not show such a correlation. Zhao and Obonyo (2021) and Zhao
et al. (2021) calculated how many times MHT was breached for each
posture, the total duration of that breach, the detected time, posture fre-
quency, and posture proportion; additionally, Zhao and Obonyo (2021)
calculated the OWAS ergonomic risk level. These authors reported
that the application of the ergonomic rules on the recognised and
on ground-truth postures yielded comparable risk assessment results.
Because of the misclassification of the awkward postures as normal
postures, MHT assessment was sensitive to recognition errors, the total
duration of awkward postures breaching MHT was underestimated by
the deep learning model; for the same reason, a tendency to under-
estimate the OWAS risk related to awkward postures was verified,
but, overall, the estimation was similar to the ground truth regarding
posture proportions; hence, most of the risk levels using OWAS rules
were correctly identified based on the proportion thresholds.

Finally, system usability metrics are related to the subjective point of
view of the users and are based on questionnaires. Namely, Cerqueira
et al. (2020) used the System Usability Scale (SUS) guidelines, and Vi-
gnais et al. (2013) and Zhao et al. (2021) the 5-point Likert scale ques-
tionnaire. In both cases, the participants showed satisfaction, highly
accepted the wearable sensors and considered them comfortable and
non-intrusive.

4. Biofeedback strategies

Biofeedback cues should be delivered with the utmost clarity so that
the user perceives and distinguishes them without interference with
work execution. The latter aspect is particularly relevant when choos-
ing the biofeedback type. Visual feedback is inconvenient for tasks that
demand continuous visual control because the visual cues may act as a
distraction (Kim, Garate, Gandarias, Lorenzini, & Ajoudani, 2021; Lind,
Diaz-Olivares et al., 2020; Lorenzini et al., 2022); also, Fani, Ciotti,
and Bianchi (2021) showed no statistical differences in guidance perfor-
mance between haptic and visual feedback. On the other hand, auditory
feedback, despite not requiring visual attention (Lee et al., 2021), may
not be heard in noisy work sites or, if delivered by earphones, it may
even damp external warning signals related to safety (Cerqueira et al.,
2020; Kim et al., 2021; Lee et al., 2021; Lind, Diaz-Olivares et al.,

2020); on top of that, users may feel embarrassed, which may have
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a negative impact on their task performance (Bootsman, Markopoulos,
Qi, Wang, & Timmermans, 2019). Hence, the present section focuses
on biofeedback systems, mostly the ones capable of providing haptic
biofeedback, which mitigates some of the issues of visual and auditory
types.

Table 3 compiles information concerning the study goals, feedback
modalities and actuation systems of the indicated studies, and Table 4
shows an overview of the information related to the algorithms re-
ported in the reviewed articles, as well as the protocol followed in the
trials, and the metrics considered to evaluate the solution performance.

The included articles were mainly targeted to industry (Cerqueira
et al., 2020; Fani et al., 2021; Kim et al., 2021; Lind, De Clercq et al.,
2023; Lind, Diaz-Olivares et al., 2020; Lins et al., 2018; Lorenzini et al.,
2022; Vignais et al., 2013), whereas one was directed for health care
delivery (Bootsman et al., 2019), one for robotic teleoperation (Ag-
gravi et al., 2018), and the other did not specify the target of the
study (Dunkelberger et al., 2018).

From the articles included in this review, six had the purpose of
providing biofeedback for posture correction (Bootsman et al., 2019;
Cerqueira et al., 2020; Kim et al., 2021; Lind, De Clercq et al., 2023;
Lind, Diaz-Olivares et al., 2020; Vignais et al., 2013). Another report fo-
cused on the study of the optimal vibration parameters, regarding pulse
length and repetitions, through the accuracy of the location-dependent
perception (Lins et al., 2018). Four authors aimed at providing direc-
tional feedback (Aggravi et al., 2018; Fani et al., 2021; Kim et al.,
2021; Lorenzini et al., 2022), and, from these, Kim et al. (2021) and
Lorenzini et al. (2022) compared diverse strategies. Three authors de-
veloped haptic multi-cue systems to inspect the advantages of rendering
perceptually different cues at the same time (Aggravi et al., 2018;
Dunkelberger et al., 2018; Fani et al., 2021).

4.1. Biofeedback types and modalities

Different feedback types were explored in the included studies. As
already mentioned, this literature review mainly focused on haptic
feedback, which was found in several modes (in all cases, feedback
cues were presented throughout the trial execution): vibrotactile (in ten
publications) (Aggravi et al., 2018; Bootsman et al., 2019; Cerqueira
et al., 2020; Dunkelberger et al., 2018; Fani et al., 2021; Kim et al.,
2021; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020; Lins
et al., 2018; Lorenzini et al., 2022); pressure/squeezing (in four stud-
ies) (Aggravi et al., 2018; Dunkelberger et al., 2018; Fani et al., 2021;
Lorenzini et al., 2022); and tangential forces/lateral skin stretch (in
three studies) (Aggravi et al., 2018; Dunkelberger et al., 2018; Lorenzini
et al., 2022). Two of the studies combined the three haptic feedback
modalities (Aggravi et al., 2018; Dunkelberger et al., 2018), and one
combined squeezing and vibrations (Fani et al., 2021). Other feedback
types were utilised in combination as well: auditory (Bootsman et al.,
2019; Vignais et al., 2013) and visual (Bootsman et al., 2019; Cerqueira
et al., 2020; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al.,
2020; Vignais et al., 2013). Despite (Vignais et al., 2013) not including
haptic biofeedback in their system, their study was included since it
was pioneer in the use of biofeedback for posture correction and a core
paper to demonstrate the effectiveness of biofeedback.

4.2. Hardware and system characteristics

In this section, the sensing component of the included studies’
systems was not subject to analysis, only the actuation part.

In terms of haptic actuators, the most reported type (seven articles)
was eccentric rotating mass vibration motor (Aggravi et al., 2018;
Cerqueira et al., 2020; Kim et al., 2021; Lind, De Clercq et al., 2023;
Lind, Diaz-Olivares et al., 2020; Lins et al., 2018; Lorenzini et al.,
2022), whereas linear resonant actuators were present in two stud-
ies (Dunkelberger et al., 2018; Fani et al., 2021), also for providing
vibration cues; two studies used DC motors to control a fabric-band
8

Fig. 3. Body locations of the haptic actuators and number of included studies that
chose them. Circles represent actuators in the anterior (𝑎) part of the body, squares the
ones in the posterior (𝑝) part of the body, filled symbols the ones placed bilaterally
(𝑏), and empty ones unilaterally (either left, 𝑙 , centre, 𝑐 , or right, 𝑟).

wrapped around user’s skin (Fani et al., 2021; Lorenzini et al., 2022);
another two used servomotors (Aggravi et al., 2018; Dunkelberger
et al., 2018). The vibrotactile devices used by Kim et al. (2021), named
ErgoTac, were wireless (Bluetooth Low Energy) and were developed
in a previous work (Kim, Lorenzini, Kapıcıoğlu, & Ajoudani, 2018).
Two studies (Fani et al., 2021; Lorenzini et al., 2022) used a multi-cue
system developed by Casini et al. (2015) (CUFF), comprising a fabric-
band actuated through two DC motors to provide tangential (slide)
and normal (squeeze) force stimuli on the user’s skin. Aggravi et al.
(2018) and Dunkelberger et al. (2018) developed wearable devices
capable of providing concurrent skin stretch, pressure and vibrotactile
stimuli: in the study of Aggravi et al. (2018), the first two stimuli were
yielded by servomotors similar to CUFF and the latter provided by four
vibrotactile motors positioned 90◦ apart; in the case of Dunkelberger
et al. (2018), the radial squeeze band and an haptic rocker (which
encompasses a rubber-coated semi-circular interface that is pressed
against the arm skin and induces a shear sensation when rotating)
were mounted on the same frame to make the wearable more compact.
Although all the studies presented wearable solutions for providing
the cues, two developed a smart vest to integrate and embed all the
hardware (Bootsman et al., 2019; Cerqueira et al., 2020). The actuators
spread across the body provided cues mostly in the upper body, with
only two studies providing feedback on legs, as depicted in Fig. 3.
Regarding limbs, three studies placed actuators on both left and right
limbs, one placed only on the dominant arm, and four on the right
limb. With respect to the parameters of the haptic cues, the vibration
frequency ranged between 121 Hz and 280 Hz. The choice of ON and
OFF periods was mentioned only in five manuscripts: Lind, De Clercq
et al. (2023) employed either intermittent or continuous vibrations,
depending on the trunk angle; Lins et al. (2018) studied the ON and OFF
periods between 25 and 150 ms; Kim et al. (2021) chose a duration of
400 ms; Fani et al. (2021) adopted an ON period of 100 ms and an OFF
period that decreases proportionally as the error magnitude increases;
and Aggravi et al. (2018) defined a duty cycle of 50%, i.e., percentages
of ON and OFF time equal.

