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A R T I C L E  I N F O   

Keywords: 
Rigid block modeling 
Dry-joint masonry 
Settlements 
Seismic actions 
Non-linear static analysis 
Time-history analysis 
Rocking behavior 

A B S T R A C T   

A rigid block modeling approach is presented for rocking dynamics and nonlinear static analysis of dry-joint 
masonry structures subjected to settlements and earthquake excitations. For the different types of analysis, a 
unified optimization-based formulation is adopted, which is equivalent to the system governing the static and 
dynamic structural response. Sequential solution procedures are used for time integration and for pushover 
analysis which take into account the effects of large displacements under the combined action of support 
movements and lateral loads. No-tension elastic contacts with finite shear strength are considered at block in-
terfaces for time-history analysis and to obtain the elastic branch of pushover curves in nonlinear static analysis. 
A unilateral rigid contact behavior is also considered to obtain the descending post-peak branch of pushover 
curves corresponding to the activation of the rigid-body rocking motion, according to displacement-based 
assessment methods of failure mechanisms adopted in the standards. Comparisons with numerical models and 
experimental tests on a rocking block and on a buttressed arch are presented to show the accuracy of the 
developed approach. Simple tests on dry-joint tuff panels on the tilting table were also carried out to show the 
effects of imposed movements at support on the response to lateral loads. Finally, an application is presented to a 
full-scale triumphal arch subjected to the combined action of support movements and earthquake excitation to 
discuss, on the basis of the developed model, the effects of settlement-induced damage on seismic performance. 
The numerical analyses showed that the lateral force, the displacement capacity and the rocking response can be 
significantly affected by support movements, pointing out the relevance of the current building condition in the 
seismic safety assessment.   

1. Introduction 

In several European countries, the built cultural heritage is exposed 
to different types of natural and anthropic hazards. Among those, 
earthquakes and settlements represent frequent causes of damage on 
structures. In addition to the wide scientific literature on the effect of 
earthquakes on structures, there are also many studies that investigate 
the structural behavior and damage induced by foundation settlements, 
such as [1] for tunneling, [2] for soft soils and [3–5] for slow-moving 
landslides. In a few circumstances, structures could be damaged by a 
succession of events, for example in the case of earthquakes acting on 
buildings which have been previously subjected to foundation settle-
ments. Therefore, there is the need to assess the vulnerability against the 
combined effects of these actions. 

Within this framework, just a few studies in the literature have 

addressed the issue of the seismic assessment of buildings affected by 
ground movements. Fragility curves for reinforced concrete buildings 
subject to seismically triggered slow-moving landslides were developed 
in Ref. [6]. A procedure for seismic safety assessment of reinforced 
concrete buildings based on nonlinear static analysis of the deformed 
configuration obtained from satellite data was presented in Ref. [7]. 
Seismic fragility curves of historic masonry buildings subject to settle-
ment induced damage were developed in Refs. [8,9]. In both cases, the 
seismic assessment was carried out using nonlinear static analysis and 
adopting a macro-modeling approach [10]. The approach takes into 
account the in-plane behavior of masonry panels which is generally 
associated to a box type behavior of the buildings. This kind of behavior 
is related to stiff floors and strong connections which are able to provide 
diaphragm actions and to exploit the in-plane strength of masonry 
panels [11]. 
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However, when the connections are weak and the diaphragms are 
missing or flexible, as is common in the case of historic masonry 
buildings, the seismic behavior can be affected by local out-of-plane 
failure mechanisms which generally exhibit a rocking behavior [12]. 
Local failure mechanisms are also exacerbated by thrusts induced by 
curved elements, such as arches, vaults and domes, which represent a 
typical feature of masonry built cultural heritage. 

The effects related to the thrust of arches and vaults on seismic ca-
pacity of failure mechanisms could be even more detrimental when 
structures are also subjected to settlements, which are generally asso-
ciated to vertical and horizontal movements, also leading to rotations. 
The displacement capacity of arched structures subjected to settlement 
is very large and has been investigated in different studies on the basis of 
experimental tests and numerical analyses [13,14]. Applications based 
on sequential limit analysis can be found in Refs. [15–18], whereas 
examples of combinatorial analysis for the identification of the failure 
mechanisms analyzed in the large displacement regime are reported in 
Refs. [19,20]. However, evaluating the effects of ground movements on 
the seismic capacity of local failure mechanisms is still an open issue. 

The present study focuses on the development of a novel discrete 
modeling approach for the seismic analysis of local failure mechanisms 
in dry-joint historic masonry structures which have been previously 
subjected to foundation settlement. The approach comprises different 
analysis types for the vulnerability assessment of local failure mecha-
nisms, according to the standards. The analysis types include limit 
equilibrium analysis (or linear kinematic analysis), nonlinear static (i.e., 
pushover) analysis and dynamic analysis. For each analysis type, the 
proposed approach includes the capability to take into account the ef-
fects of support movement on the force and displacement capacity 
against seismic actions. 

In the literature, both continuous and discontinuous, micro and 
macro modeling approaches have been developed for the static and 
dynamic analysis of failure mechanisms in historic masonry structures 
[21,22]. Examples of modeling approaches based on finite element 
method (FEM) can be found in Refs. [23–27]. Finite element and rigid 
block models based on limit analysis were developed in Ref. [28] and in 
Refs. [29–34]. Rigid block models for rocking dynamics were presented 
in Refs. [35–37]. Rigid body spring models (RBSM) and modeling ap-
proaches based on the applied element method (AEM) were developed 
in Refs. [38–41]. Modeling approaches and tools based on combined 
strategies, multi-step procedures and analytical formulations were pre-
sented in Refs. [42–46]. Distinct element method (DEM) has been also 
conveniently and widely applied to the analysis of historic masonry 
structures [47–52]. 

The proposed rigid block modeling approach for limit equilibrium 
analysis, nonlinear static and dynamic analysis represents an alternative 
to classic DEM and discontinuous FEM. Similar to classic methods of 
limit analysis [53–58] and contact dynamics [59–61], the developed 
modeling approach is based on the use of an optimization-based 
formulation, which is equivalent to the system of equations governing 
the structural response, on the use of gap functions to express 
non-penetration conditions and on the use of simple algorithms for the 
specification of potential contacts. 

A characteristic feature of the adopted modeling approach is that the 
problems for rocking dynamics and nonlinear static analysis in limit 
analysis are formulated within a unified framework using a special class 
of mathematical programming problem, that is the linear complemen-
tarity problem, which arises from the set of equalities and inequalities 
corresponding to equilibrium, geometric compatibility, failure and 
complementarity conditions [62]. Complementarity conditions are the 
distinct feature of the problem and are used to impose the activation of 
contact displacement rates at failure as well as non-penetration condi-
tions, adopting the classic form used for limit analysis and contact dy-
namics by mathematical programming. 

