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Abstract—Seismic intensity plays a crucial role in influencing 

the decision-making process of users utilizing earthquake early 

warning systems (EEWs) upon receiving warning information. 

Improving intensity warnings' speed and accuracy is vital. We 

present a straightforward and dependable model for predicting 

intensity, which is based only on location and magnitude 

information. We use the catalog of intensity data from the Japan 

Meteorological Agency (JMA) released as a dataset, totaling 

944,877 intensity instances. To address the issue of imbalanced 

dataset distribution, we employ the Synthetic Minority 

Over-Sampling Technique (SMOTE) as a means to improve this 

situation. Considering the distribution of high intensity data and 

the importance of features in the model, we construct and jointly 

apply intensity prediction models for magnitude below 5.7 and 

above 5.7, respectively. Further, we analyze the robustness of the 

model by adding random errors for magnitude and location information. We test the transfer capability of the proposed model with 

four earthquake events in China. Further, we use 466 seismic events (20,542 intensity instances) without published intensity data 

from the Kyoshin network (K-NET) as the application dataset. We simulate the phenomenon of underestimation of large earthquakes 

and overestimation of small earthquakes, which is used to analyze the possible application of the proposed model to EEWs. The 

findings indicate that the model achieves an accuracy of 97.77% when subjected to a magnitude error of 0.3 and a location error of 

0.2°. Finally, we analyze the timeliness of the proposed model with a magnitude 7.4 event in 2022. 

 
Index Terms—Earthquake early warning, earthquake engineering, earthquake intensity, machine learning, seismic signal processing  

 

 

I. INTRODUCTION 

ARTHQUAKE early warning systems (EEWs) leverage 

the velocity discrepancy between P wave and S wave, as 

well as between S wave and electromagnetic waves [1]-[3]. 

During an earthquake event, EEWs can provide alerts to the 

general public and specific users, such as high-speed railways, 

tall buildings, and slope construction projects, several seconds 

to approximately ten seconds ahead of time [4]-[8]. These alerts 

typically encompass information about the hypocenter's 

location, the earthquake's magnitude, predicted local intensity, 

and the expected arrival time of potentially destructive seismic 

waves [9]-[12]. Such data from EEWs furnish users with 

essential insights to inform potential emergency responses and 

risk-assessment decisions [13]. 

EEWs are categorized into regional and on-site warning 

systems [14]-[15]. On-site EEWs predict subsequent ground 
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motion peaks based on local monitoring information for the 

first few seconds, thus providing warning information to users 

before destructive seismic waves arrive [16]. Conversely, 

regional EEWs dispatch alerts to distant users based on P wave 

data from stations proximate to the hypocenter [17]. 

Traditional methods for EEWs intensity prediction usually 

use empirical fitting. The initial P wave information is 

subjected to feature parameter extraction and a statistical 

relationship is established with the site motion amplitude. 
These P wave characteristic parameters include the peak 

displacement (Pd) [18]-[19] within the 3s time window of the 

initial P wave, the cumulative absolute velocity (CAV) [20], 

and so on. In addition to establishing relationships with 

waveform features, intensity prediction also establishes 

statistical relationships with magnitude, epicenter distance, and 

depth of epicenter to include diverse information to improve the 

accuracy of prediction [21]-[23]. However, the uncertainty of 

earthquake occurrence and the complexity of seismic wave 

propagation limit the accuracy and reliability of traditional 

empirical models. Therefore, it is necessary to propose more 

capable intensity prediction methods in order to obtain higher 

accuracy. 

Machine learning algorithms have the advantage of being 

automated and adaptive, giving them the ability to build data 

mapping relationships without the aid of physical models [24]. 
This feature has led to the widespread use of machine learning 

algorithms in a variety of application areas, including 

earthquake engineering [25]-[27]. As machine learning 
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continues to evolve, ensemble learning has excelled in different 

areas of application due to its efficient performance. Ensemble 

learning reduces the preference for a single model and further 

improves model adaptation by integrating different or identical 

machine learning models [28]. Currently, widely accepted 

models for ensemble learning include Bagging and Boosting. 

Ensemble learning also currently has a wide range of 

applications in EEWs. For intensity prediction, Sarkar et al. [16] 

proposed a site peak prediction model using initial P-wave 

feature parameters based on multilayer perceptron. Hu et al. 

[29]proposed a peak site motion prediction model using initial 

P-wave feature parameters based on Extreme Gradient 

Boosting (XGBoost) algorithm. Abdalzaher et al. [30] used the 

initial time series data of seismic waves as input and intensity 

level as output and compared different machine learning 

models and identified the XGBoost model as the optimal model. 

In addition, some researchers have constructed local intensity 

prediction models using initial P-wave time series based on 

deep learning models [31]-[33]. However, the current machine 

learning or deep learning methods are based on local EEWs, 

and no further research has been carried out on the intensity 

prediction aspect of regional EEWs. 

We statistically determine the time and epicentral distance of 

the maximum acceleration reaching other areas after the 

earthquake, with an average velocity of 3.17 km/s. This result is 

consistent with the velocity of destructive seismic S wave. 

According to our dataset, the epicentral distance of recorded 

intensity events averages at 155 km. Typically, the velocity of 

P wave is about 6.5 km/s, which also means that P wave takes 

an average of 23.84 s to trigger a local station after an 

earthquake. This also means that there is a certain lag in the use 

of on-site warning, but there is potential for further 

improvement in timeliness. High intensity may cause more 

damage to people's lives and property [29]. However, high 

intensity (≥ 5) is usually caused by a small number of large 

earthquakes, which suggests a serious imbalance between high 

and low intensity data. Nevertheless, no improvements have 

been made to address this problem in the current researches. 

