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Abstract 

Objective: To evaluate, across multiple sample sizes, the degree that data-driven methods result in (1) optimal cutoffs different from 

population optimal cutoff and (2) bias in accuracy estimates. 
Study design and setting: A total of 1,000 samples of sample size 100, 200, 500 and 1,000 each were randomly drawn to simulate 

studies of different sample sizes from a database ( n = 13,255) synthesized to assess Edinburgh Postnatal Depression Scale (EPDS) 
screening accuracy. Optimal cutoffs were selected by maximizing Youden’s J (sensitivity + specificity–1). Optimal cutoffs and accuracy 
estimates in simulated samples were compared to population values. 

Results: Optimal cutoffs in simulated samples ranged from ≥ 5 to ≥ 17 for n = 100, ≥ 6 to ≥ 16 for n = 200, ≥ 6 to ≥ 14 for 
n = 500, and ≥ 8 to ≥ 13 for n = 1,000. Percentage of simulated samples identifying the population optimal cutoff ( ≥ 11) was 30% 

for n = 100, 35% for n = 200, 53% for n = 500, and 71% for n = 1,000. Mean overestimation of sensitivity and underestimation of 
specificity were 6.5 percentage point (pp) and -1.3 pp for n = 100, 4.2 pp and -1.1 pp for n = 200, 1.8 pp and -1.0 pp for n = 500, 
and 1.4 pp and -1.0 pp for n = 1,000. 

Conclusions: Small accuracy studies may identify inaccurate optimal cutoff and overstate accuracy estimates with data-driven 
methods. © 2021 Elsevier Inc. All rights reserved. 
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What is new? 

Key findings 
• Optimal EPDS cutoffs identified in samples of dif- 

ferent sizes varied widely, ranging from ≥ 5 to ≥
17 for studies with n = 100 and ≥ 8 to ≥13 for 
n = 1,000. 

• Mean overestimation of sensitivity and underesti- 
mation of specificity, respectively, were 6.5 percent- 
age point (pp) and -1.3 pp for n = 100 and 1.4 pp 

and -1.0 pp for n = 1,000. 

What this adds to what is known? 

• This is the first study to use real patient data to 

estimate the degree that data-driven methods result 
in selection of inaccurate optimal cutoffs and bias 
in accuracy estimates. 

What is the implication? 

• Optimal cutoffs identified in primary accuracy stud- 
ies are often incorrect and accuracy estimates are 
often overstated. 

• Researchers should avoid making recommendations 
about cutoffs to use in practice and accuracy when 

reporting results from small single studies. 
• Clinicians should select cutoffs for specific popula- 

tions that are generated from well-conducted meta- 
analyses or identified consistently across multiple 
large primary studies. 

1. Introduction 

Depression screening tools are commonly used to iden-
tify patients with unrecognized and untreated depression
[1 , 2] . Evidence from studies on the accuracy of depression
screening tools is used to select an “optimal” cutoff for use
in practice and to estimate accuracy for distinguishing be-
tween positive and negative results using that cutoff. Many
studies on depression screening tools, however, use data-
driven approaches, by which investigators use the same
dataset to select an optimal cutoff and estimate screening
accuracy at that cutoff. Cutoffs selected in this way may
deviate substantially from a true population optimal cutoff
that would be selected if a sufficiently large or population
database were available. Additionally, accuracy estimates
generated in these studies may be optimistic compared to
what would occur in clinical practice. 

The Edinburgh Postnatal Depression Scale (EPDS) is
the most commonly used tool to screen for depression dur-
ing pregnancy and postpartum [3 , 4] . Diagnosis of depres-
sion in pregnancy and postpartum is particularly challeng-
ing, since some symptoms overlap with normal experiences
during this period, such as loss of appetite, poor sleep and
fatigue [5-7] . Some health care practitioners may not fully
understand the information provided by EPDS; different
resources suggest that cutoffs of ≥ 10 and ≥ 13 can be
used to identify women with “possible” or “probable” de-
pression [8 , 9] , but only approximately 35% and 60% of
women who score above cutoffs of ≥ 10 and ≥ 13, re-
spectively, will experience a major depressive episode, as-
suming a prevalence of 10% [10 , 11] . 