Formulating the modeling approach in terms of a linear comple-
mentarity problem is convenient in different ways if compared to other 

discrete models such as the classic DEM. The problems can be uncoupled 
into dual equivalent displacement and force-based optimization prob-
lems, corresponding to the lower and upper bound formulation in the 
case of limit analysis problems, for which very efficient and robust 
solvers are available [63,64]. The solution to the problems satisfies both 
equilibrium, geometric compatibility, failure and non-penetration con-
ditions, with no need to alternate between the contact forces at in-
terfaces and the dynamic equilibrium of the blocks. By means of gap 
functions and simple schemes for the specification of potential contact 
points, the size of the numerical problems associated to the unknown 
contact forces does not change with large displacements from the initial 
configuration. This noteworthy feature allows to significantly simplify 
the implementation of the numerical problems. Formulations for static 
analysis can be simply derived from dynamic analysis, by omitting the 
contribution of inertia forces with no need to introduce artificial 
damping, as it is the case of DEM. Finally, expressing the behavior of 
rigid contacts by means of complementarity conditions allows to avoid 
the use of arbitrary large stiffness at the joints, as it is usually done in the 
case of DEM to reproduce infinite contact stiffness. On the other hand, in 
the proposed modeling approach the dissipation is implicitly related to 
the algorithm used for time integration and to mechanical parameters, 
as discussed in Ref. [65] and also shown in the sensitivity analyses re-
ported in the following. 

With respect to the authors’ previous work, the novel contribution of 
this study is twofold. Previous developed modeling approaches for 2D 
analysis under imposed movements [66,67] or lateral loads [68] are 
herein extended to the case of combined settlement and seismic actions, 
both for static and dynamic regimes. Moreover, no-tension elastic con-
tacts are also included for time-history analysis, whereas rigid contacts 
were considered in previous works for rocking dynamics [69]. The 
developed formulations are presented following the unified framework 
adopted in Ref. [65], now showing that the different analysis types (limit 
equilibrium analysis, pushover static and time-history analysis) can be 
derived as special cases of dynamic formulation with elastic contacts. 
The new formulations have been collected in a software package which 
is available for applications. 

The manuscript is organized as follows. In Sect. 2 the different 
analysis types and the actions modeling are described. The optimization- 
based formulation implemented for the different analysis types and 
sequential solution procedures are presented in Sect.3 and 4. In Sect. 5 
the results of nonlinear static analysis on selected cases studies are 
presented to discuss the effects of support movements on the capacity to 
lateral loads. The case studies comprise a buttressed arch and a dry-joint 
tuff masonry panel tested on the tilting table against support movement 
and lateral loads. Comparisons with numerical and experimental tests 
on single and multi-block structures subjected to free rocking motion, 
pulse and earthquake excitation are shown in Sect. 6 to validate the 
proposed modeling approach with no-tension elastic contacts in the 
dynamic regime. An application to the evaluation of settlements- 
induced damage on the seismic response of a full-scale triumphal arch 
is presented in Sect.7, where a comparison is carried out between static 
and dynamic assessment methods following the provisions contained in 
the Italian technical standard [70,71]. 

2. Rigid block model, actions modeling and analysis types 

In the proposed modeling approach, rigid blocks i are assumed to 
interact via no-tension, frictional contact interfaces j. Each interface j 
comprises two surfaces s and four contact points k – corresponding to the 
end points of the surfaces – where normal and shear contact forces nk 
and tk are applied (Fig. 1a and b). Failure modes occur at contact in-
terfaces and include opening and sliding. As for contact stiffness, both 
rigid and unilateral elastic contacts are used for the analysis. 

The model is formulated in the dynamic regime for seismic actions, 
considering unilateral elastic contacts and taking into account the effects 
of large displacements (i.e., P-Δ effects) on the structural response. 
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Earthquake excitations are applied at support (or base) blocks s and are 
expressed in terms of acceleration time histories ag(t) (Figs. 1a and 2a). 

A static formulation which is derived from dynamics by simply 
neglecting the inertia forces is adopted to model the effects of settle-

ments. The two formulations (static and dynamic) can be used in 
sequence to evaluate the effects of settlements on the rocking response 
under seismic actions. In this study, settlements are modelled with 
movable support blocks with a single degree of freedom, corresponding 

Fig. 1. Formulation of the model: a) Rigid block model of a dry joint buttressed arch generated in AutoCAD using polylines; b) contact points, surfaces and interfaces 
at blocks i and i+1; c) contact and external forces; d) block and contact displacements, contact gaps and stiffness; e) interpenetration at contact point associated to 
elastic behavior. 

Fig. 2. Different types of analysis and results: a) Load configurations, control displacements and imposed movements for nonlinear static and time history analysis; b) 
Response curves obtained from pushdown analysis; c) pushover curves and d) displacement time history curves obtained from nonlinear static and dynamic analysis 
for the original and settled configurations. 
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to vertical, horizontal or inclined movements δ (Fig. 2a). 
An integrated full-static formulation was also implemented to eval-

uate the effects of settlements on the evolution of failure mechanisms 
associated to lateral loads. This formulation is devoted to the nonlinear 
kinematic analysis of local failure mechanisms, according to the Italian 
technical standard. The seismic actions are represented in this case with 
a uniform distribution of lateral loads αf L, expressed as a factor of ver-
tical dead loads f D (Fig. 2a). The response to lateral loads of the failure 
mechanism is characterized in this case by a pushover curve, expressing 
the variation of the load multiplier α as a function of a control point 
displacement d (Fig. 2a, c). Following the approach presented in 
Ref. [68], the pre-peak response is obtained assuming a unilateral elastic 
behavior at contacts. The descending branch of the pushover curve 
corresponding to the post-peak behavior is obtained using a sequential 
solution procedure based on the limit equilibrium analysis of the dis-
placed configuration, so to take into account the effects of large dis-
placements on the value of the load multiplier. To capture the post-peak 
response in the pushover curve, a rigid behavior is assumed at contacts, 
according to the approach for nonlinear kinematic analysis of failure 
mechanisms contained in the Italian technical standard. 