Addressing the issues of timeliness, intricate computation, 

and data imbalance in existing methods, this study introduces a 

streamlined yet dependable seismic intensity prediction model 

grounded in machine learning. The model hinges solely on 

magnitude and location data. We refer to the study of 

Abdalzaher [30] to construct and compare the intensity 

prediction models based on Bagging and Boosting algorithms, 

and compared the results of different algorithms on validation 

set and test set, and determine the best algorithm. Additionally, 

a random oversampling technique is employed to rectify the 

data imbalance, leading to enhanced performance with 

high-intensity data. The model's robustness and transfer 

capability are also assessed. Conclusively, simulations depict a 

decrease in the prediction error of seismic information for 

EEWs as time progresses, facilitating an analysis of the 

timeliness and precision of the model when integrated into 

EEWs. 

II. FRAMEWORK 

The main work of this study includes main four steps, as 

shown in Fig. 1. 

Step 1: constructing seismic intensity datasets 

Collect and clean seismic intensity data from Japan, and 

 complete the construction of datasets. Divide the test set in 

terms of training set, validation set and test set. Preprocess the 

seismic data in southwest China and Japan to construct a 

Chinese transfer dataset and Japanese application dataset (see 

in DATASET section).  

Step 2: constructing intensity prediction model 

Build the intensity prediction models based on Random 

Forest, Extreme Gradient Boosting (XGBoost) and Light 

Gradient Boosting Machine (LightGBM) respectively, train the 

models and optimize the model parameters (see in METHOD 

section). Determine the final model based on the test results. 

Utilize Synthetic Minority Over-Sampling Technique (SMOTE) 

to improve data imbalance, distinguish between intensity 

prediction models of different magnitudes and apply them 

jointly. (see in INTENSITY PREDICTION MODEL section). 

 

 

Fig. 1.  Overall framework of the work.

Step 3: testing robustness analysis and cross-datasets 

validation 

Add random errors to the magnitude and location 

information of the Japanese test set to analysis the robustness of 

the proposed model. Apply the intensity prediction model to the 
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Chinese transfer dataset to test the cross-datasets potential 

application of the model (see in DISCUSSION section). 

Step 4: analyzing application possibilities 

Simulate the reduction of the prediction error of seismic 

information for EEWs with time increasing, analyze the 

accuracy and timeliness by a real earthquake event (see in 

APPLICATION section). 

III. DATASET 

A. Japanese Dataset 

A catalog of seismic intensity data published by Japan 

Meteorological Agency (JMA) is used as the dataset for this 

work [34]. The catalog stores data in hexadecimal files, so we 

convert the catalog to ASCII format for easy reading and 

manipulation. The catalog covers the period from 1919 to 2020, 

and the information has been calibrated. The catalog includes a 

total of 6,800 deactivated or active seismic intensity stations, 

distributed as shown in Fig. 2(a) Seismic intensity data 

announced by JMA are values observed using seismic intensity 

meters installed on the ground or on the first floor of low-rise 

buildings. We mainly use information from the catalog 

including (1) seismic intensity; (2) maximum acceleration 

observation time Tmax; (3) earthquake origin time Torigin; (4) 

earthquake magnitude, longitude, latitude, and depth; (5) 

station longitude, latitude. JMA classifies seismic intensity as 0, 

1, 2, 3, 4, 5 Lower, 5 Upper, 6 Lower, 6 Upper, and 7. Where 5 

Lower, 5 Upper, 6 Lower, and 6 Upper are indicated in the 

catalog as A, B, C, and D.  

 

 

 
Fig. 2.  Distribution of the stations (a) and epicenters (b), and the different color of the dots indicate the magnitude and depth of the earthquake, where shallow 

earthquakes are defined as those below 60km and deep earthquakes are defined as those above 300km.  
We perform data cleaning and preprocessing of the catalog, 

which consists of the following: 

1. Temporal Selection: We choose the time period from 

1997 to 2020 for our catalog since Tmax is not recorded in the 

1996 and earlier files. Including data without Tmax would 

compromise the consistency and completeness of our dataset; 

2. Data Cleaning: We remove intensity data that lacked Tmax 

between 1997 and 2020. This step is crucial to avoid the 

introduction of null values that could skew our analysis and 

predictions; 

3. Data Validation: Intensity data where Tmax is less than 

Torigin are excluded. This criterion is based on the physical 

impossibility of such an occurrence and suggests a recording 

error. Removing such outliers helps prevent the model from 

learning from erroneous data; 

4. Data Encoding: We replace the record intensity levels A, 

B, C, and D with numeric values 5, 5, 6, and 6, respectively. 

This encoding facilitates the mathematical manipulation of the 

data and the application of numerical methods. It also ensures 

uniformity in the treatment of categorical data; 

5. Magnitude Threshold: We screen for seismic events 

with magnitudes greater than 4.0. Earthquakes with magnitudes 

below 4.0 are unlikely to cause significant ground shaking, and 

high intensity events are more important for EEWs. 

6. Time Difference Filtering: We exclude intensity data 

where the time difference between Tmax and Torigin is less than 1 

second. Too short a time difference usually does not allow 

accurate estimation of basic parameters (e.g., magnitude, 

location, and depth), which are essential for reliable intensity 

prediction. 