Misunderstanding about how to interpret results from
depression screening tools is compounded by results from
primary studies that suggest that different cutoffs identi-
fied as “optimal” in their studies should be used in specific
populations. These results are often generated using data-
driven analytical approaches in small samples. In many of
these studies, the abstract, which may be the only part of
the article that is read [12 , 13] , only reports accuracy results
from a single data-driven optimal cutoff rather than from
standard cutoffs. Data-driven methods that are sometimes
used for optimal cutoff selection include selecting the cut-
off that maximizes Youden’s J (sensitivity + specificity–
1), minimizes Euclidean distance (distance to the corner
of the receiver operator characteristic curve) or maximizes
diagnostic odds ratio [14] . Youden’s J is the method most
frequently used in diagnostic accuracy studies for depres-
sion screening tools. Illustrating this, we reviewed recently
published primary studies of EPDS accuracy (N partici-
pants, range = 118-807; mean = 320) and found that only
1 of 14 studies (7%) reported accuracy results for more
than one cutoff in the abstract. The remaining 13 (93%)
only reported results from the single best-performing cut-
off, which was based on maximizing Youden’s J in 11 of
the 13 (85%) studies. Cutoffs identified as optimal in the
14 studies ranged from ≥ 8 to ≥ 13. In many of the stud-
ies, when data-driven optimal cutoffs diverged from more
standard cutoffs, authors suggested that this represented a
unique optimal cutoff that should be used in the study’s
specific target population group. No studies attributed a
divergent optimal cutoff to a small sample size or to data-
driven cutoff selection methods (Appendix-eMethods1). 

We know of only four studies that have investigated the
degree to which data-driven selection of cutoff may in-
fluence diagnostic accuracy estimates [15-18] . These stud-
ies each reported that data-driven cutoff selection produces
overly optimistic estimates, particularly in small samples.
However, these studies used simulated datasets based on
hypothetical test score distributions rather than real partic-
ipant data. Thus, how widely data-driven optimal cutoffs
diverge from population-based optimal cutoffs and how bi-
ased estimates of diagnostic accuracy may be based on
actual participant data is not known for any depression
screening test, including the EPDS. 

The objectives of the present study were to illustrate
for users of evidence on depression screening tool accu-
racy, such as the EPDS, across different study sample sizes,
the degree to which study-level data-driven cutoff selec-
tion: (1) results in the selection of optimal cutoffs that
differ from the population optimal cutoff derived from a
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“population” dataset and (2) generates biased accuracy re-
sults compared to results from the population optimal cut-
off. 

2. Methods 

We used a database originally synthesized for an in-
dividual participant data meta-analysis (IPDMA) on the
accuracy of the EPDS for depression screening to form a
study population from which we simulated studies of dif-
ferent sample sizes [10] . A protocol for the present study
was uploaded to the Open Science Framework repository
prior to initiating the study (https://osf.io/qnvzp/). 

Details on methodology for the original IPDMA used in
this study are published elsewhere [10] , and are provided
in Appendix-eMethods2. 

2.1. Simulation of study samples and statistical analyses 

Unlike many other depression screening tools, EPDS
does not have a clearly recognized standard cutoff for de-
pression screening. The original validation study which in-
cluded 84 participants and 24 cases of definite or probable
major depression based on Research Diagnostic Criteria
suggested that cutoffs of ≥ 10 or ≥ 13 could be used [6] .
However, many studies report using different cutoffs be-
tween ≥ 10 and ≥ 13 to identify major depression [19 , 20] ,
with ≥ 13 being the most common [20] . A recent IPDMA
using an updated and slightly larger version of the dataset
used in the present study found that a cutoff of ≥ 11 max-
imized Youden’s J overall and for subgroups. 

For the present study, we used our IPDMA dataset to
represent a hypothetical “population” of women, and de-
fined population sensitivity and specificity values for EPDS
cutoffs to be those estimated in this population. To do
this, we analyzed the IPDMA dataset, ignoring sampling
weights as well as study-level clustering of observations.
We ignored sampling weights and clustering to have a de-
fined population from which we could draw samples that
represented simulated primary studies and to be able to use
the same analytical approach when analyzing the popula-
tion data and the simulated primary study data. As a result,
we generated accuracy estimates that differed slightly from
those reported in the full IPDMA, which used sampling
weights and study-level clustering and a slightly larger
sample. We verified that a cutoff of ≥ 11 maximized
Youden’s J for the unweighted population. 