As such, the proposed modeling approach includes the following 
analysis types, with rigid or elastic contacts, which can be carried out in 
sequence to take into account the effects of settlements on the seismic 
capacity: pushdown analysis with movable support blocks (Fig. 2b); 
pushover analysis under lateral loads (Fig. 2c); time-history analysis 
under seismic excitation (Fig. 2d). The analyses return the failure modes 
and the deformed configurations, as well as the response curves in terms 
of a control force and displacement. In the case of pushdown analysis, 
the curves report the reaction R at the moving support as a function of 
the support movement δ. The response parameters obtained from the 
pushover curves for lateral loads are: the lateral load multipliers at the 
onset of motion α0 for rigid contacts; the load multiplier at the force 
capacity αy and the displacement dy corresponding to no-tension elastic 
contact behavior, and the ultimate displacement d0. Corresponding 
response parameters obtained from pushover analysis on the configu-
ration subjected to support movements are indicated with apex s in 
Fig. 2c. Relative displacements at control points are evaluated in this 
case with respect to the deformed configuration subjected to settlement. 
Finally, the response parameter obtained from the time history analysis 
is the control displacement(s) as a function of time. 

A MATLAB® application was developed on the basis of the proposed 
approach which was organized into a main file and three functions for 
the generation of the numerical model and the assembly of matrices 
underlying the numerical problems associated to each analysis type, for 
the analysis and for the output. The tool comes with a simple input 
interface, which is organized using an Excel spreadsheet. The geometry 
of the block assemblage can be imported from DXF files. Geometric 
models are made of closed polylines corresponding to the blocks. Sur-
faces s correspond to the edges of the polylines (Fig. 1a) The number of 
contact point per each surface can be refined to increase the accuracy, 
simply by using multiple lines per each edge. A routine was developed to 
calculate from CAD polylines the geometric and mass properties which 
are needed for the analysis. 

3. Optimization-based nonlinear static analysis and rocking 
dynamics 

The integrated rigid block modeling approach relies on the following 
general matrix form for the system of equations, inequalities and 
complementarity conditions which govern the dynamics of a rigid block 
assemblage with no-tension elastic contacts: 
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(1)  

where. 

Δx: is the (3b × 1) vector collecting unknown displacement rates Δxi, 
Δzi and Δωi at block centroids, being b the number of blocks 
(Fig. 1d); 
λ: is the (3c × 1) vector of non-negative flow multipliers of contact 
displacement rates at failure, being c the number of contact points; 
c: is the (2c × 1) vector of the unknown normal and tangential 
contact forces nk and tk acting at contact points k; 
A0: is the (3b × 2c) equilibrium matrix at time t0; 
C: is the (2c × 2c) diagonal matrix of contact compliances Ckn = 1/kn 
and Ckt = 1/kt ; 
M: is the (3b × 3b) diagonal matrix of scaled masses; 
Y: is the flow rule matrix of contact displacement rates at failure; 
f : is the (3b × 1) vector of external scaled forces at time t0; 
g0: is the (2c × 1) vector of contact gaps g0k and initial known 
tangential displacement rates Cktt0k at contact points; 
r: is the vector of constant terms associated to failure conditions; 
y: is the vector of failure conditions. 

The three rows of the problem defined in Eq. (1) with size n =
3b+3c+2c provide equilibrium, failure and kinematic compatibility 
conditions, respectively. 

The equations MΔx + A0c = f governing the dynamic equilibrium of 
rigid blocks are obtained from the application of a time stepping scheme 
to the integration of the equilibrium conditions expressed at the accel-
eration level. The implicit Euler method is used, posing at time t = t0 +
Δt: a(t) = v− v0

Δt ; v(t) = Δx
Δt; M = 1

Δt2 M; f = f + Mv0Δt, where: f is the 
vector of external forces; M is the diagonal mass matrix, collecting mass 
mi and mass moment of inertia Ji of blocks i and v0 is the known velocity 
at time t0. Vector f collects subvectors of external forces at block i (with 
vertical loads fzi = − mig, being g the acceleration of gravity) and 
external forces at support blocks s (with horizontal forces fxs = msag(t)
associated to earthquake excitation, being ms the mass of support 
blocks). For the calculation of contact gaps g0k and of the equilibrium 
matrix entries, the four-points scheme adopted in Refs. [65,67] was 
used. 

The general expression adopted in Eq. (1) for failure conditions y =

YTc − r ≤ 0 refers to opening, sliding (through the matrix of failure 
conditions YT, expressed as a function of the friction coefficient μ) and 
crushing failure at contact points, through the constant vector r [68]. For 
the applications presented in this study, an infinite compressive strength 
is assumed and r is a null vector. 

Kinematic compatibility conditions AT
0 Δx = Yλ + Cc + g0 corre-

spond to the condition that displacement rates Δu at contact points, 
expressed as a function of displacement rates at blocks centroids ac-
cording to contragradience principle (i.e. Δu = AT

0 Δx), are equal to the 
displacement rates expressed as a function of displacement flow rule at 
failure (Yλ), of elastic deformations at contacts (e = Cc) and of initial 
gaps and known tangential displacement rates (g0). 

Complementarity conditions yTλ = 0 ensure that displacement rates 
associated to flow multipliers λ occur only when failure conditions are 
attained (y = 0). 

The problem defined in Eq. (1) is a linear complementarity problem 
(LCP), which is equivalent to the two dual quadratic optimization 
problems [72]: 
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min
1
2

ΔxT MΔx +
1
2
eT Ke + rTλ − f TΔx

s.t. Δu = AT
0 Δx

Δu = Yλ + e + g0, λ ≥ 0
(2)  

max −
1
2
iT M− 1i −

1
2
cT Cc − gT

0 c

s.t. i + A0c = f

y ≤ 0, y = YTc − r

(3)  

where i = MΔx is the vector of inertia forces. The optimization problems 
defined in Eqs. (2) and (3) are the novel problems which were formu-
lated in this study for time-history analysis with no-tension elastic 
contacts (Fig. 2d). The problems reduce to the form adopted in the case 
of dynamics with rigid contact presented in Ref. [65] by simply omitting 
the terms related to contact stiffness. 

On the basis of the dynamic formulation for no-tension elastic con-
tacts, the following optimization problems are derived for pushover 
analysis with elastic and rigid contacts, respectively (Fig. 2c): 

max −
1
2
cT Cc − gT

0 c

s.t. A0c = f

y ≤ 0, y = YTc

(4)  

max αγ − gT
0 c

s.t. A0c = f D + αf L

y ≤ 0, y = YTc − r
(5)  

where external loads f are equal to f D + αf L, being f D the vector of 
vertical dead loads and f L the vector of lateral live loads (set equal to the 
values of vertical loads). α is the live load multiplier, which represents 
an additional unknown in the solution of problem defined by Eq. (5) 
with rigid contacts, corresponding to the onset of motion of the failure 
mechanisms. γ is a constant term corresponding to the work done by 
lateral loads (f T

LΔx = γ), according to Ref. [73]. 
Displacements at moving supports for pushdown analysis were 

introduced on the basis of the following displacement-based optimiza-
tion problems in the case of elastic and rigid contacts, respectively 
(Fig. 2b): 

min
1
2

eT Ke − f TΔx

s.t. Δu = AT
0 Δx

Δu = Yλ + e + g0, λ ≥ 0

(6)  

min rTλ − f T
DΔx

s.t. f T
LΔx = γ

Δu = AT
0 Δx

Δu = Yλ + g0, λ ≥ 0

(7)  

where live loads f L are associated to the varying reaction at support in 
problem defined by Eq. (7). 