7. Geospatial Calculations: We calculate the epicentral 

distance and azimuth between the station and the hypocenter 

location using equations (1) to (6). This step is fundamental in 

establishing the spatial relationship between the earthquake 

source and the recording station, which is a significant factor in 

predicting the intensity of ground motions. 
2 2

1 2sin ( lat / 2) cos(lat ) cos(lat ) sin ( lon / 2)a =  +         (1) 

2 arctan 2( , 1 )c a a=  −                         (2) 

d R c=                                           (3) 

2sin( lon) cos(lat )x =                              (4) 

1 2 1 2cos(lat ) sin(lat ) sin(lat ) cos(lat ) cos( lon)y =  −         (5) 

arctan 2( , )x y =                                  (6) 

where, 
2 1lat lat lat = − , 

2 1lon lon lon = − , lat1 and lon1 are 

location of hypocenter, lat2 and lon2 are location of station, d 

and θ are distance and azimuth between the station and the 

hypocenter location, and R is the Earth's radius (mean radius = 

6,371 km). 
A total of 13,266 earthquake events (distributed as shown in 

Fig. 2(b)) and 944,877 intensity instances are obtained as a 

dataset after selection. The distribution of epicentral distance, 

magnitude and number of records is shown in Fig. 3(a), and the 

distribution of epicentral distance, intensity and number of 

records is shown in Fig. 3(b). In Fig. 4, the relationship between 

magnitude, depth, epicentral distance and intensity are given 

for all high intensity events. The results show that the intensity 
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greater than or equal to 5 has a strong relationship with the 

magnitude. Over 90% of high intensity are caused by 

earthquakes with magnitudes equal to or greater than 5.7. 

 
Fig. 3.  (a) Data distribution versus catalog magnitude and epicentral distance 

used in this study. (b) Data distribution versus catalog intensity and epicentral 

distance used in this study. 

 

 

Fig. 4.  Statistical scatterplot of magnitude, epicentral distance, and epicentral 

depth for high intensity data, with the color of the dots representing the depth of 

the epicenter. 
The dataset is divided into training set, validation set and test 

set. To avoid the overfitting problem of the training model, 

which the duplication of data in the validation set and the 

training set, we divide the dataset in terms of time of occurrence 

of earthquake. Intensity instances from 1997 to 2016 are used 

as the training set and from 2017 to 2018 are used as the 

validation set. Intensity instances from 2019 to 2020 are 

selected as a test set used to evaluate the generalization 

capability. The distribution of the number of intensity instances 

for the training, test and validation sets is shown in Fig. 5. 

 
Fig. 5.  Histogram of intensity statistic for different datasets. 

The model constructed in this work is a parameter less 

intensity prediction model, which it only includes depth, 

magnitude, epicentral distance and azimuth. The output of the 

proposed model is the intensity. The inputs to the model are 

shown in (7), 

{ , , , }i i i i iInput d M R =                         (7) 

where, 
id , 

iM , 
iR  and 

i  are depth, magnitude, epicentral 

distance and azimuth, respectively. 

B. Chinese Transfer Dataset 

To test the cross-datasets potential application of the 

proposed model, four earthquake events from southwest China 

are selected for testing. These four earthquake events are the 

2022 Lushan M 6.1 earthquake, the 2013 Lushan M 7.0 

earthquake, the 2014 Ludian M 6.5 earthquake, and the 2017 

Jiuzhaigou M 7.0 earthquake, for a total of 319 recorded 

intensity instances [35]. The distribution of the hypocenters and 

stations of these earthquake events is shown in Fig. 6(a). It 

should be noted that the magnitude published in Japan is the 

Japan Meteorological Agency Magnitude (MJMA), while the 

magnitude published in China is the Moment Magnitude (MW). 

According to Katsumata's study [36], when the magnitude is 

5~7 and the epicenter depth is less than 60km, the calculation 

methods of these two magnitudes are basically equal. The 

magnitude and epicenter depth of these four Chinese seismic 

events are eligible. These two magnitudes are considered the 

same here and are uniformly labeled with M in the text. Since 

the intensity instances are not directly given in the Chinese 

dataset, we first performed the intensity conversion according 

to the JMA [37] . It consists of two main steps: 1) Combining 

the three- component acceleration, which is shown in (8); 2) 

Calculating the intensity, which is shown in (9) 

2 2 2

E W N S U D
( ) ( ) ( ) ( )

i i i i
a t a t a t a t

− − −
= + +              (8) 

10
2 log ( ) 0.94

c
I a=  +                             (9) 

where, a(t)E-W is the east-west component of acceleration, 

a(t)N-S is the north-south component of acceleration, a(t)U-D is 

the vertical acceleration, and a(t) is the acceleration synthesized 

from the three components, ac is the acceleration corresponding 

to an exceedance probability of 0.3s, and I is the JMA seismic 

intensity. After the above calculation, the intensity statistics of 

earthquake events in southwest China is shown in Fig. 6(b). 

 
Fig. 6.  (a) Distribution of epicenters and stations in Chinese transfer dataset. (b) 

Statistics on the number of intensity labels in Chinese transfer dataset. 

C. Japanese Application Dataset 

To further test the possibility of model application to EEWs, 

we construct a Japanese application dataset for testing the 

accuracy and timeliness of the proposed model application to 

EEWs. The Japanese application dataset is from the Kyoshin 

network (K-NET) in Japan for the period 2021 to 2022 [38]. 

Japan K-NET updates the seismic events occurring in the 

Japanese region on a daily basis and publishes waveform data 

from different stations. However, since there is no intensity 

data involved in the waveform files. Therefore, we calculate the 
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JMA intensity based on (8) to (9). We screen the data and the 

magnitude should not be less than 4.0. In addition, we calculate 

the trigger time of the station by using short-term 

average/long-term average (STA/LTA) algorithm [39]-[41] , 

which is shown in (10) to (12), 

( )
1

1
STA ( )

i

j i N

i X j
N = − +

=                            (10) 

( )
1

1
LTA ( )

i

j i M

i X j
M = − +

=                           (11) 

STA

LTA

i

i

i

R =                                     (12) 

where, M and N, respectively, represent the length of the long 

term and the short term and X represents the raw data. We apply 

an STA/LTA operator on the filtered data and the length of the 

short term is 50 samples (0.5 s in K-NET data), while the length 

of the long term is 3000 samples (30 s in K-NET data). And the 

threshold of Ri is set to 10. The number of records from stations 

triggered by the STA/LTA method should be no less than five. 