For providing visual biofeedback (a summary report) after the
trial, Cerqueira et al. (2020) developed a graphical user interface,
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whereas Lind, De Clercq et al. (2023) and Lind, Diaz-Olivares et al.
(2020) developed a smartphone application connected through Blue-
tooth Low Energy to the sensing system and to the vibration motor.
A different approach was reported by Bootsman et al. (2019), where
a smartphone application provided auditory, vibrotactile and visual
9

biofeedback; but it also asked the users to record the activity they were
performing when bad posture was detected, and, with that information,
it produced an overview of activities associated with poor posture
episodes, giving relevant tips per activity. Vignais et al. (2013) used
a see-through head-mounted display to deliver auditory signals and a
visual representation of the upper-body assessment, regarding global

and local assessment, respectively.
Table 3
Summary of the included studies on biofeedback, regarding their goals, feedback modalities, and actuators’ type, location and parameters.

Reference Study goals Feedback modality Actuators

Type Location Actuation parameters

Bootsman
et al. (2019)

Biofeedback for
posture correction

Concurrent (with latency)
auditory, vibrotactile and
visual (summary)

Smartphone
application

Smartphone N/M

Vignais et al.
(2013)

Biofeedback for
posture correction

Concurrent auditory and
visual (representation of the
upper body)

See-through
head-mounted
display

Head N/M

Cerqueira
et al. (2020)

Biofeedback for
posture correction

Concurrent vibrotactile (all
motors can be activated at the
same time or one at a time)
and visual (GUI)

- 4 coin-style ERM
motors;
- GUI

Upper arms, cervical
and lumbar region

Frequency of 200 Hz;
strength of 2.2 g

Lind,
Diaz-Olivares
et al. (2020)

Biofeedback for
posture correction

Concurrent vibrotactile and
visual (app)

1 coin-style ERM
motor

Dominant upper arm Duration of 1 s; 2
different levels (2
lower-intensity pulses
or 4 higher-intensity
pulses)

Lind et al.
(2023)

Biofeedback for
posture correction

Concurrent vibrotactile and
visual (app)

1 coin-style ERM
motor

Sternum Intermittent or
continuous vibration,
depending on the trunk
forward inclination
angle

Lins et al.
(2018)

Optimal range of
vibration
parameters

Concurrent vibrotactile 13 cylindrical ERM
motors

Neck, shoulder blades,
left and right of lumbar
spine, shoulders,
elbows, wrists and
inner knees

1 to 3 pulses; length
and pause interval of
25, 50, 100 or 150 ms;
frequency of 167 Hz

Kim et al.
(2021)

Comparison of
distinct directional
feedback strategies
for posture
correction

Concurrent vibrotactile, one
motor activated at a time, 3
different modalities:
- SPOT: 2 UPJ; desired
direction given as a repulsive
vibration;
- RAMP: 1 UPJ; desired
direction given by a variation
in vibration level;
- PATTERN: 3/2/2 UPJ;
direction given by pattern

Coin-style ERM
motors

Torso, upper arm and
forearm

Frequency of 121 Hz; 3
different amplitudes
determined by risk
level

Lorenzini
et al. (2022)

Comparison of
distinct directional
feedback strategies

Concurrent vibrotactile (SPOT
modality from (Kim et al.,
2021)) vs. tangential force
(providing direction of posture
correction) and squeezing
(information about error
amplitude)

- 2 coin-style ERM
motors per joint;
- 1 fabric-band
actuated through 2
DC motors per joint

Right upper arm and
right lower part of calf

- Vibration: frequency
of 121 Hz;
- Squeezing: force
between 3 and 20 N,
proportional to error

Fani et al.
(2021)

Wearable
multi-cue system
with directional
feedback

Concurrent squeezing (guiding
along x-axis) and vibrotactile
(along y-axis)

- 2 fabric-bands
actuated through 2
DC motors each;
- 4 coin-style LRA
motors

Upper arms - Squeezing: force
between 3 and 20 N,
proportional to error;
- Vibration: pattern
with decreasing OFF
periods proportional to
error (from 500 to 0
ms) and ON set to 100
ms

Aggravi,
Pausé,
Giordano,
and
Pacchierotti
(2018)

Wearable
multi-cue system
with directional
feedback

Concurrent squeezing (normal
force), skin stretch (shear
force) and vibrotactile
providing directional
information

- 2 servomotors;
- 4 cylindrical ERM
motors, 90◦ apart

Right forearm - Squeezing: force
between 2.5 and 10 N;
- Skin stretch: belt
displacement between
15 and 10 mm;
- Vibration: maximum
frequency of 280 Hz,
duty cycle of 50%

(continued on next page)
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Table 3 (continued).
Dunkelberger
et al. (2018)

Wearable
multi-cue system

Concurrent vibrotactile, radial
squeezing and lateral skin
stretch

- 4 coin-style LRA
motors, 90◦ apart;
- Strap connected to
a servomotor;
- Haptic rocker
(servomotor +
end-effector)

Right upper arm - Vibration: frequency
of 265 Hz, duration of
50 ms or 150 ms;
- Squeezing: maximum
torque of 588 mNm,
duration of 350 ms;
- Haptic rocker:
maximum torque of
375 mNm, duration of
150 ms

N/M: Not Mentioned; GUI: graphical user interface; ERM: eccentric rotating mass; UPJ: units per joint; LRA: linear resonant actuators.
4.3. Algorithms to determine feedback triggering

As far as algorithms are concerned, for posture risk assessment,
angle values were compared to angular thresholds to determine the
application of the cues in five studies (Bootsman et al., 2019; Cerqueira
et al., 2020; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al.,
2020; Vignais et al., 2013), whereas a decision support system assessed
posture with an OWAS-based classifier in one study (Lins et al., 2018).
The computation of the centre of pressure (CoP) position was men-
tioned in two studies (Fani et al., 2021; Kim et al., 2021). Moreover,
in the work of Kim et al. (2021), this calculation of the CoP was
part of an optimisation problem to obtain the body configuration
that minimises overloading joint torques, which is based on the dis-
placement of the CoP. Regarding the studies which were not applied
in postural ergonomic correction, the error magnitude between the
current and the desired angular configurations were continuously cal-
culated, as well as the corresponding actuation parameters, in four
studies (Aggravi et al., 2018; Fani et al., 2021; Kim et al., 2021;
Lorenzini et al., 2022). One manuscript did not explain what algorithms
were developed (Dunkelberger et al., 2018).

4.4. Haptic biofeedback strategies

In this section, the strategies employed for transmitting the haptic
cues are exploited, concerning factors such as what information is
transmitted, how the intensity is related to the user deviation, or when
biofeedback is activated (after how much time or how many times).
Distinct approaches were followed when using haptic biofeedback.

For example, Bootsman et al. (2019) provided biofeedback in a non-
localised manner, detached from the body segment to be assessed (the
back). The authors mentioned three parameters to be key choices in
the user experience: allowed deviation from neutral posture (which
can be set by the user in the app), minimal duration of poor posture
episodes (to avoid sending too many notifications), and the minimum
time interval between two notifications (to prevent saturation of the
user), which were set, in field studies, as 20◦ (maximum), 1.5 s, and
5 min, although these were intended to be personalised by the user.