It is worth noting that problems defined by Eqs. (6) and (7) are 
expressed in the dual form of problems defined in Eqs. (4) and (5). 
Problems defined by Eqs. (4)–(7) are special cases of the generalized 
optimization problems defined in Eqs. (2) and (3) which can be obtained 
when the scaled mass matrix M and the matrix of contact compliances C 
are omitted and when the additional unknown load multiplier α and the 
condition f T

LΔx = γ are introduced. 

4. Sequential and time stepping solution procedures 

The sequential solution procedures for pushdown and pushover 

analysis were organized into displacement increments Δx as follows. 
For pushdown analysis with elastic contacts, a solution to Eq. (6) is 

found starting from the initial known configuration x0, contact gaps g0, 
compatibility matrix AT

0 and under the additional constraints corre-
sponding to the imposed movements at support block. New positions of 
the blocks x = x0 + Δx, contact gaps g and the compatibility matrix AT 

are determined and a new optimization problem (6) is set up and solved 
on the basis of the updated configuration. 

Once the final imposed displacement is applied at the support block, 
the procedure switches to the solution of force-displacement problem 
defined by Eq. (4) for pushover analysis. The solution starts from the 
deformed configuration under the imposed movement at support block 
to obtain contact forces c under a given distribution of external forces 
f = f D + αf L, with the lateral loads being expressed as a function of a 
known, increasing multiplier α. Displacements Δx corresponding to the 
dual problem in Eq. (6) are recovered from the Lagrange multipliers 
associated to the solution of the same force-based problem in Eq. (4). 

A similar procedure was implemented for pushdown and pushover 
analysis with rigid contacts solving problems defined by Eqs. (7) and (5). 

The time stepping algorithm used for time history analysis was 
organized into time increments Δt. A solution to problem in Eq. (3) is 
obtained in terms of contact forces c and inertia forces i starting from 
contact gaps g0, equilibrium matrix A0 and external forces f = f + Mv0Δt 
corresponding to the configuration x0 and velocities v0 at time t0. The 
configuration x = x0 + Δx, velocities v, external forces f and equilibrium 
matrix A at time t0 + Δt are updated on the basis of displacements Δx 
corresponding to problem in Eq. (2) which are directly obtained from 
Lagrange multipliers associated to the solution of problem in Eq. (3). 
Then, a new optimization problem defined by Eq. (3) is formulated and 
solved on the basis of the updated configuration. 

For the solution of problems in Eqs. (2)–(7), the MOSEK optimization 
toolbox for MATLAB was used (ver 9.1.10). For the simulations pre-
sented in this study, an infinite compressive strength and a rigid 
behavior for tangential displacements at contact points were considered. 
As such, in problems defined in Eqs. (2)–(7), r is the null vector and 
tangential contact compliances Ckt were set equal to 0. Considering that 
a four-point contact model was assumed at each interface j, the normal 
compliances Ckn = 1/kn at contact points were determined on the basis 
of joint stiffness kjn, adopting the following expression for contact 
stiffness: kn = (kjn • lj • dj)/4, being lj and dj the length and the depth at 
joint j. The constant term γ corresponding to the work done by live loads 
in Eqs. (5) and (7) was set in the range 0.01–100 kNm. 

5. Effects of support movements on pushover curves: analytical 
and experimental comparisons 

Nonlinear static analysis under support movements and lateral loads 
are carried out in sequence to evaluate the capability of the proposed 
approach in predicting the effects of settlements on the pushover curves. 
Two case studies are considered, namely a buttressed arch and a dry- 
joint tuff masonry panel. The geometric configuration of the 
buttressed arch is the one experimentally investigated for lateral loads 
on the tilting and shaking table in Refs. [74,75]. In this case a com-
parison is carried out in terms of pushover curves between the proposed 
approach and the analytical and experimental responses. As for the tuff 
masonry panel, tilting table tests were carried out for comparisons with 
results of nonlinear static analysis with rigid contacts. The panel was 
tested in two different configurations, without and with imposed dis-
placements at the base, in order to evaluate the effects of support 
movements on the failure modes and on the lateral loads promoting the 
collapse mechanism. 

5.1. Buttressed arch subjected to combined settlement and lateral loads 

The configuration of the arch considered is shown in Fig. 3a). The 

F.P.A. Portioli et al.                                                                                                                                                                                                                            



Soil Dynamics and Earthquake Engineering 166 (2023) 107760

6

depth of the arch is 100 mm. The unit weight of the blocks is 11.5 kN/ 
m3, the friction coefficient is equal to 0.6 and the joint stiffness kjn is 
equal to 1.2e5 kN/m3, according to Ref. [75]. The joints between the 
blocks along the piers and the arch were discretized with eight and four 
contact interfaces, respectively. 

A pushdown analysis was first carried out to evaluate the displace-
ment capacity of the system under imposed movements. The movement 
was applied at the support block on the right side with equal vertical and 
horizontal displacement. The pushdown curves plotting the horizontal 
component of the thrust Rx versus the horizontal movement δx are 
shown in Fig. 4a), both for rigid and elastic contacts. The results show 
that the deformability of the joints significantly affects the displacement 
capacity of the system, with ultimate displacements equal to 65.0 mm 
and 27.0 mm in the case of rigid and elastic contacts, respectively. This is 
in accordance with the results reported in Refs. [76,77], where it is 
shown that contact stiffness strongly influences the ultimate displace-
ment of arches subject to inclined support movements. 

Sequential pushdown and pushover analysis were then carried out to 
evaluate the effects on the pushover curve. The buttressed arch was first 
subjected to a horizontal and vertical displacement of 20.0 mm at the 
right support (Fig. 3b). Displacement increments of 1.0 mm were 
applied at the support block for pushdown analysis. In the case of rigid 
contacts, the reaction obtained at moving support and the displacement 
at control point C2 corresponding to the imposed movements of 20.0 mm 
were equal to 10.4 N and 22.5 mm, respectively. For no-tension elastic 
contacts, corresponding values of 10.9 N and 24.4 mm were found. A 
uniformly distributed lateral load acting in sequence was then consid-
ered for pushover analysis, which is expressed as the block weight times 
the load multiplier. 