From the population IPDMA dataset, we sampled with
replacement to generate 1,000 random samples of sample
size 100, 200, 500, 1,000 each. For each sample, we de-
fined the sample-specific optimal cutoff as the cutoff that
maximized Youden’s J in the sample. If there was a tie
in maximum Youden’s J between multiple cutoffs, we se-
lected the higher cutoff. For each sample size, across the
1,000 samples, we (1) graphically illustrated the variability
in sample-specific optimal cutoffs and the variability in ac-
curacy of the sample-specific optimal cutoffs; (2) estimated
the mean difference (bias) and associated 95% confidence
interval (CI) between sensitivity and specificity based on
sample-specific optimal cutoffs versus the population sen-
sitivity and specificity based on the population optimal cut-
off of ≥ 11, and (3) estimated the mean difference (bias)
and 95% CI for sensitivity and specificity based on a cutoff
of ≥ 11 in each sample versus the population sensitivity
and specificity also based on a cutoff of ≥ 11. CIs for the
variability in optimal cutoffs and the unweighted accuracy
estimates were computed using a one sample proportion
test with continuity correction. For all analyses, sensitiv-
ity and specificity were estimated using crude 2 × 2 table
counts. In additional analyses, we stratified results by the
optimal cutoff value identified in each sample. 

2.2. Deviations from protocol 

We initially specified that we would also compare ac-
curacy of the optimal cutoff in each sample with that of
cutoff ≥ 13, which is the cutoff most commonly used in
practice [19 , 20] . We subsequently determined that a popu-
lation optimal cutoff of ≥ 11 maximizes Youden’s J in our
IPDMA “population”, which was established in the main
IPDMA database and confirmed in the present study. Thus,
we used a cutoff of ≥ 11 only and not ≥ 13, since the
purpose was to determine how data-driven results would
diverge from similar analyses done with population data. 

3. Results 

The original IPDMA database included 49 primary stud-
ies with 13,255 participants (1,625 major depression cases,
12.3%), which constituted the “population” for the present
study. Characteristics of the primary studies included in
the IPDMA database are provided in Appendix-eTable1.
The sample sizes of the primary studies ranged from 40
to 2,634 (mean = 271, median = 190). The mean num-
ber of cases of major depression was 34 (median = 25),
and 20 studies included < 20 cases of major depression.
Frequencies of EPDS scores for cases and non-cases in
the IPDMA database are shown in Appendix-eTable2. As
shown in Appendix-eFigure1, study-specific optimal cut-
offs that maximized Youden’s J ranged from ≥ 5 to ≥ 19.
For the “population” of 13,255 participants and using a
cutoff of ≥ 11, the unweighted sensitivity and specificity
were 78.7% (95% CI: 76.6, 80.7) and 83.4% (95% CI:
82.7, 84.0). 

3.1. Variability of sample-specific optimal cutoffs in 

simulated samples 

Figure 1 shows the variability of sample-specific opti-
mal cutoffs for each sample size. Optimal cutoffs in indi-
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Fig. 1. Variability in optimal cutoffs in 1,000 simulated samples of sample size 100, 200, 500 and 1,000. 
Optimal cutoff was defined as the cutoff that maximized Youden’s J (sensitivity + specificity – 1) in the study sample. 26 out of the 4,000 

simulated samples had a tie in maximum Youden’s J, and the higher cutoff was selected as the optimal cutoff. 