In the remaining studies that employed haptic cues for posture
correction, these were provided on the target body segments. Whereas
Cerqueira et al. (2020) and Lins et al. (2018) provided localised vi-
brations in the monitored segments with the vibration motors able to
be activated alone or in combination (according to the computed risk)
but without providing information about the risk level or the error
amplitude, Lind, Diaz-Olivares et al. (2020) delivered two different
vibration levels, ordered in intensity, for upper-arm elevation angles
of at least 30◦ and 60◦ relative to the upper-arm reference position,
which is set by the user using the smartphone application. These
two angles were chosen because upper-arm elevations exceeding 30◦

and 60◦ for more than 50% and 10% of the work time, respectively,
have been associated with increased risk of musculoskeletal disorders
in the neck and shoulder. In another publication, Lind, De Clercq
et al. (2023) established two thresholds for vibrotactile biofeedback
regarding the trunk forward inclination angle: above 30◦ the vibration
was intermittent, and above 45◦ continuous.
10
Fig. 4. Representation of the vibrations (triangular waves) provided by the motors
(black boxes), in each of the three directional feedback modalities described by Kim
et al. (2021): (a) SPOT, (b) RAMP, and (c) PATTERN, where the solid arrows represent
the desired movement of each segment.
Source: Adapted from Kim et al. (2021).

In two studies (Lind, De Clercq et al., 2023; Lind, Diaz-Olivares
et al., 2020), the biofeedback cues were given immediately when risky
postures occurred and, in the others (Bootsman et al., 2019; Cerqueira
et al., 2020; Vignais et al., 2013), after they had been maintained for
more than a fixed maximum consecutive time period. Cerqueira et al.
(2020) and Vignais et al. (2013) defined that the higher the risk level,
the lower the maximum time before triggering biofeedback cues.

Inspired by the concept of directional haptic cues introduced by
Tappeiner, Klatzky, Unger, and Hollis (2009), several studies have
implemented haptic guidance. Kim et al. (2021) gave directional infor-
mation for the torso, shoulder, and elbow but only one joint could be
guided at a time (the one with the highest error magnitude). The error
magnitude between the actual and the desired angular configurations
was provided to the user by three distinct vibrotactile amplitudes,
ordered by the risk level from an ergonomics perspective. Three dif-
ferent directional feedback strategies were implemented and compared
regarding comfort, convenience and intuitiveness: SPOT, RAMP and
PATTERN. The first one, SPOT, in Fig. 4(a), uses two vibrotactile units
per joint, on opposite sides; and the direction of correction is given as a
repulsive cue (in the opposite side to where the joint has to move). The
RAMP modality only entails one unit per joint; in this case, the desired
direction is given by an increasing or decreasing vibration, as shown
in Fig. 4(b). In the PATTERN modality, multiple vibrotactile units at a
certain distance (5 cm) within each segment were needed to guide each
joint; the vibration sequence gives the direction in which the joint has
to be moved, as illustrated in Fig. 4(c).

By addressing the guidance of shoulder and knee angles, Lorenzini
et al. (2022) compared the effectiveness of SPOT modality from Kim
et al. (2021) and a different feedback modality where the direction of
the posture correction was implemented by a tangential force, where
the rotation indicates the desired direction of correction, and the
amplitude of the error is given by a normal force (squeezing) whose
intensity is proportional to the error.
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Table 4
Summary of the included studies on biofeedback, regarding their algorithms, validation protocols, and metrics.

Reference Algorithms Experimental protocol Metrics

Bootsman et al.
(2019)

Angular threshold-based for
poor posture notification

- 𝑁 = 28 (nurses, non-sedentary job, no lower
back pain);
- Four-phased (A-B-A-C), where condition A has
no biofeedback, B only has notifications of poor
posture occurrences, and C has notifications,
activities self-recording and overview

User performance:
- Number of poor posture episodes.
System usability:
- Credibility and expectancy questionnaire;
- Intrinsic Motivation Inventory;
- UTAUT questionnaire;
- Semi-structured interview

Vignais et al.
(2013)

Angular threshold-based for
ergonomic risk assessment

- 𝑁 = 12;
- Industrial manual task, composed of 4
subtasks;
- Half of the subjects without real-time
biofeedback and half with it

User performance:
- Trial execution time;
- Time spent at each risk level;
- Frequency of threshold breaching.
System usability:
- 5-point Likert scale questionnaire;
- Subjective observations

Cerqueira et al.
(2020)

State machine (angular
threshold-based) for
ergonomic risk assessment

- 𝑁 = 5;
- 5 general tasks, containing different working
postures;
- Each trial performed 4 times: 2 without
biofeedback and 2 with

User performance:
- Trial execution time;
- Time spent at each risk level.
System usability:
- Questionnaire following SUS

Lind,
Diaz-Olivares
et al. (2020)

Angular threshold-based for
risk assessment

- 𝑁 = 16 (novices, healthy);
- Mail sorting in letter trays;
- 2 experimental conditions: with and without
predetermined positions of the workstation;
verbal ergonomic instructions solely or in
combination with haptic biofeedback

User performance:
- Accumulated time in upper-arm elevations;
- 50th, 90th, 95th and 99th percentiles angles.
System usability:
- Borg CR10 scale;
- Discomfort/pain body map;
- Semi-structured interview

Lind, De Clercq
et al. (2023)

Angular threshold-based for
risk assessment

- 𝑁 = 15 (real warehouse workers, healthy);
- Manual sorting of packages in a warehouse,
for 5 workdays within 4 weeks;
- 2 sessions with vibrotactile biofeedback and 3
without (baseline, post-training and follow-ups
weeks later)

User performance:
- Accumulated time in forwarding trunk
inclinations;
- 90th, 95th and 99th percentiles angles;
- 10th–90th percentile range.
System usability:
- Copenhagen Psychosocial Questionnaire II;
- Comfort Rating Scale;
- Semi-open questions;
- Self-rated work ability;
- Borg RPE scale for physical exertion;
- Productivity demands

Lins et al.
(2018)

Decision Support System
analyses posture using OWAS
and generates pulse sequences
at appropriate locations

- 𝑁 = 11;
- Standing upright on two legs;
- Determine position perceived as the most
prominent vibration;
- Sequence of stimulations defined randomly

System usability:
- Perception accuracy

Kim et al.
(2021)

- Continuous calculation of
error magnitude between the
current configuration and the
desired one, and subsequent
vibration amplitude;
- Ergonomics framework:
desired postures determined
based on overloading joint
torques method

- Directional modalities evaluation: 𝑁 = 15;
torso and arm feedback considered separately;
moving according to vibrotactile guidance,
towards three assigned configurations.
- Ergonomic postural adjustment: 𝑁 = 5; 3
joints simultaneously; holding a heavy object in
non-ergonomic postures, guided by the haptic
cues to the optimal configuration

User performance:
-a Confusion index; success ratio;
-b Reaching time; angular distance; reaching
velocity;
-c Final error;
- Decrement ratio.
System usability:
- Single Ease Question;
- SUS

Lorenzini et al.
(2022)

- Calculation of vibration
amplitude similar to Kim
et al. (2021);
- Calculation of squeezing
force through the error

- 𝑁 = 12 (healthy);
- 2 blocks (randomised order): one guided by
normal and tangential force cues and the other
by vibrotactile cues, each with 3 sub-blocks:
upper and lower limb guidance separately and
also jointly; three reference angles
(combinations) for each

User performance:
-a Confusion index; success ratio;
-b Reaching time; angular distance; reaching
velocity;
-c Final error.
System usability:
- 7-point Likert scale questionnaire;
- NASA-TLX questionnaire

Fani et al.
(2021)

- Computation of CoP position;
- Calculation of errors;
- Calculation of force (input
for squeezing device) and
duration of OFF/ON periods
(for vibrotactile motors)

- 𝑁 = 11 (healthy);
- Movements guided along two perpendicular
directions;
- 3 experimental conditions: no guidance,
haptic cues and visual cues