The pushover curves obtained from the rigid block model for the 
original and settled configurations are shown in Fig. 4b). Here, α is the 
seismic coefficient or base shear coefficient, corresponding to the total 
lateral load normalized by the total vertical load; d is the relative 

horizontal displacement at control point C2 calculated from the 
deformed configuration corresponding to support movement. The 
comparison shows a significant decrease of the lateral stiffness, force 
and ultimate displacement capacity (Fig. 4b). 

Fig. 4b) also shows the comparison with the analytical curves ob-
tained from the application of the virtual work principle to the original 
and displaced configurations under the assumption of rigid contacts. For 
the application of the virtual work principle, a CAD model of the 
buttressed arch was developed. The failure mechanisms used for the 
definition of the virtual displacement diagrams were assigned using the 
same position of the hinges of the numerical model. Virtual displace-
ment diagrams were defined in the CAD model with respect to both the 
original and displaced configurations of the arch in order to take into 
account the effects of large displacements on the load multiplier. Three 
displaced configurations of the arch were considered for the calculation 
of the load multipliers by the application of the virtual work principle. 
The first configuration corresponds to the arch without support move-
ments and with a lateral displacement at the top of the pier equal to 30.0 
mm (i.e., 28.6 mm at the control point C2). The other configurations 
were those corresponding to the arch with imposed support movements 
of 20.0 mm and with a relative lateral displacement equal to 0.0 and 
20.0 mm. The lines passing through the points corresponding to the 
calculated load factors and control point displacements for the original 
and settled configurations closely match the curves obtained from the 
rigid block model with rigid contacts in Fig. 4b). A comparison is also 
reported in Fig. 4b) with the experimental pushover curve obtained from 
the tilting table tests on the original configuration. Slight differences can 
be noted between the experimental response and the numerical push-
over curve with no-tension elastic contacts, which can be ascribed to 
geometric imperfections and rounded corners in the experimental mock- 
up, as also noted in Ref. [68]. 

Fig. 3. Buttressed arch: a) Rigid block model; b) Displaced configuration with rigid contacts under support movement and lateral loads at ultimate displacement 
(δx = δz = 20 mm, ds

0 = 24.7 mm). 

Fig. 4. Rigid block model of the buttressed arch: comparison of a) numerical pushdown and b) pushover curves with and w/o support movements.  
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5.2. Wall panel subjected to support movement and lateral loads 

Experimental tests on a dry tuff masonry wall subjected to the 
combined action of support movement and lateral loads were carried out 
for comparisons with the proposed modeling approach of failure 
mechanisms involving sliding between the blocks. 

The test set-up was organized according to Ref. [66] and is shown in 
Fig. 5. The specimen is made of a running bond panel on the right and of 
a block stacked prism on the left, to reproduce the interaction related to 
the in-plane and the out-of-plane behavior of a side-wall and of a front 
wall, respectively. The two parts of the panel were not interlocked, to 
facilitate the overturning of the block stacked prism. The dimensions of 
tuff blocks were 100 × 100× 50 mm and the unit weight was 12.1 
kN/m3. The average friction coefficient measured from sliding tests on 
two blocks stack was 0.51. The movable support was a timber table 
attached to two mechanical jacks for vertical movements. The entire 
specimen laid on a tilting table inclined by a chain puller to apply lateral 
loads. Two experimental tests were carried out. In the first test, the wall 
panel was simply investigated under the effects of lateral loads induced 
by the inclination of the tilting table. In the second test, a vertical 
downward displacement δz of 50 mm was applied at the movable sup-
port at first. Afterwards, the tilting table was inclined up the motion 
onset of the block stack. The tangent of inclination angle of the tilting 
table at the onset of motion corresponds to the lateral load multiplier. 
The load multipliers obtained from experimental tests without and with 
support movement were equal to 0.19 and 0.14, respectively. 

For numerical simulations, sequential pushdown and pushover an-
alyses with rigid contacts were carried out. The block corners were 
rounded by a radius of 10 mm. Numerical failure mechanisms compare 
fairly well with those observed in experimental tests (Fig. 6a, b, d). For 
the model with support movement δz = 50.0 mm, the numerical value of 
the reaction R at the movable block is 129 N and the displacement at the 
top of the block stacked prism is 50.0 mm. The experimental failure load 
multipliers with and without support movement at the onset of motion 
are compared with those obtained from numerical analysis in Fig. 6c. 
The comparison shows a good agreement between failure load multi-
pliers for δz = 0.0 mm. Conversely, the experimental multiplier is 
slightly underestimated in the case of δz = 50.0 mm. This is likely due to 
interlocking at block vertices between the block stack and the adjacent 
blocks of the wall panel which was observed in the case of the experi-
mental tests with support movements. 

6. Applications to rocking dynamics of single and multi-block 
structures 

Applications to rocking dynamics are presented in this section to 
evaluate the accuracy and computational efficiency of the novel 
formulation proposed for nonlinear time-history with no-tension elastic 
contacts. The first application is aimed at validating the dynamic 
response predicted for the free-standing wall subjected to free rocking 

motion and pulse type excitations. In this case the response obtained 
from the proposed approach is compared with the results obtained from 
finite element modeling. Comparisons with the solution of the equation 
of motion in the case of the single block with rigid contact are also 
presented. The second case study is the dry-joint buttressed arch pre-
sented in Sect. 5. The results from experimental tests on the shaking 
table are herein compared with those obtained from time history anal-
ysis using no-tension elastic contacts. 

6.1. Free standing walls subjected to free rocking motion and pulse-type 
excitation 

The configuration of the rigid block model used to analyze the 
rocking response of the free-standing block is shown in Fig. 7a). A 
support block is used to apply the seismic excitation. The joints between 
the two rigid blocks and between the support block and the ground are 
discretized with four contact interfaces each. A frictionless behavior is 
assumed for the contact with the ground whereas a friction coefficient 
equal to 0.7 is assumed between the two blocks to prevent sliding 
failures. 