Table 1. Bias in accuracy estimates (in percentage point) in 1,000 simulated samples of sample size 100, 200, 500 and 1,000 

Mean Difference (95% CI) 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Sample size = 100 Sample size = 200 Sample size = 500 Sample size = 1,000 

Sample-specific optimal 
cutoff values –
Population values with 
cutoff ≥ 11 

6.5 

(5.8, 7.2) 
-1.3 

(-1.9, -0.7) 
4.2 

(3.6, 4.7) 
-1.1 

(-1.6, -0.7) 
1.8 

(1.4, 2.1) 
-1.0 

(-1.3, -0.7) 
1.4 

(1.1, 1.6) 
-1.0 

(-1.2, -0.8) 

Sample cutoff ≥ 11 

values – Population 
values with cutoff ≥ 11 

0.0 

(-0.7, 0.8) 
0.1 

(-0.2, 0.3) 
0.2 

(-0.3, 0.8) 
0.1 

(-0.1, 0.3) 
-0.2 

(-0.6, 0.1) 
0.0 

(-0.1, 0.1) 
0.1 

(-0.1, 0.3) 
-0.1 

(-0.1, 0.0) 

Optimal cutoff refers to the cutoff that maximized Youden’s J (sensitivity + specificity – 1) in the sample. Sample values are estimated from the 
simulated samples. Population values are estimated from the full dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vidual samples ranged from ≥ 5 to ≥ 17 for n = 100, ≥
6 to ≥ 16 for n = 200, ≥ 6 to ≥ 14 for n = 500, and
≥ 8 to ≥ 13 for n = 1,000. There was a tie in maximum
Youden’s J between multiple cutoffs in 26 of the 4,000
samples. The percentage of samples that identified the true
population optimal cutoff of ≥ 11 was 30.3% (95% CI:
27.5, 33.3) for n = 100, 34.7% (95% CI: 31.8, 37.8) for
n = 200, 53.0% (95% CI: 49.9, 56.1) for n = 500, and
70.5% (95% CI: 67.6, 73.3) for n = 1,000. 

3.2. Bias from data-driven cutoff selection in simulated 

samples 

As shown in Table 1 , based on the overall mean across
1,000 samples, sensitivity based on sample-specific optimal
cutoffs was overestimated compared to the sensitivity in
the population based on the population optimal cutoff by
 

6.5 percentage point (pp) (95% CI: 5.8, 7.2) for n = 100
[i.e. mean sensitivity of optimal cutoffs in 1,000 simulated
samples of n = 100 (85.2%) – true population sensitivity
(78.7%) = 6.5 pp], 4.2pp (95% CI: 3.6, 4.7) for n = 200,
1.8 pp (95% CI: 1.4, 2.1) for n = 500 and 1.4 pp (95%
CI: 1.1, 1.6) for n = 1,000. Specificity was underestimated
by 1.3 pp (95% CI: -1.9, -0.7) for n = 100, 1.1 pp (95%
CI: -1.6, -0.7) for n = 200, 1.0 pp (95% CI: -1.3, -0.7) for
n = 500 and 1.0 pp (95% CI: -1.2, -0.8) for n = 1,000.
Figure 2 presents quartiles of the accuracy estimates for
simulated samples. 

Figure 3 and Appendix-eTable3 show that the direction
and magnitude of bias in sensitivity and specificity esti-
mates depended on the optimal cutoff identified in each
sample. For instance, with n = 100, in samples with
sample-specific optimal cutoff ≥ 5 to ≥ 8, sensitivity was
overestimated by 16.0 pp (95% CI: 14.8, 17.2), and speci-
ficity was underestimated by 19.6 pp (95% CI: -20.8, -
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Fig. 2. Boxplots of accuracy estimates of the optimal cutoff in 1,000 simulated samples of sample size 100, 200, 500 and 1,000 compared to 
the accuracy estimates of cutoff ≥ 11 in the population. 
Optimal cutoff refers to the cutoff that maximized Youden’s J (sensitivity + specificity – 1) in the study sample. Dotted horizontal line represents 
the accuracy of cutoff ≥ 11 in the population (full IPDMA dataset). Boxplots present quartiles (first quartile, median and third quartile) of accuracy 
estimates for the simulated samples. 

Fig. 3. Bias in accuracy estimates in simulated samples of sample size 100, 200, 500 and 1,000 stratified by sample optimal cutoffs. 
Optimal cutoff refers to the cutoff that maximized Youden’s J (sensitivity + specificity – 1) in the study sample. The error bars represent 95% 

confidence intervals of the bias in accuracy estimates. 