User performance:
- Success rate;
- Completion time.
System usability:
- 7-point Likert scale questionnaire;
- NASA-TLX questionnaire

(continued on next page)
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Table 4 (continued).
Aggravi et al.
(2018)

- Computation of torque cues,
frequencies for vibrotactile
motors and angles for
servomotors;
- Calculation of end-effector
velocity

- 𝑁 = 34;
- Two human subjects’ teleoperation
experiments in a virtual environment: control
the motion of a robotic manipulator for
grasping an object, and the motion of a
quadrotor fleet along a given path

User performance:
- Completion time;
- Trajectory length;
- Haptic actuation;
- Gripper rotation error.
System usability:
- Perceived effectiveness

Dunkelberger
et al. (2018)

N/M - 𝑁 = 8 (healthy);
- Identification of a set of 32 haptic
presentations, with three concurrent cues, both
in multimodal and unimodal approaches

System usability:
- Perception accuracy

N/M: Not Mentioned; 𝑁 : number of participants; UTAUT: Unified Theory of Acceptance and Use of Technology; SUS: System Usability Scale; CoP: centre of pressure.
For all the trials.
For the successful cases.
For the failed trials.
Fani et al. (2021) conveyed squeezing stimuli and vibrations with
different aim: aiding in posture balancing along the user’s frontal

nd sagittal planes, respectively. The device, which integrated both
otor types, squeezes the arm on the side towards which the users have

o move their weight, with a force proportional to the error between
he current position of the CoP along the users’ frontal plane and the
esired one; regarding the vibrotactile motors, synchronised in both
rms, they vibrate on the back or on the front side, considering the
irection in which the body weight has to be moved, following an
N/OFF pattern with the OFF periods decreasing as the error increases,
roportionally.

.5. System’s validation

The trials for the validation of these systems were conducted in
ifferent conditions. In one study Bootsman et al. (2019), the exper-
ment took place in hospitals, where the subjects were nurses, carrying
ut their normal duties (real working conditions). Lind, De Clercq
t al. (2023) carried out the validation in a real warehouse with actual
orkers performing manual sorting of packages. The experiments of

he remaining studies were conducted in controlled lab environments.
n two studies, the subjects were placed in task scenarios where they
ad to perform different work activities and postures from indus-
ry (Cerqueira et al., 2020; Vignais et al., 2013) and other professions
oo (Cerqueira et al., 2020; Lind, Diaz-Olivares et al., 2020) while
eceiving cues that warn against ergonomically hazardous postures.
n particular, Lind, Diaz-Olivares et al. (2020) simulated mail sort-
ng (repetitive manual handling), in two different conditions: with
he positions of the letter tray stack predetermined or adjustable.
ut, in the vast majority of the cases (six studies), the subjects did
ot perform manual tasks: in some of them, subjects were asked to
dentify the haptic cues they felt, without performing any subsequent
ction (Dunkelberger et al., 2018; Lins et al., 2018); in other cases,
articipants had to move in accordance with the vibrotactile feedback
nstructions towards an assigned configuration (Kim et al., 2021; Loren-
ini et al., 2022) (Kim et al. (2021) carried out a second protocol where
he subjects had to lift and hold a heavy object in a non-ergonomic
osture and received cues to guide them to the configuration that
inimises the overloading joints torques); in the case of Fani et al.

2021), the users had to follow the feedback cues to control their CoP
ocation on a balancing board; and Aggravi et al. (2018) conducted
eleoperation experiments in a virtual environment. The number of
articipants in the experimental protocols varied between 5 (Cerqueira
t al., 2020) and 34 (Aggravi et al., 2018). Some studies explicitly
entioned the absence of musculoskeletal discomfort or disorders or

ther physical limitations as inclusion criteria for participant selec-
ion (Bootsman et al., 2019; Dunkelberger et al., 2018; Fani et al., 2021;
ind, De Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020; Lorenzini
t al., 2022), others also required no psychological impediments that
ould affect their capabilities of understanding and performing the
12
tasks (Dunkelberger et al., 2018; Lorenzini et al., 2022); two studies
explicitly required naive participants or with little experience (Fani
et al., 2021; Lind, Diaz-Olivares et al., 2020).

The ground truth of the experiments was a control group who
performed without feedback in one study (Vignais et al., 2013). In
others, it was composed of the baseline trials that all the subjects
performed (no division of participants into groups): without any kind
of feedback (Aggravi et al., 2018; Bootsman et al., 2019; Cerqueira
et al., 2020; Fani et al., 2021; Lind, De Clercq et al., 2023; Lind, Diaz-
Olivares et al., 2020), or with a type of feedback other than the one
proposed by the authors (Aggravi et al., 2018; Fani et al., 2021; Lind,
Diaz-Olivares et al., 2020). Two studies included post-training sessions
after one trial with biofeedback on the same day (Bootsman et al., 2019;
Lind, De Clercq et al., 2023), and Lind, De Clercq et al. (2023) also
designed follow-up sessions weeks later. Different feedback strategies
were compared by Kim et al. (2021) and different haptic modalities
by Lorenzini et al. (2022). Dunkelberger et al. (2018), who combined
vibration, squeeze, and lateral stretch cues, used as ground truth for
comparison a system equivalent to the one they developed, where the
squeeze and stretch actuators were replaced by vibrotactors that ren-
dered the cues in the same way (ON or OFF) and for the same amount of
time as the corresponding ones on the multi-modality system, in order
to check how accurately these multi-cues were perceived by users and
how distinguishable they were.

Several metrics were used to assess the system effectiveness through
user performance in baseline (the ground truth) and in feedback con-
ditions, or in different feedback modalities: number of poor posture
episodes (Bootsman et al., 2019), percentage of time spent at ergonomic
risk levels/above certain angles (Cerqueira et al., 2020; Lind, De Clercq
et al., 2023; Lind, Diaz-Olivares et al., 2020; Vignais et al., 2013),
angular percentiles (Lind, De Clercq et al., 2023; Lind, Diaz-Olivares
et al., 2020), angle error in relation to the target angle (Aggravi et al.,
2018; Kim et al., 2021; Lorenzini et al., 2022), reaching/completion
time (Aggravi et al., 2018; Cerqueira et al., 2020; Fani et al., 2021;
Kim et al., 2021; Lorenzini et al., 2022; Vignais et al., 2013), confusion
index (Kim et al., 2021; Lorenzini et al., 2022), success ratio (Fani
et al., 2021; Kim et al., 2021; Lorenzini et al., 2022), travelled angular
distance (Kim et al., 2021; Lorenzini et al., 2022), average velocity (Kim
et al., 2021; Lorenzini et al., 2022), decrement ratio (reduction rate of
overloading joint torque) (Kim et al., 2021), trajectory length (Aggravi
et al., 2018), and percentage of time in which the feedback was
ON (Aggravi et al., 2018).