After screening, 466 earthquake events and 20542 intensity 

instances are obtained. The distribution of hypocenters and 

stations is shown in Fig. 7(a), and the statistics of the intensity 

are shown in Fig. 7(b). 

 
Fig. 7.  (a) Distribution of epicenters and stations in Japanese application 

dataset. (b) Statistics on the number of intensity labels in Japanese application 

dataset. 

IV. METHOD 

A. Overview 

Decision Tree is a supervised learning algorithm in machine 

learning, mainly used for classification and regression tasks. 

The decision tree model is a tree-like structure, where each 

non-leaf node represents a test on a feature attribute, each 

branch signifies the output of this feature attribute within a 

certain range, and each leaf node stands for a predicted 

classification (for classification trees) or a continuous value 

(for regression trees). The process of constructing a decision 

tree usually involves feature selection, decision tree generation 

and pruning [42]. 

When evaluating the performance of a machine learning 

model, there are two main aspects that are often considered: 

bias and variance. Bagging [43] and Boosting [44] are both 

ensemble learning strategies designed to improve overall model 

performance by combining multiple models. However, they 

focus on different things: while Bagging focuses on reducing 

variance, and Boosting focuses on reducing bias [45]. 

Bagging reduces model variance by generating multiple 

models and integrating their predictions. Random Forest is a 

classic application of Bagging that uses a decision tree as the 

base learner and introduces random selection of features to 

increase the diversity of the model. Boosting reduces bias and 

improves overall model performance by sequentially building 

learners and correcting errors in the previous learner. AdaBoost 

is a preliminary Boosting method, and in subsequent iterations 

of updates, XGBoost and LightGBM further improve the 

performance of the Boosting algorithm. 

B. Random forest 

A random forest is composed of multiple decision trees, each 

of which is independently sampled (shown in Fig. 8(a)). 

Random forests randomly draw (with put-back) samples of the 

same size from the original dataset when constructing each 

decision tree. Instead of considering all features when splitting 

each node of the tree, a subset of features is randomly selected 

and the best split is found on this subset. For the classification 

task, each tree votes and then the category with the most votes 

is chosen as the final prediction [46]. 

The main function of the random forest model is shown as 

(13), 

1

1
( ) ( ) ( ; )

K

ii
H X H X

K


=
=                               (13) 

where, H(X; θi) denotes the kth predictor tree, and θ 

represents the random vector of the random forest. The 

supervised learning is achieved by minimizing the following 

loss function shown as (14), 
2

1
( ( ) )

N

n nn
O H X

=
−                                (14) 

where, O denotes the seismic intensity and N denotes the 

number of training earthquakes. Random forest model 

optimization parameters include maximum depth of the 

decision tree (Mdep), number of decision trees (Mtree) and 

minimum number of samples a node can be divided (S), 

parameter meanings and selection ranges are shown in Table I. 

C. XGBoost 

XGBoost (shown in Fig. 8(b)) is an optimized distributed 

gradient boosting algorithm with parallel processing, support 

for custom optimization objectives and evaluation criteria [47]. 

XGBoost controls the splitting nodes by the maximum depth of 

the tree and then continues to split through the child nodes, 

effectively preventing overfitting of the model. In addition, 

XGBoost can perform cross-validation in each round of 

boosting iterations to get the rounds where the optimal iteration 

stops. The main function of XGBoost is shown as below, 

, )ˆ( , ) Ω(b j i i ki k
O l y y f= +                     (15) 

21
Ω( )

2
f T w  = +                       (16) 

where l is a differentiable convex loss function that measures 

the difference between the prediction ˆ
iy  , and the target yi, Ω 

is the regularization term function and fk is the kth tree model, T 

and w are the number and weights of leaf nodes, respectively. 

XGBoost adds a regularization term to the objective function as 

compared to GBDT (Gradient Boosting Decision Tree), which 

can prevent overfitting of the model. XGBoost optimization 

parameters include learning rate (Eta), Mdep, Mtree, S and 

proportion of subsamples of features used in building each tree 

(C), parameter meanings and selection ranges are shown in 

Table I. 

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2024.3354857

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on February 26,2024 at 14:26:49 UTC from IEEE Xplore.  Restrictions apply. 



  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

D. LightGBM 

The LightGBM (shown in Fig. 8(c)) model is obtained by 

improving on the XGBoost model. Compared with the 

XGBoost model, the LightGBM model has four main 

optimizations [48]. (1) The LightGBM model uses the 

leaf-wise algorithm instead of the level-wise algorithm as the 

tree growth strategy. (2) The LightGBM model uses the 

histogram algorithm. The histogram algorithm can save only 

the bin values after feature discretization, which reduces 

memory consumption and thus increases the computational 

speed. (3) LightGBM uses a Gradient-based One-Side 

Sampling (GOSS) algorithm. (4). LightGBM optimization 

parameters include Eta, Mdep, Mtree, S, C, parameter descriptions 

and selection ranges are shown in Table I. 
TABLE I 

DESCRIPTIONS AND RANGE OF VALUES OF DIFFERENT MODEL PARAMETERS 

Model Parameter Meaning 
Range and 

interval 

Random 

Forest 

Mdep 
Prevent overfitting and 

simplify model 
[6, 2, 30] 

Mtree Improve performance [50, 50, 1000] 

S 
Increase computational 

efficiency 
[0.1, 0.1, 1] 

XGBoost 

Eta 
Increase computational 

efficiency and performance 

[0.05, 0.05, 

0.5] 

Mdep 
Prevent overfitting and 

simplify model 
[6, 2, 30] 

Mtree Improve performance [50, 50, 1000] 

S 
Increase computational 

efficiency 
[0.1, 0.1, 1] 

C 
Improve the robustness of the 

model 
[0.1, 0.1, 1] 

LightGBM 

Eta 
Increase computational 

efficiency and performance 

[0.05, 0.05, 

0.5] 

Mdep 
Prevent overfitting and 

simplify model 
[6, 2, 30] 

Mtree Improve performance [50, 50, 1000] 

S 
Increase computational 

efficiency 
[0.1, 0.1, 1] 

C 
Improve the robustness of the 

model 
[0.1, 0.1, 1] 

 

 
Fig. 8.  (a) Random forest model. (b) XGBoost model. (c) LightGBM model. 