The case study of the single block numerically investigated in 
Ref. [78] was considered at first to validate the proposed approach in the 
case of free rocking motion. The dimensions of the examined block are 
B1 = 0.6 m, H1 = 4.2 m. The ratio ω/φ of the initial and slenderness 
angle is equal to 0.5 (Fig. 7a). In order to validate a viscous damping 
model that is able to reproduce the energy loss and ensure dynamic 
equivalence with the classical rocking theory, the authors compared the 
analytical solution by Ref. [79] with that obtained using different soft-
ware codes, including ABAQUS, DIANA and 3DEC. For the analytical 
solution, the authors considered the angular coefficient of restitution e 
corresponding to the conservation of angular momentum at impacts (e 
= 0.97). The comparison of the proposed model with the analytical and 
viscous damping models implemented in ABAQUS is presented in 
Fig. 8a). For the proposed model, the responses obtained using both 
rigid contacts and elastic contact with joint stiffness kjn equal to 5e8 
kN/m3 are shown. The unit weight considered for numerical simulations 
was 18.0 kN/m3. The friction coefficient and the time step size used for 
numerical simulations were set equal to 0.7 and 0.001 s, respectively. 
The two responses are very similar and are in a good agreement with 
numerical curves obtained from Ref. [78]. Similar to other numerical 
responses reported in Ref. [78], slight differences with the analytical 
solution can be noted in the plot of rotation histories for lower rocking 
angles, corresponding to a faster dissipation of energy. 

Further comparisons with experimental tests on the free rocking 
motion of specimen 2 reported in Ref. [80] are presented in Fig. 8b). The 
dimensions of the block are B1 = 0.17 m, H1 = 1.0 m, the unit weight is 
26.7 kN/m3 and the friction coefficient is 0.58. The ratio ω/φ at the 
beginning of motion is 0.64. The numerical response closely matches the 
experimental one for kjn = 5e6 kN/m3. The rotation time-history 

Fig. 5. Dry-joint wall panel on the tilting table: a) test set-up; b) frontal view.  
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response obtained from the model with rigid contacts is remarkably 
different in this case. This is also in a good agreement with the Housner 
solution calculated for e = 0.95. It should be noted that in the proposed 
approach the dissipation is implicitly related to the adopted time step-
ping scheme and is a function of the time step size and contact stiffness. 
A sensitivity analysis to the size of the time step was carried out both for 
rigid and elastic contacts to evaluate the effects on the dissipated energy 
(Fig. 9). The results show that in the case of elastic contacts the dissi-
pated energy per cycle is generally lower than that corresponding to 
rigid contacts and increases with a larger rate for increasing values of the 
time step size. 

To validate the proposed model in the case of base excitations and to 
point out the effects of contact stiffness on the rocking response, another 
set of simulations was carried out on the rigid block under rectangular 
pulse excitation. The dimensions considered for the rigid block are H1 =

3.5 m, B1 = 0.5 m. The stiffness of the joint kjn between the two blocks 
was varied in the range 1.0e5 kN/m3 ÷ 1.0e6 kN/m3. The unit weight of 
the wall is 16.0 kN/m3. A rectangular pulse excitation with magnitude 
equal to 0.15 g and duration 0.2 s is applied at the base block. 

The finite element model of the wall-support system was generated 
in ABAQUS using solid elements C3D8R (Fig. 7b). The pulse excitation at 
the support block was assigned imposing a corresponding displacement 
time history as boundary condition. The general contact options were 
adopted for interactions with a linear formulation for normal behavior, 
penalty formulation for tangential behavior and a damping coefficient of 
0.001. An explicit dynamic analysis was carried out. The rotation time 
histories obtained from the finite element and rocking block model for 
the two joint stiffness considered are shown in Fig. 10a), where a good 
agreement in terms of amplitudes and oscillations periods can be 
observed. To evaluate the differences in the rocking response when a 
rigid contact formulation is used, the response obtained from the rock-
ing block model under the same pulse excitation is reported in Fig. 10b). 

The comparison with the responses determined from the solution of 
the ordinary differential equation of motion and from the linearized 
equation by Housner are also reported for verification for e = 0.84. The 
responses under the same pulse excitation in Fig. 10 show the significant 
sensitivity of rotation time-histories with varying contact stiffness, both 
in terms of amplitudes and rocking periods. 

6.2. Buttressed arch subjected to seismic excitations 

The shaking table tests reported in Ref. [74] on the buttressed arch 
presented in Sect. 5.1 were considered to compare the time-history 
response in the case of a multi-block assemblage with no-tension 
elastic contacts. The buttressed arch was subject to a set of experi-
mental tests with increasing value of peak ground accelerations (PGAs) 
up to collapse. The acceleration time series used for experimental tests 
was derived from the real accelerogram recorded in L’Aquila 2009 
earthquake using a reduction factor η− 1/2

1 for time scale, being η1 = 0.1 
the geometric scale factor, so to comply with similitude requirements. 

Fig. 6. a) Experimental failure mechanism at the onset of motion of the block stack without support movement and b) with vertical displacement of 50.0 mm at the 
movable support; c) Comparison of pushover curves with failure load multiplier at the onset of motion; d) Predicted failure mechanism under imposed displacement 
and lateral loads with rigid contacts. 

Fig. 7. a) Rigid block model of the free-standing wall and support block; b) 
Finite element model generated in ABAQUS. 
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The scaled acceleration time series AQU used in experimental tests was 
assigned at the base of the rigid block model for numerical analysis 
(Fig. 11a). The effective value of the PGA measured on the shaking table 
for the series considered in numerical analysis is equal 0.26 g. The size of 
the time increment used for numerical simulation was 0.008 s. The same 

mechanical parameters adopted in Sect. 5.1 for the static analysis were 
used for the rigid block model. 

The acceleration time history at the base was applied after the 
transient response under the gravitational loads. The deformed config-
uration under the self-weight of the arch is shown in Fig. 12a). 

Fig. 8. a) Comparison of rotation time-histories for the rigid block model subject to free rocking motion with B1 = 0.6 m, H1 = 4.2 m, ω/φ = 0.5; b) Comparison of 
rotation time-histories with the experimental test presented in Ref. [80]. 

Fig. 9. Numerical analysis on the rigid block tested under free rocking motion in Ref. [80]: a) energy balance and b) sensitivity analysis of the dissipated energy per 
cycle to time step size and to contact stiffness. 

Fig. 10. Rigid block subject to rectangular pulse excitation (B1 = 0.5 m, H1 = 3.5 m, pulse magnitude ag = 0.15 g, duration 0.2s): a) comparison of rotation time 
histories with rocking block and finite element model, for different joint stiffness values; b) comparison of rocking block model and ordinary differential equation 
solver solutions for rigid contacts. 

Fig. 11. a) Acceleration time history used for experimental tests on the buttressed arch; b) Comparison of displacement time histories at control point.  
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Experimental and numerical displacement time-histories at control 
point C1 at the top of the left pier show good agreement both in terms of 
oscillations amplitudes and periods (Fig. 11b). The position of the hinges 
of the rocking mechanism is also in good agreement with experimental 
behavior (Fig. 12b). 