The quantitative evaluation of the effectiveness of the smart shirt
developed by Bootsman et al. (2019) for tracking lumbar spine curva-
ture proved that the biofeedback system helped to reduce the occur-
rences of undesired posture behaviour compared with the baseline, in
the short term. The results obtained by Vignais et al. (2013) showed a
significant reduction in RULA risk in the biofeedback condition, both
at the segments’ level and globally. Still, the group that performed with
biofeedback took more time to execute the tasks. Cerqueira et al. (2020)
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showed that real-time biofeedback reduced the ergonomic risk overall
and the time spent at high-risk level until a maximum of 45% for the
neck and 39.8% for the trunk. However, it was also noted that the
participants took, on average, 30% more time to execute the trial in the
biofeedback condition, compared with the baseline. Still, the authors
believe that, with training, this difference would reduce. Lind, Diaz-
Olivares et al. (2020) showed that, for work technique training, when
the workstation was all fixed, either verbal ergonomic instructions
alone or combined with haptic biofeedback were able to significantly
reduce the time in adverse upper-arm postures, after short periods of
training. However, the combination had significantly better results,
with the accumulated times in upper-arm elevations above 30◦ and 60◦

decreasing 38% and 49%, respectively, compared with no biofeedback
at all. The haptic biofeedback was also the most important input for
the users to redesign the workstation. In another paper, Lind, De Clercq
et al. (2023) reported significant reductions in the median proportion
of time spent in high trunk forward inclinations (68% for angles above
30◦ and 89% for angles above 60◦) when receiving the vibrotactile
biofeedback compared to the baseline. Accordingly, the 95th and 99th
percentiles trunk inclination angle decreased in the biofeedback con-
dition and also in post-feedback compared to the baseline. However,
for follow-up sessions, there was only a slight tendency of decline
in the 90th and 95th percentile trunk angles. The results obtained
by Kim et al. (2021) encouraged the use of either one of the proposed
vibrotactile feedback strategies for guidance, since the overall final
errors between the desired and the actual joint configurations were
below 9%, indicating that the subjects could reach the desired joint
angles. Overall, the angle errors registered in the torso were lower than
those in the arms. SPOT modality was the most intuitive and preferable
modality to provide directional guidance, thanks to its inferior final
mean error for the overall joints (equal to 4.09%, whereas RAMP
reported 6.89% and PATTERN 5.18%) and lower time to reach the
desired joint angles (28.35 s, 60.24 s, and 54.83 s, respectively). SPOT
modality integrated with an ergonomic optimisation framework, when
performing a lifting task, did not show a noticeable change in the
overloading joint torques at the elbow and shoulder in all cases, but led
to a reduction in hip, knee, and ankle joints. Regarding the comparison
between different haptic feedback modalities, Lorenzini et al. (2022)
reported that, when guiding only one joint, the vibrotactile device was
found to be the most befitting for the shoulder, considering that it led
to higher performances regarding all the metrics, and it was generally
better perceived by the users; in turn, the force cues seemed to be
the effective solution for the knee, because of the faster responses and
higher accuracy in reaching the desired posture. Overall, when the
shoulder and knee joints were guided simultaneously, the performance
of both devices got worse; even so, a good percentage of success
was reached, which demonstrated the aptitude of the integration of
these two feedback modalities in posture correction applications. Fani
et al. (2021) showed statistically significant differences in terms of
success rate and time for moving CoP position between each of the two
conditions (haptic or visual feedback) and baseline (no guidance), but
no significant differences between the two types of feedback: success
rates of 88% and 96% and trial durations of 13.87 s and 10.57 s were
reached with haptic cues and visual cues, respectively. In opposition, in
the experiment of Aggravi et al. (2018), all the considered metrics but
completion time improved when using the wearable feedback device
instead of visual feedback, and all improved compared with wearing
no device — performance on completion time and trajectory length
improved of 19.8% and 25.1%, respectively.

The proposed systems’ usability was evaluated by questionnaires like
credibility and expectancy (Bootsman et al., 2019), Intrinsic Motiva-
tion Inventory (Bootsman et al., 2019), Unified Theory of Acceptance
and Use of Technology (UTAUT) (Bootsman et al., 2019), SUS guide-
lines (Cerqueira et al., 2020; Kim et al., 2021), Single Ease Ques-
tion (Kim et al., 2021), Likert scales (Fani et al., 2021; Lorenzini et al.,
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2022; Vignais et al., 2013), NASA-TLX (Fani et al., 2021; Lorenzini
et al., 2022), perceived effectiveness (Aggravi et al., 2018), Borg scale
and a body map to rate the discomfort/pain or physical exertion (Lind,
De Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020), Copenhagen
Psychosocial Questionnaire II (Lind, De Clercq et al., 2023), Com-
fort Rating Scale (Lind, De Clercq et al., 2023), and other subjective
reports/semi-structured interviews were conducted as well (Bootsman
et al., 2019; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al.,
2020; Vignais et al., 2013). Moreover, Dunkelberger et al. (2018)
and Lins et al. (2018) calculated the accuracy between the perceived
cues and the given ones in order to assess the clarity with which the
cues were perceived.

Participants in the experiment of Bootsman et al. (2019) found
the system overall moderately positive, and their ratings respecting
credibility and motivation to use the device were encouraging, but
they were not completely satisfied because of the need to interact with
the app to associate activities with sustained poor posture occurrences,
which was not always convenient, due to their work. Participants
in the study of Vignais et al. (2013) expressed that the biofeedback
system helped to support more ergonomic postures, and defended the
combination of the visual and auditory feedback modalities against a
single one. Cerqueira et al. (2020) reported that users highly accepted
the system and its intuitiveness, and it neither restricted movements
nor influenced normal working behaviour, thus demonstrating the
feasibility of vibrotactile biofeedback. Lind, Diaz-Olivares et al. (2020)
also revealed that biofeedback was experienced positively and useable
by the participants and made them more aware of their work technique.
The subjects recruited by Lind, De Clercq et al. (2023) considered
that the system was very comfortable and nonintrusive, and that it
did not increase the cognitive demands, indeed, the majority declared
to be more aware of their postures after the biofeedback training.
Besides, their perceived exertion did not vary significantly between
different conditions. Participants in the experiment of Fani et al. (2021)
rated the wearable haptic system as intuitive and effective. Aggravi
et al. (2018) declared a 149.1% improvement in perceived effective-
ness when receiving haptic feedback. The subjective data collected
by Kim et al. (2021) was in agreement with objective data, showing
excellent acceptance of the preferred feedback strategy among the
participants. Lorenzini et al. (2022) reported that both vibrotactile and
slide-and-squeeze devices achieved good acceptability and intuitive-
ness, although the former was preferred for shoulder guidance and
the latter for the knee, which is in agreement with the performance
indices. The advantages of the transmission of large sets of haptic cues
against only vibrations were stated by Dunkelberger et al. (2018), who
reported that more cue combinations were correctly identified in the
first case (41.4% vs. 30.5%). Moreover, when stretch and squeeze were
both ON, users had trouble perceiving the stretch cue. The perceptual
accuracy of the vibration cues was higher for the multimodal feedback
condition: despite the fact that this vibrotactile band is identical in both
conditions, the researchers argued that these were concealed in the uni-
modal system. The qualitative assessment made by the participants also
indicated a majority preference for the proposed multimodal feedback
system. Regarding vibrotactile feedback, Lins et al. (2018), after testing
sequences with 1 to 3 pulse repetitions and pulse lengths of 25, 50, 100,
and 150 ms (with pulse intervals with these same durations), found an
optimal user perception for a pulse sequence of two 150 ms pulses.
Further, the accuracy of the vibration perceptions varied substantially
through the body, being better perceived in the shoulders (84.7%) and
wrists (78.9%), followed by the upper back (74.1%), arms (65.9%) and
knees (56.4%), and very difficult to perceive properly in the lumbar
region (2.2%), likely because of the loose jacket where the vibration
motors where placed. Thus, vibrations generated by motors close to

the skin were perceptible in most cases.
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5. Discussion

Overall, this literature review demonstrated the potential of wear-
able technology to not only monitor and/or assess posture but also
to provide biofeedback about it. The key ideas presented regarding
sensing and actuation technology, ergonomic methods, and feedback
effectiveness are discussed in the present section to answer the research
questions. Accordingly, current gaps and future directions are pointed
out.

5.1. What types, number, locations and settings of wearable devices were
adopted in the literature studies?

Currently, the trendiest wearable technology in data collection are
IMUs. The number of degrees of freedom (DoFs) of the sensing devices
has a considerable impact on angle estimation. It is frequent to find
studies that only combine accelerometer and gyroscope. However, most
studies also consider magnetometer data (9 DoF). With 6-DoF IMUs,
orientation data from the gyroscope is corrected only with information
from the accelerometer (roll and pitch angles), whereas 9 DoF join
magnetometer data, which provides a global heading direction based
on a magnetic field (yaw angle), allowing a higher accuracy and robust-
ness against drift over time (Lind, Diaz-Olivares et al., 2020; Vignais
et al., 2013). Nonetheless, magnetometers can be affected by magnetic
disturbances (Lind, Abtahi et al., 2023; Vignais et al., 2013), and they
increase the sensing system’s cost as well. Considering all studies, the
number of IMUs is not consensual; it depends on the complexity of
the postural assessment. Apart from that, the level of intrusiveness and
inconvenience was rated as low by real workers (Zhao et al., 2021),
reporting that the sensors did not reduce their productivity.