E. Parameter Optimization 

Suitable model parameters can effectively improve the 

accuracy and computational speed of the model. We use grid 

search and k-fold cross-validation (k=5) to determine the model 

parameters. The range of values and intervals of the parameters 

are shown in Table I (e.g. [6, 2, 30] represents an initial value of 

6, an interval of 2, and an end value of 30). The order in which 

the model parameters are determined is sequential in the order 

of the table.  

F. Evaluation Indicators 

We refer to the methods of other researchers and scholars [17] 

[29], and predicting the intensity at ± 1 level is widely 

recognized as accurate, calculated as shown in (17). In the JMA 

intensity scale, intensity equal and higher to 5 may cause huge 

damage, since we regard intensity ≥ 5 as high else low. We 

consider high intensity accurate prediction as TP, high intensity 

false prediction as FP, low intensity accurate prediction as TN, 

and low intensity false prediction as FN (shown in Fig. 9). For 

users of EEWs, the cost of receiving inaccurate high intensity 

warning signals is more expensive than the cost of receiving 

inaccurate low intensity warning signals. Thus, we further 

introduce Precision, which responds to the accuracy of 

predicting high intensity, calculated as shown in (12). In 

addition, we introduced mean absolute error (MAE) and 

standard deviation (STD) to measure the accuracy of the 

predictions, which are calculated as shown below. 

TP TN
Accuracy

TP FP TN FN

+
=

+ + +
                  (17) 

TP
Precision=

TP FP+
                              (18) 

1

1
ˆ| |

n

i i

i

MAE y y
n =

= −                               (19) 

2

1

1
( )

n

i

i

STD y y
n =

= −                            (20) 

 

Fig. 9.  Definitions of TP, FP, TN, and FN. 

V. INTENSITY PREDICTION MODEL 

The suitable parameters for different models are tested and 

the parameters for each model are shown in Table II. In Table 

III, the test results of different models are given. The results 

show that the Accuracy, Precision, MAE, and STD of the 

XGBoost model reach 98.97%, 93.96%, 0.308, and 0.484, 

respectively, which are better than those of the RF and 

LightGBM models.  The results of the strengths and 

weaknesses of the test model were also the same as 

Abdalzaher's study [30] despite the different dataset and 

content used. Therefore, the subsequent work will further 

analyze and discuss based on the XGBoost model. In Fig. 10(a), 

the confusion matrix of the results on the validation set using 

the XGBoost model is given. The results show that the 

maximum error in XGBoost prediction is 3 levels of intensity, 

and the number of prediction errors greater than or equal to 3 

levels is only 7 times. To further evaluate the effectiveness of 

XGBoost for testing, we save the model and test it on the test 

set. The results of the test set are shown in Table III and the 

confusion matrix for the test set is given in Fig. 10(b). The 

results of the test set are on par with the validation set in terms 

of the Accuracy, however the Precision is much lower than the 

validation set. This result is related to the imbalanced 

distribution of seismic intensity data. 
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In the full dataset, there are a total of only 2,584 events 

(0.27%) with an intensity equal or above 5. The imbalanced 

data distribution leads to the inability of the model to use the 

small amount of information from the high intensity data to 

learn the features of high intensity data. We adopt SMOTE to 

improve this problem. SMOTE balances the category 

distribution by synthesizing new instances for the minority 

class in the feature space, based on the difference between the 

minority class instances and their neighbors and random 

interpolation. The specific steps are as follows: 

1) for each minority class sample, select the k nearest 

neighbors (after testing, k was chosen to be 4); 

2) for each selected minority class sample, a random sample 

is selected from its k nearest neighbors; 

3) new synthetic samples are generated in the feature space 

using linear interpolation between selected minority class 

samples and randomly selected samples; 

4) add these synthetic samples to the original minority class 

samples to expand the dataset. 

The formula for generating new samples for SMOTE is 

shown below,  

(0,1) ( )newx x rand x x= +  −                      (21) 

where, x is real value, x  is approach value, and 
new

x  is new data. 

After SMOTE, the number of each intensity in the training 

set is equal to that of intensity 1 at 466,233. We retrain the 

model based on these regenerated samples, named 

XGBoostSMOTE. In Table III, the test results of XGBoostSMOTE 

on validation set and test set are given. The results show that 

XGBoostSMOTE performs better in the Precision metric of the 

test set. After the introduction of SMOTE, the Precision metric 

increased from 52.83% to 92.45%, which substantially 

improved the prediction accuracy of high intensity strength. 

While the Accuracy metric decreased from 98.79% to 96.23%. 

This reason is importantly related to the process of 

oversampling that leads to an excessive distribution of high 

intensity data, resulting in generally high predicted intensities 

for XGBoostSMOTE.  

These test results show that XGBoost, XGBoostSMOTE 

models have better performance in predicting low intensity 

instances and high intensity instances respectively.  According 

to our statistics, more than 90% of the high-intensity instances 

are caused by earthquakes with M ≥ 5.7 (shown as in Fig. 4). In 

addition, the magnitude has the highest percentage of 

importance in XGBoost at 0.4871. Therefore, we jointly apply 

XGBoost and XGBoostSMOTE models based on different 

magnitude intensities.  This is done by using the XGBoost 

model to predict the intensity when the magnitude is less than 

5.7, and the XGBoostSMOTE model to predict the intensity when 

the magnitude is ≥ 5.7. We call the model after the joint 

application XGBoostIntensity and re-tested the results on the test 

set and the results are shown in Table III. The results show that 

the Accuracy metric of XGBoostIntensity decreases by 0.77% but 

the Precision metric improves by 28.30% compared to 

XGBoost. 