 

 

 

 

 

 

18.3). For samples with sample-specific optimal cutoffs of
≥ 14 to ≥ 17, sensitivity was underestimated by 6.3 pp
(95% CI: -8.9, -3.7), and specificity was overestimated by
10.7 pp (95% CI: 10.2, 11.2). 
As shown in Figure 4 , when sensitivity and specificity
were calculated for cutoff ≥ 11 in each sample, the mean
sensitivity and specificity were close to that of the popu-
lation values. See also Table 1 . 



142 P.M. Bhandari et al. / Journal of Clinical Epidemiology 137 (2021) 137–147 

Fig. 4. Boxplots of accuracy estimates of the cutoff ≥ 11 in 1,000 simulated samples of sample size 100, 200, 500 and 1,000 compared to the 
accuracy estimates of cutoff ≥ 11 in the population. 
Optimal cutoff refers to the cutoff that maximized Youden’s J (sensitivity + specificity – 1) in the sample. Dotted horizontal line represents the 
accuracy of cutoff ≥ 11 in the population (full IPDMA dataset). Boxplots present quartiles (first quartile, median and third quartile) of accuracy 
estimates for the simulated samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

There were two main findings of this study. First, with
very small sample sizes ( n = 100), study-specific optimal
cutoffs ranged from ≥ 5 to ≥ 17 (compared to the actual
population optimal cutoff of ≥ 11). Even with samples
of n = 1,000, optimal cutoffs ranged from ≥ 8 to ≥ 13.
Second, for samples of n = 100, mean overestimation of
sensitivity was 6.5 pp, whereas mean underestimation of
specificity was 1.3 pp. For larger samples ( n = 1,000), sen-
sitivity was overestimated, on average, by 1.4 pp and speci-
ficity underestimated by 1.0 pp. The degree and direction
of bias from population-level estimates depended on the
identified sample-specific optimal cutoff. For n = 100, for
example, individual studies that identified optimal cutoffs
from ≥ 5 to ≥ 8 overestimated sensitivity by an average
of 16.0pp; studies that identified high optimal cutoffs ( ≥
14 to ≥ 17), on the other hand, underestimated sensitivity
by 6.3 pp. 

The degree of variability identified in sample-specific
optimal cutoffs, especially with smaller sample sizes, is
concerning, because most diagnostic accuracy studies of
depression screening tools are conducted in small sam-
ples. Among the 49 studies included in the present IPDMA
database, 26 (53.1%) had sample size of < 200, 19
(38.8%) had sample size of 200 to 500, 3 (6.1%) had sam-
ple size of 501 to 1,000 and only one (2.0%) had sample
size > 1,000. A previous study examined sample sizes
and the presence of sample size calculations in 89 stud-
ies of depression screening tool accuracy, not limited to the
EPDS, and found that the median sample size was 224; 38
(42.7%) had sample size of < 200, 33 (37.1%) had sam-
ple size of 200 to 500, 11 (12.3%) had sample size of 501
to 1,000 and 7 (7.9%) had sample size of > 1,000 [21] .
Based on our findings, overall, many studies of depression
screening tool accuracy likely overestimate sensitivity with
only minor losses in specificity. A larger bias in sensitivity
estimates as compared to bias in specificity estimates is in-
tuitive, as most studies have much fewer participants with
major depression (among whom sensitivity is estimated)
than without (among whom specificity is estimated). Thus,
optimal cutoff selection in some samples can result in sub-
stantial gains in sensitivity with relatively small compensa-
tion in specificity, particularly in small samples. As shown
in the present study, however, mean differences do not cap-
ture what may occur in any given study, and depending on
the specific sample, sensitivity may be overestimated or
underestimated, sometimes substantially. 

Surveys have shown that clinicians have difficulty un-
derstanding medical statistics, including conditional prob-
abilities such as sensitivity, specificity, positive predictive
value and negative predictive value [22-24] . Thus, clini-
cians may misinterpret EPDS cutoffs with inflated sensitiv-
ity estimates from data-driven procedures as being virtually
diagnostic, and adopt such cutoffs for use in clinical prac-
tice, even when the actual positive predictive value may
be much smaller [25] . 