Regarding ergonomic assessment, excepting Huang et al. (2020)
and Martinez et al. (2022), who employed the REBA method, the
authors focused only on the upper body since most ergonomic methods
do not give much relevance to the lower limbs. This is reflected in the
sensors’ body location: most of these studies did not collect information
about lower-limb motion, but the ones that do, place one sensor on the
upper leg and another on the lower leg, being able to measure knee
angle. To measure head inclination, a sensor is placed on the head
in most systems. Since the trunk is one of the most critical segments
to musculoskeletal disorders, all studies from Section 3 measured this
angle, using one or two IMUs placed in the back or chest. Almost all
of the selected studies placed IMUs on either the shoulder(s) or the
upper arm(s), in order to track shoulder joint movements. Few studies
addressed forearms/hand movements since inertial sensors have higher
angle estimation errors for extremity joint movements (Wang, Dai, &
Ning, 2015). The accuracy of the collected data is dependent on the
choice of the sensors’ locations (Yan et al., 2017). Hoareau, Fan, Abtahi,
and Yang (2023) evidenced that in-cloth IMUs can assess posture
with an acceptable accuracy compared to on-skin sensors (mean errors
below 4◦ for upper-arm and trunk angles), although this depends on
the fit of the clothes. Nevertheless, the sensors must not interfere with
other safety equipment, as Zhao et al. (2021) reported to happen.

From the included studies, three of them integrated the actuators in
a smart garment with sensors and all the hardware embedded, ready
to be worn by the users autonomously (Cerqueira et al., 2020; Lind, De
Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020), whereas one used
a commercial suit with inertial sensors (Huang et al., 2020).

The choice of the sampling frequency depends on the temporal
dynamics of the activities, and this frequency must always be superior
to twice the maximum frequency in the human movement’s spectrum,
10 Hz, in order to respect the Nyquist theorem. Nonetheless, the
frequencies that concentrate most of the energy range between 0.3 and
3.5 Hz (Sun & Hill, 1993). However, the more samples per second, the
greater the demands in terms of a fast response from the orientation
filter, in order to achieve real-time ergonomic assessment or, at least,
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online.
Several types of feedback were found in scientific literature, but the
haptic one stood out as the most appropriate, and different actuators
were found to provide it. Within haptic cues, the most common type
is vibrotactile, due to the reduced weight, small size and lower power
consumption of vibration motors in general, and because they can be
driven at a range of different frequencies and amplitudes (Dunkelberger
et al., 2018; Lorenzini et al., 2022), thus being able to alert for bad
posture (Bootsman et al., 2019; Cerqueira et al., 2020; Kim et al.,
2021; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020),
to guide human joints (Kim et al., 2021; Lorenzini et al., 2022) or
to give navigational cues (Fani et al., 2021). Due to the motors, the
presented slide-and-squeeze devices’ wearability is compromised by the
larger dimensions, which almost go beyond the limits of what humans
perceive as their intimate space, an aura around the body that extends
only 12.7 cm off the body (Cerqueira et al., 2020). Moreover, it may
limit the user’s movements, which is a serious handicap for a device
that should be as inconspicuous as possible.

Ideal haptic biofeedback should give the desired information
promptly through tactile cues that users can sense and distinguish
accurately (Dunkelberger et al., 2018). One of the crucial factors in
biofeedback effectiveness is the actuators’ location. In the case of
vibrotactors, they must be close to the skin in order to enhance their
vibration; in one study they were not directly placed in users’ skin
but in a loose suit, and that led to a mean perception accuracy of
approximately 60%, with the authors pointing out that the vibrations
triggered by vibrotactors close to the skin were perceptible more
often (Lins et al., 2018). Beyond that, vibrations on bones (neck, spine,
pelvis and sacrum) should be avoided since they are felt throughout the
whole body segment, and they are perceived as very uncomfortable;
instead, the actuation units can be placed aside (Visser, 2018). For
instance, Kim et al. (2021) set the vibrotactile devices near the joints
to be guided. In the majority of the addressed papers, actuators were
placed in the arms, especially in the upper arm to raise awareness about
the shoulder joint.

The distance between haptic units must take into account the min-
imum distance required to distinguish two stimuli, applied in different
locations. Different values are mentioned in the literature: Kim et al.
(2021) chose 5 cm for trunk and arms, Filosa et al. (2019) reported a
distance of 5.5 cm for the abdomen, Visser (2018) mentioned 5 cm for
the upper leg, and Lins et al. (2018) pointed out 4 cm for limbs. If the
motors are placed at smaller distances, the cues may be perceived as a
single vibration with a large surface (Visser, 2018).

Concerning vibrotactile cues, the vibration frequency is also a cru-
cial aspect, because the human cerebral cortex is only capable of
discerning frequencies from 80 to 250 Hz, hence the vibration fre-
quency must lie within this spectrum (Cerqueira et al., 2020), which
also avoids the tendon vibration illusion frequency (75 Hz) (Kammers,
van der Ham, & Dijkerman, 2006). Effectively, in all the scanned studies
but one Dunkelberger et al. (2018), the chosen frequency was between
these values.

Vibration intensity plays an important role in user experience too. A
trade-off between safety and perception is present in the choice of this
value, as higher intensities are more readily perceived, but, on the other
side, both intensity and duration of the vibration increase the risk of
injury, and, besides that, higher intensities consume more energy (Kim
et al., 2021).

Another aspect that contributes to the effectiveness of the feedback
is the duration of each cue, or the length of ON and OFF periods
when multiple pulses are given. For example, Aggravi et al. (2018)
established equal ON and OFF periods for the motors when they were
activated. On the other hand, Fani et al. (2021) defined an ON period
of 100 ms, while the OFF period was variable, decreasing with the error
magnitude. Nevertheless, Lins et al. (2018) found optimal ON and OFF
periods of 150 ms, which is probably due to the fact that lower intensity
vibrations require longer duration (Kim et al., 2021). However, Lins

et al. (2018) pointed out that pulses longer than 200 ms would likely
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annoy the users; additionally, they found an optimal number of pulses
equal to two. Although a third pulse could increase the perception, that
was not considerable, and it would cost additional energy (Lins et al.,
2018).

5.2. Which ergonomic criteria govern these postural assessments?

Ergonomic tools, like the ones exposed, can be divided into local
risk assessment, global, or both when the local scores assigned to
individual body segments/joints are combined to obtain an overall risk
value, which is already proposed by ergonomic methods like RULA or
REBA. The latter approach, i.e., the combination of local and global ap-
proaches, was the most found in literature, because it allows obtaining
more information regarding the overall WRMSD risk and the body parts
that are more exposed to it. All the included studies used quantitative
scores to express postural risk, which is important to provide concrete
information to the user or the ergonomist. Regarding the inputs for the
ergonomic rules, only in the cases of Zhao and Obonyo (2021) and Zhao
et al. (2021), they were nominal, qualitative postures; in the remaining,
they were angular values for each articulation’s DoF. It should be noted
that ergonomic assessments based on angular thresholds are dependent
on the posture reference, which is an initial neutral posture (standing),
that is user-dependent (Bootsman et al., 2019; Cerqueira et al., 2020;
Lind, Abtahi et al., 2023; Valero et al., 2017). This means that the
estimated risk level may be misjudged due to an improper initial
alignment of the body segments or due to bad postural habits.

Also, a gap in standards for assessing dynamic activities was pointed
out, given that most ergonomic methods were developed for static
postures (Valero et al., 2017).