 
Fig. 10.  Confusion matrix for XGBoost results in validation (a) and test (b) 

sets. 

 

TABLE II 
OPTIMAL PARAMETERS FOR DIFFERENT ALGORITHMIC MODELS 

Model Parameter Value 

Random Forest 

Mdep 10 

Mtree 150 

S 0.1 

XGBoost 

Eta 0.15 

Mdep 6 

Mtree 100 

S 0.1 

C 1 

LightGBM 

Eta 0.05 

Mdep 22 

Mtree 550 

S 0.5 

C 1 

VI. DISCUSSION 

A. Robustness Analysis 

In EEWs, seismic parameters (magnitude, location, etc.) are 

obtained by analyzing the information contained within the 

initial P wave time window [50]-[51]. As the length of the P 

waves time window increases, more and more information are 

contained and the seismic parameters are estimated more 

accurately. Although the estimation becomes more accurate as 

the amount of information increases, it is still inevitable that 

estimation errors will still exist in actual applications. 

Therefore, this section analyzes the effect of seismic parameter 

errors on the prediction accuracy of the proposed model. On the 

one hand, it simulates the change in the accuracy of the 

proposed model as the error gradually decreases; on the other 

hand, it tests the robustness of the model. We add random 

different errors to magnitude, latitude, longitude, and depth, 

and choose the test set for robustness analysis. The specific 

robustness analysis consists of three main components, 

magnitude, location and depth. 

We introduce uniformly distributed random errors in 

hypocenters’ magnitude, location (latitude and longitude), and 

depth to assess the robustness of the model. We use Accuracy 

and Precision evaluation metrics to quantify the impact of 

different features on model predictions.  In order to simulate the 

increase in the accuracy of earthquake parameters over time, 

we sequentially reduce the range of the uniform distribution of 

errors in the contaminated dataset. In addition, we add errors at 

magnitude, location, and depth in turn to better rate the effect of 

different features on the prediction results. Eventually we 

obtained nine contaminated datasets as shown in Table IV. The 

serial number of each contaminated dataset represents a 

different combination of magnitude, location (epicentral 

distance and azimuth), and depth error. In addition, we have 
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recalculated the epicentral distance and azimuth as inputs to the 

new contaminated dataset after the introduction of location 

errors. For depth, we restrict its value to be non-negative to 

reflect the physical reality that seismic depth cannot be 

negative. 

TABLE IV 
RANDOM ERRORS ADDED TO DIFFERENT CONTAMINATED DATASETS. 

NO. Magnitude Location (°) Depth (km) 

1 [-0.5, 0.5] / / 

2 [-0.3, 0.3] / / 

3 [-0.1, 0.1] / / 

4 [-0.5, 0.5] [-0.3, 0.3] / 

5 [-0.3, 0.3] [-0.2, 0.2] / 

6 [-0.1, 0.1] [-0.1, 0.1] / 

7 [-0.5, 0.5] [-0.3, 0.3] [-10, 10] 

8 [-0.3, 0.3] [-0.2, 0.2] [-5, 5] 

9 [-0.1, 0.1] [-0.1, 0.1] [-2, 2] 

In Fig. 11 histograms of the test results for different 

contaminated datasets are given. The Accuracy of No.7 

contaminated dataset with the addition of random maximum is 

94.91%. As the error decreases, the Accuracy of the prediction 

is further improved. In the contaminated dataset No. 9, the 

model achieved an Accuracy of 97.65% and a Precision of 

83.02%, achieving results that are essentially equal to those of 

the origin test set. Furthermore, when comparing the 

contaminated dataset vertically in conjunction with Fig. 12, the 

accuracy drops by just less than 1% when errors in position and 

depth are added sequentially. When comparing the 

contaminated dataset horizontally, the reduction in magnitude 

error leads to a significant increase in both Accuracy and 

Precision. The results show that the model’s predictions are 

most sensitive to magnitude errors, followed by location and 

depth errors, which is consistent with the ordering of feature 

importance in our model. These results are significant because 

they show that our model can provide reliable and robust 

intensity predictions despite initial uncertainties in the 

estimation of seismic parameters. This robustness is critical for 

the practical deployment of EEWs, where timely and accurate 

warnings can save lives and reduce economic losses. 

 

TABLE III 
RESULTS OF DIFFERENT MODELS ON DIFFERENT DATASETS 

Model Dataset Total TP TN FP FN Accuracy Precision MAE STD 

Random Forest 

Validation 84451 

118 83334 31 968 98.82% 79.19% 0.312 0.488 

XGBoost 140 83439 9 863 98.97% 93.96% 0.308 0.484 

LightGBM 139 82991 10 1311 98.44% 93.29% 0.333 0.513 

XGBoost Test 73355 28 72442 25 860 98.79% 52.83% 0.326 0.494 

XGBoostSMOTE 
Validation 84451 147 82112 2 2190 97.40% 98.66% 0.398 0.541 

Test 73355 49 70539 4 2763 96.23% 92.45% 0.543 0.607 

XGBoostIntensity Test 73355 43 71904 10 612 98.02% 81.13% 0.353 0.520 

B. Cross-datasets Validation 

Seismic waves produce different ground motions under 

different geologic formations and velocity models. Nonetheless, 

a common observation is that seismic intensity increases with 

higher magnitude and lower epicentral distance. Therefore, the 

intensity prediction model constructed in this work may be 

applicable to intensity prediction in other different regions. To 

further test the cross-datasets validation of the proposed model, 

we select four earthquake events from southwest China for 

evaluation. Due to the small number of datasets in China, we do 

not work on transfer learning training. The model remains the 

XGBoostIntensity model trained by using the Japanese earthquake 

data. Since the model is not further trained, this also means that 

the results may be poorer. Notably, the results show that the 

Accuracy of the Chinese transfer dataset reaches 90.28% and 

the Precision reaches 93.93% (shown as in Fig. 11). In addition, 

the MAE and STD of the Chinese transfer dataset are 0.736 and 

0.624, respectively. These test results are lower than the 

performance of the Japanese dataset. However, these results are 

without further training. The performance of the model is 

expected to be further optimized if further training is performed 

using large scale datasets from China. 

