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Abstract

Stability condition is a more restrictive constraint that leads to unnecessary small-time steps with respect
to the accuracy and results in computational time wastage. We propose a node by node adaptive time
scheme to relax the stability constraint enabling a larger global time step for all the nodes. A nonlin-
ear procedure for optimising both the schemes in time and space is proposed in view of increasing the
numerical efficiency and reducing the computational time. The method is based on a four-parameter
family of schemes we shall tune in function of the physical data (velocity, diffusion), the characteristic
size in time and space, and the local regularity of the function leading to a nonlinear procedure. The
a posteriori strategy we adopt consists in, given the solution at time tn, computing a candidate solution
with the highest accurate schemes in time and space for all the nodes. Then, for the nodes that present
some instabilities, both the schemes in time and space are modified and adapted in order to preserve the
stability with a large time step. The updated solution is computed with node-dependent schemes both in
time and space. For the sake of simplicity, only convection-diffusion problems are addressed as a proto-
type with a two-parameters five-points finite difference method for the spatial discretisation together with
an explicit time two-parameters four-stages Runge-Kutta method. We prove that we manage to obtain
an optimal time-step algorithm that produces accurate numerical approximations exempt of non-physical
oscillations.

Keywords: optimal time step, stability, finite difference method, MOOD, high-order, non-stationary
convection- diffusion

1. Introduction

Time parameters used in explicit schemes for non-stationary problems are strongly constrained by the
stability condition. Indeed, for a given spatial parameter, the time parameter would usually be smaller
than the one required to guarantee a balanced accuracy between time and space. Stability condition
is a more restrictive constraint that leads to unnecessary small-time steps with respect to the accuracy
and results in computational time wastage. Consequently, the design of explicit numerical schemes that
mitigate the stability condition to reduce the computational effort while preserving the global accuracy is
a critical issue.

Very little attention has been paid on the time discretisation and a nonlinear dynamical procedure for
optimising both the schemes in time and space is desirable to increase the numerical efficiency. Most of
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the stabilisation procedures mainly address the scheme in space whereas the scheme in time is merely
discretised with a Runge-Kuta (RK) method or its Strong Stability Preserving (SSP) version [26, 27].
Nevertheless, some authors have addressed this issue. Several traditional numerical methods were revis-
ited in order to articulate space and time schemes together, aiming to increase the allowable time step.
Bourchtein [5] constructed an explicit central difference method of second order applied to the one- and
two-dimensional advection equations based on the generalised leap-frog type method with the main goal
of increasing the allowable time step, with some deterioration in the accuracy of the solution. Chadha and
Madden [7] consider the numerical solution of a linear time dependent advection–diffusion problem by
an implicit two-weight, three-point central finite difference scheme. They extend the scheme proposed
by them in [8], to incorporate an optimal time step selection algorithm for the method. The resulting
method, based on optimal values of weights and optimal time-stepping, is of fifth-order in space, and
third-order in time.

Other numerical schemes are based on prediction-correction techniques [25]. In [4], the authors
present an adaptive finite element scheme for the advection-reaction-diffusion equation based on a stabi-
lized finite element method combined with a residual error estimator. The adaptive process corrects the
meshes allowing to capture boundary and inner layers very sharply and without significant oscillations.
In [17], the authors have developed some a posteriori error estimates using a stabilized scheme combined
with a shock-capturing technique to control the local oscillations in the crosswind direction. In [28], the
author has introduced an error estimate for the advection–diffusion equation based on the solution of local
problems on each element of the triangulation. Artificial compression method (ACM) based filter scheme
is also investigated in [29]. The spatially fourth-order (or higher non-dissipative) scheme in space is used
at all times but additional numerical dissipation is made at the shock layers to control the stability.

The crucial point lies on the confrontation between the discretisations in space and time: the eigen-
values associated to the space scheme have to fit into the stability domain of the RK scheme. Several pa-
rameters play a major role in the trade-off between accuracy and stability. On the one hand, the scheme in
space together with the Péclet number determine the eigenvalues distribution in the complex plane. On the
other hand, the RK scheme stability region and the accuracy is characterised by the Butcher tableau [6].
At last, the stability condition between the two schemes is controlled by the Courant–Friedrichs–Lewy
(CFL) condition depending on the time discretisation parameter ∆t.