One recurrent drawback of these systems, derived from the chosen
ergonomic methods themselves, is that they pay little attention to
motions in planes other than sagittal. Hence, the authors who used tools
like RULA or REBA had to define on their own some angular thresholds
for common movements like arm abduction, or lateral bending or twist-
ing of the trunk or neck (Vignais et al., 2013). Despite its limitations,
RULA is undoubtedly the most frequent ergonomic posture assessment
tool, thanks to its good inter-observer reproducibility (Carbonaro et al.,
2021). Overall, these tools usually simplify the assessment of anatomi-
cal areas like the lumbar zone, which is the body part most affected by
WRMSDs (Huang et al., 2020; Vignais et al., 2013). One study tried to
address this by complementing the postural ergonomic analysis with a
biomechanical analysis (Huang et al., 2020).

Another weakness of most of these systems is the disregard for
the influence of the time previously spent at each risk level. One
research (Carbonaro et al., 2021) tried to address this issue, by using
a time window approach where each window’s final score was not the
longest score kept, but the highest score among those maintained for
more than a certain time threshold. In turn, Zhao and Obonyo (2021)
assigned the OWAS risk considering posture proportions in working
time. Besides that, the same study and another two (Yan et al., 2017;
Zhao & Obonyo, 2021) used the concept of MHT, with Zhao and
Obonyo (2021) counting the number of times and the duration each
posture was kept for more than the defined MHT, and Yan et al. (2017)
using the accumulated ones to classify the posture as acceptable or not,
using ISO 11226 standards. Differently, Valero et al. (2017) calculated
a posture score by averaging the risk levels weighted over time, but
only as a final metric, non-continuously. Finally, Martins et al. (2023)
and Merlo et al. (2023) presented a cumulative ergonomic index that
replicates a memory effect concerning the time spent in each posture,
increasing as the user continues to adopt risky postures and decreasing
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otherwise, inspired by the time response of a capacitor in an RC circuit.
5.3. When to trigger biofeedback cues and what information can be encoded
in them?

Concerning ergonomics correction, usually, biofeedback is provided
when reaching higher risk levels. Notwithstanding, there may be a time
allowed (before triggering the biofeedback) for maintaining those risk
levels, or a certain awkward posture, to avoid annoying the user (Boots-
man et al., 2019). This was also mentioned by a manager participating
in the experiment of Zhao et al. (2021), workers tended to ignore the
biofeedback if the notifications were too often. Two studies considered
different maximum times for holding different risk levels, shortening
these times for higher risk levels (Cerqueira et al., 2020; Vignais et al.,
2013). However, the choice of these values does not follow any criteria.

Meaningful information can be encoded in the haptic cues, notifying
about the risk level (the magnitude of the error) and/or giving tips
about how to achieve a better posture. Actually, the lack of guid-
ance information in postural correction applications often appears as
a drawback of biofeedback systems (Cerqueira et al., 2020; Lins et al.,
2018). In the case of vibration cues, some of the parameters already
referred can transmit information: pulse length, number of repetitions,
variations in the pause interval (Fani et al., 2021; Lind, De Clercq
et al., 2023; Lins et al., 2018) — the use of intermittent or continuous
vibration can notify, respectively, for a medium or a high postural
risk (Lind, De Clercq et al., 2023) — and vibration intensity/amplitude
— the intensity of vibration itself can inform about the risk magni-
tude (Lind, Diaz-Olivares et al., 2020), and variations in the amplitude
can provide directional guidance (Kim et al., 2021). It is possible to give
this directional guidance through vibration patterns by playing with the
sequence of vibration when using more than one actuator per segment,
or placing two units on opposite sides of the target joint/segment to
indicate the desired direction (Kim et al., 2021). It has been shown
that other types of haptic feedback can also provide guidance, such as
a squeezing force proportional to the error amplitude, or tangential
forces indicating the direction that minimises the error (or the risk,
for ergonomic applications) (Aggravi et al., 2018; Fani et al., 2021;
Lorenzini et al., 2022). This simultaneous rendering of different types
of information through distinct cues is recommended to the extent that
it has been proven that presenting information-rich cues at a slower
rate has a greater response than low-information cues at a faster rate,
which means that the increase of the information content of each cue
is the best solution when more information needs to be provided (Tan,
Reed, & Durlach, 2009).

5.4. Has biofeedback proved to be effective in posture correction?

The research proved that biofeedback is a promising tool for er-
gonomic interventions, in work technique training, and in work and
workplace design, increasing awareness of risky working situations,
while lessening the necessity of skilled trainers and ergonomists
(Cerqueira et al., 2020; Lind, Diaz-Olivares et al., 2020). It was demon-
strated that, even though strong feelings of discomfort sensed by the
worker during a task were an evident source of intrinsic biofeedback
in changing work technique and workstation design, haptic biofeedback
can be a more powerful input channel, particularly for individuals
who felt no or weak discomfort (Lind, Diaz-Olivares et al., 2020). The
external haptic biofeedback is able to enhance or even replace the
intrinsic one (Lind, Diaz-Olivares et al., 2020). In all the studies where
the performance using biofeedback was compared with no guidance,
the results were positive, i.e., the biofeedback consistently reduced the
time spent at non-ergonomic postures (Bootsman et al., 2019; Cerqueira
et al., 2020; Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al.,
2020) or the deviation in relation to the neutral position (Lind, De
Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020); it reduced the time
to accomplish the goal (Aggravi et al., 2018; Fani et al., 2021) and
increased the success rate (Fani et al., 2021) relative to the baseline

condition (the ground truth in the mentioned cases). Yet, one of the
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gaps found during the research was the lack of evidence about the
limits of how much and what type of biofeedback information can be
beneficial (Lind, Diaz-Olivares et al., 2020). These studies are typically
cross-sectional, only one study (Lind, De Clercq et al., 2023) carried
out a post-intervention session to assess the medium-term retention of
improvements, and it did not find a significant reduction in the time in
hazardous trunk postures in follow-up sessions (one and three weeks),
despite the reduction in the short term, which means that the use of
vibrotactile biofeedback during short periods may not be enough to
mitigate bad postures over a longer time. Similarly, Bootsman et al.
(2019) reported that, even immediately after improving posture while
receiving biofeedback for an hour, participants returned to postures
similar to the initial baseline when no biofeedback was given in a
withdrawal condition, which may indicate that biofeedback training
should last longer. However, long-term biofeedback may increase the
risk of the user disregarding the body’s intrinsic biofeedback system,
developing an extrinsic biofeedback dependency (Lind, Diaz-Olivares
et al., 2020). Besides that, vibrotactile biofeedback may lead to adap-
tation of the receptive channels, which translates into a deterioration
of tactile sensitivity subsequent to the application of the stimulus, even
after its cessation. The risk of saturation increases with continued over-
usage of vibrations when they occur along multiple body axes or in a
distributed manner — this can be diluted by combining different types
of haptic stimuli, as already referred (Fani et al., 2021).

It is interesting to note that there was a tendency for the tasks per-
formed while receiving biofeedback to take more time, thus reducing
work productivity (Cerqueira et al., 2020; Lind, Diaz-Olivares et al.,
2020; Vignais et al., 2013). This may be due to the actions taken to
alter the work technique (Cerqueira et al., 2020; Lind, Diaz-Olivares
et al., 2020). For instance, it is usual to reduce trunk inclination
by squatting or semi-squatting, which may increase the physiological
workload since it moves a larger mass of the body (Lind, De Clercq
et al., 2023). That time gap is expected to be lessened with training, as
users become more conscious of their posture and gain perception of
correct ergonomic practices (Cerqueira et al., 2020). Another possible
undesirable situation arising from biofeedback is the risk of worsening
the ergonomics of some body parts while improving it on the target
body part, although this may be solved by monitoring other body
segments (Lind, Diaz-Olivares et al., 2020). Also, the guidance of multi-
joint segments (with more actuators) demands more cognitive effort
than single-joint ones, as shown by Kim et al. (2021), where the
feedback success achieved worse rates for the arm than for the torso.
This means that the correction of the arm posture possibly demands
more attention from the user than the one of the torso.