7. Static and dynamic analysis of a triumphal arch subject to 
combined settlement and seismic actions 

To evaluate the applicability of the proposed modeling approach on 
a full scale macroelement, the protype of the dry-stone triumphal arch 
shown in Fig. 13a) was considered. The depth of the arch is 0.60 m. The 
piers of the 2D-model are representative of the two lateral nave walls 
with depth equal to 5.50 m (shaded blocks in dark grey color in 
Fig. 13a). The model also comprises eight blocks at the top which 
correspond to the timber beams of the roof (in red color in Fig. 13a), 
perpendicular to the triumphal arch. The unit weight is 16.0 kN/m3 and 
the friction coefficient μ is 0.65. The joint normal stiffness kjn was set 
equal to 5.33e6 kN/m3, corresponding to a value of the masonry Young 
modulus of 1600 MPa and to a block height of 300 mm. For the roof 

loads, a vertical force of 9.1 kN was applied at each of block representing 
the timber beams of the roof. The arch was subjected to a foundation 
movement at the right pier with equal horizontal and vertical values, 
and to lateral loads induced by seismic action. For the seismic action, the 
AQA.HNN acceleration time history was considered [81]. The time se-
ries was recorded at L’Aquila during the earthquake on April 6, 2009 
and corresponds to a peak ground acceleration of 0.44 g. Two different 
types of analysis were carried out for seismic actions, namely a nonlinear 
static analysis and a time history analysis under earthquake excitation. 
The results are compared in terms of peak ground acceleration (PGA) at 
incipient collapse. In the case of pushover analysis, the values of peak 
ground accelerations are derived according to the displacement-based 
assessment procedure contained in the Italian technical standard, 
which is based on the capacity spectrum method. 

7.1. Influence of settlements on the seismic capacity by pushover analysis 

A pushdown analysis was carried out at first to evaluate the effects of 
movement at the right support and to assess the ultimate displacement 
capacity under imposed settlements. The pushdown curves expressing 

Fig. 12. Deformed configuration of the buttressed arch with no-tension elastic contacts: a) under self-weight; b) under the experimental acceleration time series at 
time t = 1.28 s (red circles indicate the hinges). 

Fig. 13. a) Configuration of the prototype triumphal arch; b) Failure mechanism obtained from pushover analysis with rigid contacts under imposed movements δx =

δz = 150 mm and uniformly distributed lateral loads. 
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the reaction components as a function of the corresponding displace-
ment components are shown in Fig. 14. The results show that the 
maximum displacement capacity is attained at δ0,x = δ0,z = 250 mm. For 
sequential support movement and pushover analysis, horizontal and 
vertical components equal to 150 mm were applied, corresponding to 
60% of the ultimate displacement. Using a displacement increment at 
support equal to 10 mm, the analyses took about 2 min to run on a 
processor Intel(R) Core(TM) i7-9850H CPU @ 2.60 GHz, with 16 GB 
Ram. The comparison of the pushover curves without and with imposed 
support movements is shown in Fig. 15a). The failure mechanisms of the 
triumphal arch without and with support movement are similar and 
correspond to a four-hinge collapse mode, with one hinge at the base 
involving the rotation of the right wall and three hinges in the arch 
(Fig. 13b). 

The results of pushover analysis were used to assess the peak ground 
acceleration capacity corresponding to the near-collapse limit state 
(NCLS) according to the displacement-based assessment method con-
tained in the Italian technical standard (Fig. 15b). The pushover curves 
were approximated by a trilinear model according to Ref. [82]. The 
secant stiffness was calculated at 0.4αu, being αu the load factor corre-
sponding to the force capacity on the nonlinear pushover curve. The 
load factor αy of the trilinear model was set equal to 0.9αu. The capacity 
curve is obtained from the pushover curve using spectral transformation 
factors to convert load multipliers and displacements into corresponding 
spectral values. The spectral acceleration of the capacity curve is a∗ =

α(dC)
e∗ g, where: e∗ = (

∑
Piδx,i)

2
∑

Pi
∑

(Piδ2
x,i)

is the ratio of participating mass; dC is the 

displacement of the control point; δx,i are the horizontal displacements 
corresponding to the failure mode. The spectral displacement is d∗ =

dCΓ∗, where Γ∗ =

∑
Piδ2

x,i

δx,C
∑

Piδx,i 
is the spectral transformation factor for 

displacements. Load factors, corresponding displacement values and 
spectral transformation factors are reported in Table 1. The initial period 

was calculated as follows: T0 = 2π
̅̅̅̅
d∗

y
a∗

y

√

. 

The acceleration capacity at collapse is evaluated by scaling the 
acceleration-displacement response spectrum corresponding to the 
seismic input (NC RS in Fig. 15b) so to comply with the ultimate 
displacement on the capacity curve of the equivalent single degree of 
freedom system. In particular, the peak ground acceleration capacity 
ag,NC at the near-collapse limit state was determined from the response 
spectrum corresponding to the spectral acceleration Se(TNC) = 4π2

T2
CLS

d
∗

NC
, 

where: d∗
NC is the spectral displacement corresponding to NCLS, set equal 

to 0.6 d∗
0, being d∗

0 the ultimate displacement; TNC = 1.56π
̅̅̅̅̅̅
d∗

NC
a∗NC

√
is the 

corresponding period. 
The predicted values of peak ground accelerations at collapse limit 

state without and with support movement are also reported in Table 1. 
The application of the assessment procedure returns quite high values of 
the peak ground accelerations at collapse which can be mainly ascribed 
to the small displacement demand associated to the elastic response 
spectrum. Still, the reduction of seismic capacity due to the support 

movement is about 12% and should not be neglected. 

7.2. Influence of settlements on the dynamic response 

Incremental dynamic analysis was carried out, both for the original 
and settled configuration, with increasing scale factors of the accelera-
tion time series up to the collapse of the arch. The scale factors s.f. of the 
original L’Aquila record were varied in the range 0.5–0.75, corre-
sponding to PGA of 0.22–0.33 g. The time interval 15–22s correspond-
ing to the main shock was considered for time-history analysis. The size 
of the time step adopted for numerical simulations was 0.005s. With this 
time increment, the analyses took about 43 min to run. 

Fig. 16 shows the comparison of displacement time history without 
and with imposed support movements under the scaled acceleration 
time series. The results show that the peak ground accelerations at 
collapse are equal to 0.33 g and 0.26 g, respectively. A stronger reduc-
tion of capacity is found in this case (21%). 

The deformed configurations without and with support movement 
for the scale factor of 0.58 are shown in Fig. 17. In the case of the arch 
without support movement, the earthquake induces a spreading of the 
arch supports with control displacement oscillating between 100 and 
160 mm with periods of about 1 s, according to the elastic period T0 
estimated with static analysis (Fig. 16a). Conversely, the arch subject to 
support movements δx = δz = 150 mm progressively collapses under the 
considered earthquake excitation, with a five-hinge failure mechanism. 