 
Fig. 11.  Histogram of predicted outcomes for the Chinese transfer dataset. 

C. Limitations 

The models proposed in this paper are all based on the 

intensity prediction with existing seismic parameters. Although 

we test the robustness of the proposed models under different 

errors. However, due to the highly random nature of 

earthquakes, the estimation results of earthquake parameters 

may still have some bias. In addition, all the tests in this paper 

are done under computer simulation, and the effects of errors 

due to signal transmission, system delay, etc. are not considered 

in this paper in terms of timeliness analysis. These factors will 

have a certain impact on the results of the proposed model. 
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Fig. 12.  (a) to (i) are the histograms of contaminated test sets No.1 to No.9, respectively. 

 

VII. APPLICATION 

In EEWs, the usual way of working is trigger, localization, 

estimation, and warning. Among them, the seismic information 

is mainly estimated by using the P wave monitoring 

information from stations near the epicenter. Usually, the 

seismic information is also predicted more accurately with time 

increasing. We simulate this process of gradually decreasing 

prediction error and test it on Japanese Application Dataset. It is 

worth noting that we more realistically reproduce the effect of 

magnitude estimation, which the underestimation of large 

earthquakes and overestimation of small earthquakes [50]-[51]. 

We add a biased small error for earthquakes with magnitude 

greater than 5.7 and a biased large error for earthquakes with 

magnitude less than 5.7. The random error added to each 

earthquake event is the same. The dataset for our simulation of 

the process of random error reduction is shown in TABLE 

V.  The errors we add for position and depth are guaranteed to 

be added in absolute values (e.g. [-0.3, -0.2]/ [0.2, 0.3] 

represents the addition of random errors of -0.3° to -0.2° or 0.2° 

to 0.3°). 

In Table VI, the overall test results of the applied dataset are 

given. The results show that the prediction error of the intensity 

keeps decreasing as the error decreases, which is basically 

consistent with the previous test results. In addition, these test 

results further show that the proposed method has strong 

robustness and generalization ability. 

 

TABLE V 
APPLYING THE DATASET TO SIMULATE THE PROCESS OF ERROR REDUCTION 

NO. Magnitude Location (°) Depth (km) 

1 
M≥5.7 [-0.5, -0.4] [-0.3, -0.2]/ 

[0.2, 0.3] 

[-10, -5]/ 

[5, 10] M<5.7 [0.4, 0.5] 

2 
M≥5.7 [-0.3, -0.2] [-0.2, -0.1]/ 

[0.1, 0.2] 

[-5, -2]/ 

[2, 5] M<5.7 [0.2, 0.3] 

3 
M≥5.7 [-0.1, 0] 

[-0.1, 0.1] [-2, 2] 
M<5.7 [0, 0.1] 

TABLE VI 
RESULTS OF DIFFERENT MODELS ON DIFFERENT DATASETS. 

Dataset TP TN FP FN Accuracy Precision 

No.1 135 19355 51 1001 94.88% 72.58% 

No.2 169 19915 17 441 97.77% 90.86% 

No.3 183 19930 3 426 97.91% 98.39% 

In addition to the overall testing of the entire Japanese 

Application Dataset, we also analyze the effect of testing each 

seismic event and epicentral distance.  Fig. 13(a) shows the 

results of the Accuracy metric for each seismic event. The 

results show that there are 53, 14, and 3 seismic events with 

Accuracy below 90% for datasets No.1, No.2, and No.3, 

respectively.  For the case of dataset No.1, the distribution of 

magnitude errors for seismic events is more spread out, and this 

reason is related to the addition of too high magnitude random 

errors. As the error decreases, the estimation accuracy 

continues to improve. Fig. 13(b) shows the estimation effect of 

the proposed model at different epicenter distances, and 

Accuracy is counted every 50km. The results show that the 

Accuracy of the proposed model have a significant decreasing 

trend at 250-300 km, 500-550 km, and 700-750 km. This reason 
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may be related to the uneven distribution of data. Overall, the 

proposed model has good performance at different magnitudes 

and epicentral distances. 

 

Fig. 13. Distribution of Accuracy with (a) magnitude and (b) epicentral 

distance. 

In addition, we use a real earthquake event of M 7.4 on 

March 16, 2022 as an example for testing the timeliness of the 

proposed model for intensity prediction. In Fig. 14(d), we give 

the distribution of true intensity and the distribution of 

predicted intensity from the model. In Fig. 14, in combination 

with the proposed Accuracy metric, stations with intensity 

prediction error ≤ 1 are regarded as true intensity. The results 

show that the predicted intensity maps converge with the true 

intensity maps as the error in the seismic parameters decreases. 

 

 
Fig. 14.  Intensity distribution of the M 7.4 event. (a), (b) and (c) are the predicted intensities under errors No.1, No.2 and No.3, respectively, and (d) is the true 

intensity. 
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We further analyze the timeliness of the model applied to 

real earthquake event. After an earthquake occurs, EEWs first 

proceed to identify the seismic phase and issue an alarm. We 

define the moment of the first station triggering the alarm as the 

original moment T0, and the time difference between the i th 

station triggering the alarm afterward and the first station 

triggering the alarm as Ti (i > 1). In this earthquake event, 

trigger difference T159 for the last intensity 5 station is 28.74 s.  