Regarding the validation of biofeedback on postural ergonomic sup-
port, it is significant to note that only four of the studies demonstrated
the use of localised haptic biofeedback to alert for the correction of
ergonomically risky postures (Cerqueira et al., 2020; Kim et al., 2021;
Lind, De Clercq et al., 2023; Lind, Diaz-Olivares et al., 2020). Other
studies presented the feedback concept for ergonomics but did not
integrate it into a framework (Fani et al., 2021; Lins et al., 2018;
Lorenzini et al., 2022). Additionally, the experimental protocols of
the latter only included relatively simple tasks performed by novice
participants. Directional feedback was not applied yet in a real context,
only in controlled environments (Aggravi et al., 2018; Fani et al., 2021;
Kim et al., 2021; Lorenzini et al., 2022). Hence, it is not straightforward
to generalise the results for experienced workers on more complex
tasks.

Also concerning the validation protocol, only one of the presented
studies validated the angle estimation with other MoCap system on-
line (Martinez et al., 2022), although Cerqueira et al. (2020) performed
an offline technical validation, not with the sensors placed on the
human body but on a collaborative robot arm. This is a vital step in
order to trust the ergonomic assessment carried out, otherwise, it is
not possible to know the associated error, which is a serious handicap
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of several studies, as mentioned by Lee et al. (2021). In addition,
most validation experiments took place in a lab, instead of in a field
environment with workers, where real conditions play a role in the
postures adopted.

Besides the collected objective data, users’ opinions were also reg-
istered, usually by questionnaires with discrete score scales, such as
7-point Likert scale, which measures the degree of agreement with
the statements, or NASA-TLX questionnaire, which allows the self-
evaluation of predefined parameters. The subjective outcomes were
favourable to the use of biofeedback systems. The questionnaires re-
vealed a good acceptance (Bootsman et al., 2019; Cerqueira et al.,
2020; Kim et al., 2021; Lind, De Clercq et al., 2023; Lind, Diaz-
Olivares et al., 2020; Lorenzini et al., 2022) of the technology and
great intuitiveness (Cerqueira et al., 2020; Fani et al., 2021; Lorenzini
et al., 2022), users found it useful (Aggravi et al., 2018; Cerqueira et al.,
2020; Zhao et al., 2021), comfortable to wear (Bootsman et al., 2019;
Cerqueira et al., 2020; Lind, De Clercq et al., 2023), and some studies
also reported acceptable ratings regarding the credibility of the device
to support posture correction and the users’ motivation to use it with
that intention (Bootsman et al., 2019; Cerqueira et al., 2020). Zhao
et al. (2021) reported that some workers indicated that the assessment
enabled them to understand what were the risky postures and how to
adjust them, and one manager highlighted that it could even enhance
safety planning. Real construction workers reported low physical and
mental discomfort in one study (Zhao et al., 2021); however, in another
one (Lind, Diaz-Olivares et al., 2020), some subjects mentioned that the
biofeedback distracted or stressed them at the beginning.

5.5. Review limitations

Since this work aimed at joining two research topics, the idea
was to provide an overview of each one of them and connect them,
instead of analysing each of them in detail. For instance, an overview
of postural ergonomics assessment was provided without considering
other WRMSD risk factors such as repetitive motions, biomechanical
loads or force exertions, which could provide a broader perspective
of an ergonomic assessment. Cognitive ergonomics was not addressed
either. Although not explored in this review, applications combining
inertial and physiological data, e.g., electromyography or heart rate,
could also be found for ergonomic assessment. Similarly, this work
mainly explored haptic feedback as this type was shown to be the most
unobtrusive, and the other types were not fully scrutinised.

Moreover, this literature search was limited to two databases, and to
articles written in English, which means that articles belonging to other
databases or written in other languages were not included. Since this is
a narrative review, the quality of the included studies was not formally
assessed. Data regarding system validation, namely, angle estimation,
was scarce, for the studies that addressed posture monitoring. Hence,
their results’ benchmarking was limited.

5.6. Challenges and future work

This work identified some gaps in the literature, both in data
processing/assessment and validation. Future studies should, in the first
place, validate the accuracy of the collected inertial data and, when
applicable, the angle estimation online, resorting, e.g., to commercial
MoCap systems, so that the conducted ergonomic assessment can be
reliable and the results benchmarked. In this sense, we also encourage
the authors to report the sensor fusion and angle estimation algorithms.

With respect to posture assessment tools, one of the main open
problems discovered in this literature review is linked to the adopted
ergonomic methods. An interesting research advance would be the
development of a continuous scale for ergonomic assessment, taking
into account the cumulative effect of bad postures, instead of the
classical ‘‘snapshot’’ tools, which pose a challenge to summarise the

exposure, as pointed out by Lind, Abtahi et al. (2023). Furthermore,
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investigation into the maximum holding times for each joint in non-
ergonomic postures is needed to decide when to trigger biofeedback
cues. In this sense, Martins et al. (2023) suggested the integration of a
cumulative ergonomic index into a directional biofeedback strategy. Be-
sides, the exploration of artificial intelligence algorithms for ergonomic
risk assessment was pointed out as a possibility (Cerqueira et al., 2020).

The ergonomic assessment itself can be a valuable tool, but it would
be interesting to correlate the ergonomic risk with the situations that
originate it, i.e., which activities or postures throughout the work
shift impose a higher risk. To get an overview of the work activities
in terms of posture hazard, Bootsman et al. (2019) associated the
occurrences of hazardous postures with the activities, however, they
relied on the workers’ manual labelling in an app, which turned out to
be inconvenient. In fact, three studies combined posture classification
with risk assessment: Valero et al. (2017) carried out that posture
classification using a state machine approach based on joint angles,
whereas Zhao and Obonyo (2021) and Zhao et al. (2021) implemented
automated activity recognition models based on deep learning, which
guarantees generalisability, although only Zhao et al. (2021) did it in
real time. These models have been gaining importance in context-aware
systems in several domains, such as surveillance, or health and ambient
assistive living (Martins, Ribeiro, Soares, & Santos, 2022; Ponce et al.,
2016). Hence, it is necessary to develop a system able to recognise the
activity in real time (or, at least, online) and perform an ergonomic
assessment, which could be dependent on the activity, and provide
contextual biofeedback to enhance posture self-awareness and prompt
the users to correct their posture to a less hazardous one.

There is still no evidence on whether biofeedback training should be
used for just some hours or continuously for entire workdays. Regarding
directional feedback, so far, few studies have implemented it for the
correction of non-ergonomic postures, hence, validation in real working
conditions is necessary. The wearability and inconspicuousness of feed-
back technology like slide and/or squeeze bands should be improved
too, in order to compete with vibrotactile motors. Besides, there is room
for the combination of haptic feedback with other technologies, such
as augmented reality glasses, as sustained by the users’ opinions in one
study (Vignais et al., 2013).

6. Conclusion

The current state of the art of posture monitoring systems, analysed
in this review, showed the relevance of combining ergonomic risk
assessment with intuitive biofeedback strategies. On the one hand, pos-
ture risk assessments were essentially based on traditional ergonomic
scales, which were adapted from observational methods. Their automa-
tion relying on an inertial system proved to be an interesting tool to
ergonomically diagnose risky tasks and workspaces to possibly redesign
them and, then, reduce WRMSD risk. But, besides the direct application
of these fixed criteria, other approaches were presented, such as taking
into consideration the previous ergonomic scores, a valuable addition
to the risk assessment since WRMSDs arise from the accumulation of
risky postures over time. The transmission of the assessment to the
users was mainly carried out with haptic biofeedback, which was given
concurrently based on the amplification of error perception. Partic-
ularly, vibrotactile feedback, the simplest and most discrete haptic
modality, led to a decrease in posture risk and time spent at riskier
joint configurations in several studies, making workers aware of their
posture. Further, graphical interfaces like the ones suggested by some
studies allow a direct analysis and intuitive understanding of the risk,
offering the possibility of providing objective data to ergonomists.
One of the contributions of this review was the presentation of other
feedback modalities besides vibrotactile, namely, pressure and stretch
cues. In fact, their simultaneous use in directional feedback strategies
proved to be more effective than vibration alone, at least in controlled
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lab environments. Hence, in this regard, further validation is needed.
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