The difference between PGAs at collapse obtained from time-history 
and pushover analysis is significative and should be ascribed to the 
different predicted failure mechanisms and displacement demands. 
Indeed, in the case of time-history analyses the displacement demand 
appears to be affected by the five-hinge failure mechanism (rather than 
by the four-hinge failure mechanism obtained from pushover analysis), 
which also involves disaggregation of the walls under the cyclic 
response (Fig. 17). 

8. Conclusions 

A rigid block modeling approach was presented for seismic analysis 
of dry-joint masonry structures which have been previously damaged by 
settlements. The approach is based on the solution of optimization 
problems which are equivalent to the set of equations governing the 
nonlinear static and dynamic response. The model comprises both no- 
tension rigid and elastic contacts and can be used to perform pushover 
and time history analysis on structures subjected to support movements. 

Different applications were presented, including analytical, numer-
ical and experimental tests to evaluate the accuracy of the implemented 
modeling approach. For the buttressed arch, the predicted pushover 
curves showed that the lateral stiffness, the force and the displacement 
capacity are significantly affected by support movements. The analytical 
curves derived to validate the post-peak response corresponding to 
rocking behavior through the application of the principle of virtual 
works closely match the numerical response with rigid contacts. The 
experimental curve obtained from tilting tests on the original 

Fig. 14. a) Horizontal and b) vertical components of support reaction under imposed foundation movement.  

F.P.A. Portioli et al.                                                                                                                                                                                                                            



Soil Dynamics and Earthquake Engineering 166 (2023) 107760

12

configuration also compares well with the numerical response with no- 
tension elastic contacts, with differences that can be ascribed to geo-
metric imperfections of the tested specimen. 

The results of numerical analysis on the wall panel tested on the 
tilting table against support movement and lateral loads also showed a 
good agreement in terms of failure modes. Small differences of the 
lateral load multiplier at the onset of motion should be ascribed to 
interlocking of tuff blocks. 

The set of analysis which was carried out to validate the seismic 
response with elastic contacts also showed a good agreement with nu-
merical and experimental tests. The sensitivity analysis showed that in 
the proposed formulation the energy dissipation is implicitly related to 
algorithm and mechanical parameters. Therefore, a few preliminary 
numerical tests were necessary for the evaluation of dissipated energy 
and to discuss the sensitivity of the response of the proposed model for 
the case studies considered. 

The application to the model of a triumphal arch showed that the 
proposed approach can be conveniently used to predict the static and 
dynamic response of full-scale macro-elements for seismic assessment 
under imposed support movements. The results of time-history analysis 

showed that, for support movement equal to 60% of ultimate displace-
ment, the peak ground acceleration at collapse is affected by about 21%, 
which is not negligible and stresses the relevance of the current building 
condition in the seismic safety assessment. In the case of static analysis, 
differences of about 12% between the configurations without and with 
settlements were obtained. However, the peak ground accelerations at 
collapse obtained from pushover analysis and from the application of the 
displacement-based assessment method contained in the Italian tech-
nical standard were significantly higher than those obtained from time 
history analysis. The difference can be ascribed to the different predicted 
failure mechanisms, corresponding to a four-hinge and to a five-hinge 
collapse mode in the case of pushover and time history analysis, 
respectively. The disaggregation failure of the walls associated to the 
cyclic response also affected the seismic capacity in the case of dynamic 
analysis. 
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Fig. 15. a) Pushover curves of the prototype triumphal arch in the original and settled configuration and b) scheme of the capacity spectrum method used for the 
assessment of the peak ground acceleration at collapse limit state. 

Table 1 
Triumphal arch subject to support movement and lateral loads. Parameters 
obtained from numerical simulations for pushover and capacity curves.   

Triumphal arch w/o support 
movement 

Triumphal arch with support 
movement 

Model size (b 
× c) 

362 × 3996 362 × 3996 

α0 0.074 0.067 
αy 0.048 0.040 
dy (mm) 10 17 
d0 (mm) 380 313 
e* 0.75 0.77 
Γ* 0.66 0.68 
d*NC (mm) 150 127 
T0 (s) 0.64 0.94 
TNC (s) 2.93 2.81 
ag,NC (g) 1.13 0.99  

Fig. 16. Displacement time-history at control point a) without and b) with imposed movement at support.  
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List of symbols 

α live load multiplier 
α0 load multiplier at the onset of the mechanism with rigid contacts 
αy load multiplier at the force capacity with elastic contacts 
Γ∗ transformation factor for spectral displacements 
λsk+,λsk+,λok flow multipliers for positive, negative sliding and opening at contact point k 
λ vector of flow multipliers 
μ friction coefficient 
a∗

0 spectral acceleration for the onset of failure mechanisms 
A0 equilibrium matrix 
b number of blocks 
c number of contact points 
ck, c vectors of contact forces at point k and at all contact points 
Ckn,Ckt ,C normal, tangential contact compliance and matrix of contact compliances 
d,dy,d0 displacement at a control point, displacement at the elastic limit and displacement capacity 
d∗,d∗

NC spectral displacement, spectral displacements at near collapse limit state 
dj depth of contact joint j 
e angular coefficient of restitution at impacts 
ek normal elastic interpenetrations at contact point k 
e vector of tangential elastic deformations and normal elastic interpenetrations at contact points 
e∗ ratio of participating mass 
fxi, fzi, fωi external load components at centroid of block i 
f , f D, f L vectors of external loads, dead (vertical) and live loads 
g0k initial known contact gap at contact point k 
g0 vector collecting initial known tangential displacement rates and gaps 
K matrix of contact stiffnesseskn,

kt normal and tangential stiffness at contact points 
kjn,kjt normal and tangential stiffness at joints 
lj length of contact joint j 
nk, tk, t0k normal, tangential contact forces and initial known tangential force at contact point k 
r vector of constant terms associated to failure conditions 
T0,TNC equivalent periods corresponding to d∗

y and d∗
NC 

Fig. 17. Deformed configurations from time-history analysis using no-tension elastic contacts at time t = 21.5s: a) without and b) with imposed movement 
at support. 
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x0,x vectors of initial (known) and new (unknown) positions at block centroids 
ysk+,ysk− ,y0k failure conditions for positive, negative sliding and opening at contact point k 
yk, y vectors of failure conditions at contact point k and at all contact points 
Yk,Y flow rule matrices at contact point k and at all contact points 
Δunk,Δutk normal and tangential relative displacements at contact point k 
Δu vector of local relative displacements at contact points 
Δxi,Δzi,Δωi displacements at centroid of block i 
Δx vector of displacements at block centroids 
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