We refer to Wang’s study [52] to test the magnitude 

estimation results.  Wang [52] constructed a magnitude 

estimation method based on traditional parameters using 

waveform data from Japan. In this paper, the fitting model of 

displacement peak, magnitude and epicenter distance after the 

first arrival of seismic wave for 3s proposed by Wang is used 

for magnitude estimation.  The magnitude estimates are 

averaged over multiple stations. The formula is shown below,  

10 10 10 10log ( ) log ( ) log ( /10)d dP P c R= −        (22) 

10 10log ( )dP a M b=  +                       (23) 

where Pd is the displacement amplitude 3s after the initial 

arrival of the seismic wave, Pd10 is the displacement amplitude 

normalized to 10km, R is the epicenter distance, M is the 

magnitude, and a, b and c are the fitting coefficients. After 

Wang's test [52], a, b and c are obtained as 0.65, -5.15, and 

-0.70, respectively. 

First, we use the real epicentral distance for the test, and the 

magnitude estimation results are M 6.93, M 7.15, and M 7.31 

when 3, 4, and 6 stations are used, respectively. This result 

corresponds to the simulated dataset with reduced error.  In the 

No.1 dataset, the mean epicentral distance error is 8.91 km, and 

the magnitude estimation results are M 6.85, M 7.07, and M 

7.24 when using 3, 4, and 6 stations, respectively.  According 

to Saad's study [12], when three triggering stations are used for 

hypocenter localization, the average error of hypocenter 

location is about 2.5km. This implies that the error of the 

epicentral distance will be lower when a more advanced 

epicentral localization model is used. Therefore, we used the 

No.3 dataset for the timeliness analysis. In No.3 dataset, when 6 

stations are used, the magnitude estimation results are M 7.29 

with an estimation error of -0.11 magnitude units, respectively. 

The time T6 for the 6th triggering station is 4.47 s. Since the 

calculation of Pd requires the use of a time window of 3 s, the 

time needed to complete the magnitude estimation is 7.47 s. 

This means that the test results for the dataset of No.3 can be 

achieved 7.47 s after the first station is triggered. 

A total of 16 stations were triggered 7.47s after the first 

station was triggered. From the 17th station to the 159th station, 

a total of 62 stations are high intensity areas. The average 

trigger Ti of these 62 stations is 16.18s. This also means that the 

application of the proposed model can provide an average 

warning time of 8.71s for these high intensity areas. The 

predicted Precision of these 62 stations reaches 98.38% (61/62), 

and the MAE and STD reach 0.70 and 0.48 intensity units, 

respectively. As for the whole earthquake event, the average 

triggering Ti of the stations from 17th to 447th (431 stations) is 

41.96 s, which means that the proposed model can provide an 

average warning time of 34.49 s if the whole seismic impact 

area is considered. 

In terms of the computation time of the model, we evaluate 

the time to run the Japanese application dataset and get the test 

results. The model is run on a personal computer with an Intel 

i7-10700K processor. The results show that the run included 

three processes of loading data, loading model and predicting 

results, which took a total time of 1.02 s. This also means that 

the estimation time of the model proposed in this work for a 

single intensity is about 0.00005 s, which can satisfy the 

timeliness requirement of EEWs. 

VIII. CONCLUSION 

In this study, we introduce a streamlined machine learning 

intensity prediction model that solely depends on magnitude 

and location data for its predictions. The primary findings of 

our research are as follows: 

1. We compare the results of three machine learning 

algorithms, Random Forest, XGBoost and LightGBM, for 

intensity prediction. The results show that the XGBoost 

algorithm achieves 98.93% and 93.96% in Accuracy and 

Precision in the validation set, which is better than Random 

Forest and LightGBM, respectively. 

2. We adopt SMOTE to improve the problem of data 

imbalance. Considering the magnitude distribution of high 

intensity, we construct the intensity prediction model 

XGBoostIntensity under different magnitudes. XGBoostIntensity 

achieves 98.02% Accuracy and 81.13% Precision in the test set. 

After improving the results on the test set, we sacrifice 0.77% 

of the Accuracy and increase the Precision by 28.30%. 

3. We analyze the robustness of the model by adding random 

errors to each intensity instance. When the random errors of 

magnitude, location and depth are ±0.5, ±0.3° and ±10km, the 

Accuracy of the test set still reaches 94.91%. As the random 

errors decrease, the Accuracy of the test set reaches up to 

97.91%, which is basically the same as the original data. In 

addition, we directly apply XGBoostIntensity to four seismic 

events in the Chinese transfer dataset. The Accuracy and 

Precision of the Chinese transfer dataset reached 90.28% and 

93.93%, respectively. This indicates the cross-datasets 

potential application of the proposed model. 

4. We construct a Japanese application dataset using 466 

seismic events from the Japanese K-NET network for 

2021-2022 and analyze the timeliness and accuracy of the 

proposed model. We simulate the overestimation of large 

earthquakes and underestimation of small earthquakes in the 

magnitude estimation of EEWs and predict the intensity of the 

Japanese application dataset. The results show that in the worst 

case simulated (magnitude 0.5, location 0.3°, depth 10 km), the 

model achieves Accuracy and Precision of 94.88% and 72.58%, 

respectively, which agrees with the results of the robustness 

analysis. We test the timeliness of the proposed model using an 

occurrence of a real M 7.4 earthquake as an example. We tested 

the time required for magnitude estimation, and the magnitude 

estimation error reached -0.11 units after 7.47 s after the first 

station was triggered. The proposed model can provide an 

average warning time of 7.47 s for other high intensity areas 

compared with on-site EEWs. In addition, for the whole 

earthquake event, the proposed model can provide an average 

warning time of 34.49 s for 447 stations on average. 

5. The proposed model improves the timeliness of prediction 

compared with the existing intensity prediction methods. This 

also means that if the proposed model is applied, it is expected 
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to further improve people's escape time during earthquakes and 

better protect people's lives and properties. 
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