Clinicians who use the EPDS in their practice should
be wary of EPDS cutoff recommendations based on small
individual studies that used data-driven methods to identify
the optimal cutoff. Such cutoffs are likely to not truly be
optimal for the population of interest, and accuracy esti-
mates are likely to be overly optimistic compared to what
would be obtained in actual clinical practice. Instead, clin-
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icians should select EPDS cutoff thresholds from large,
well-conducted meta-analyses or validated across multiple
studies. In addition, clinicians may also opt to prioritize
either sensitivity or specificity in different clinical settings,
and select higher or lower thresholds, depending on their
health and financial priorities. 

The Standards for Reporting of Diagnostic Accuracy
Studies (STARD) reporting guideline recommends a pri-
ori sample size estimation for the desired precision level in
accuracy estimates [26] . Results from our study show that
setting sample size targets pre-study should also consider
variability in the optimal cutoff that may be identified and
not just variability in accuracy estimates. A previous study
that examined sample sizes in 89 studies of depression
screening tool accuracy found that only three reported a
priori sample size calculations, and none specifically con-
sidered the issue of identifying an optimal cutoff and esti-
mating accuracy in the same participant sample [21] . Au-
thors of primary studies on depression screening tool ac-
curacy could potentially use statistical methods to estimate
confidence intervals for uncertainty around the optimal cut-
off [27 , 28] . They could also employ internal validation
methods such as cross-sampling, sample-splitting and boot-
strapping to statistically adjust for the bias in accuracy esti-
mates from data-driven optimal cutoff selection [29] . These
methods, however, have not been demonstrated or tested in
the context of mental health screening. Indeed, the most ro-
bust approach for identifying optimal cutoffs and generat-
ing accurate estimates of screening or diagnostic accuracy
is through pooling large numbers of well-conducted pri-
mary studies and participants via meta-analysis, preferably
IPDMA, which can ensure that all cutoffs are available
for examination for all participants [30 , 31] . Researchers
should report accuracy data from primary accuracy stud-
ies for all possible cutoffs in 2 × 2 form, at least in ap-
pendices, to facilitate subsequent synthesis and to avoid
selective cutoff reporting bias [32] . 

As shown in our review of recent studies of the
EPDS (Appendix-eMethods1), authors of diagnostic accu-
racy studies that identify study-specific optimal cutoffs that
depart from standard cutoffs often conclude that this is ev-
idence for the need to use different cutoffs in different
populations. While this is possible, our full IPDMA of the
screening accuracy of the EPDS did not find evidence for
differential accuracy by subgroups. Since the same method
was used in this study to identify the population optimal
cutoff and the optimal cutoff in each simulated study sam-
ple, the reason why study sample optimal cutoffs diverge,
particularly in very small samples is due to the sampling
distribution of the mean in relatively small samples. Hence,
authors of individual studies should avoid recommending
specific cutoffs for specific populations unless the studies
use very large samples, or the findings are replicated con-
sistently across multiple studies. 

Strengths of this study include the use of real-participant
data instead of simulated data and hypothetical distribu-
tional assumptions and the large population from which
we were able to draw samples. There are also limitations
to consider. Our results on the bias in accuracy estimates
is based on the analysis of a large dataset on depression
screening accuracy of the EPDS, and the results may be
different for a different test or study sample. Another pos-
sible limitation is that we only used Youden’s J to select
optimal cutoffs. It is the most commonly used method, by
far, in depression screening accuracy studies and performs
similarly to other indices, such as the Euclidean distance
[14] . It is possible, however, that results might slightly dif-
fer for an alternative method for selecting optimal cutoffs.

5. Conclusions 

We found that data-driven cutoff selection methods of-
ten result in optimal cutoffs that differ from the population
optimal cutoff and in accuracy estimates that are overly op-
timistic. Researchers who conduct primary studies of diag-
nostic accuracy should calculate sample sizes a priori and
describe related limitations; they should avoid recommend-
ing cutoffs for population subgroups when sample sizes are
not sufficiently large; and should report results completely.
Clinicians should be aware that cutoffs and accuracy from
single studies may not reflect what will occur in prac-
tice and should select a cutoff from well-conducted meta-
analyses or identified consistently across multiple studies. 
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