In this study, we consider a two-parameter family for the finite difference schemes in space that
characterize the spectrum and the accuracy while the time discretization is a two-parameter family by
considering a four-stage RK method which we assume to be at least second-order. The global method
is a four-parameter family we shall tune in function of the physical data (velocity, diffusion) and the
characteristic size in time and space. A critical issue is the spatial dependency of the time scheme due to
the cell-Péclet number variation in space. Indeed, velocity and diffusion may depend on space variable
leading to a stability condition that varies spatially. The key idea then is to change the time scheme at
each node, i.e. the Butcher’s tableau values, to relax the stability constraint enabling a larger global time
step for all the nodes. To put in a nutshell, we do not adapt the time step for each node using the same
time scheme, but we adapt the time scheme, node by node, to use the same time step.

The design of the schemes in space has to respect some basic principles in order to produce an eligible
blending. First, we only consider five-point finite difference methods involving the same centred stencil,
but the coefficients are node dependent. Similarly, the four-stage RK scheme is also node dependent, and
it is mandatory that the four sub-steps are the same for all the nodes for the sake of compatibility, leading
to some additional constraints in the design of the Butcher’s tableau.

Even for linear problems, a nonlinear routine is mandatory to control the over- and under-shooting
in the vicinity of points where the solution presents large gradients. Technologies such as MUSCL or
WENO [19, 20], among the most popular, have been developed for half a century and manage to effi-
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ciently reduce or eliminate the numerical instabilities, namely to avoid the oscillations near the discon-
tinuities and the extrema points. More specifically, for the convection-diffusion problems, different ap-
proaches have been considered: variable-order non-oscillatory scheme (VONOS), hybrid-linear parabolic
approximation (HLPA), sharp and monotonic algorithm for realistic transport (SMART), weighted-average
coefficient ensuring boundedness (WACEB), convergent and universally bounded interpolation scheme
for the treatment of advection (CUBISTA) and an adaptive bounded version of the QUICK with esti-
mated streaming terms (QUICKEST) called ADBQUICKEST (see references for these methods in [12]).
The numerical solution obtained with these schemes is at least second-order accurate in regions where
the solution is smooth enough, but retains the first-order approximation in regions where the solution
presents large gradients for the sake of stability.

In the last decade, the a posteriori paradigm has been developed to prevent the numerical solution
from creating non-physical oscillations: the so-called Multidimensional Optimal Order Detection Method
(MOOD) method [9, 10]. The principle consists in building a candidate solution with the highest order
scheme in space. Then the guess solution admissibility is analysed using detectors to check some physical
properties of non-physical oscillations. The nodes that present non-compliance’s solution are tagged, and
the numerical scheme is only altered for that points by reducing the scheme order (basically adding more
diffusion or reducing the polynomial reconstruction degree). The numerical approximation for the cured
nodes and their neighbours is computed again to eliminate the oscillations.

The goal of this the paper is the design of a node by node adaptive time scheme to release the stability
condition coupling with the a posteriori paradigm, to provide the optimal choice of the time and space
schemes, that enables to compute a stable solution with the largest time step. To present our strategy,
we deal with the one-dimension linear convection-diffusion problem since all the important ingredients
are already addressed in this simple scalar equation and enable to highlight the connections between
the scheme in time and the scheme in space. The organisation of the paper is the following. We briefly
present in Section 2 the spectral analysis of the five-point finite difference method focusing on the spectral
curves description with respect to the two free parameters. Section 3 is dedicated to the four-stage RK
method where we analyse the impact of the two free parameters on the stability region. The stability
of the time and space schemes combination is carried out in Section 4 where we determine the optimal
time step for each scenario. Finally, Section 5 presents our a posteriori method to design a node by node
optimal scheme both in time and space. At last in Section 6 conclusions and perspectives are drawn.

2. Discrete convection-diffusion operator analysis

This section is dedicated to the spectrum of the discrete convection-diffusion operator we shall use in
our stability analysis. Let φ = φ(x) be a smooth 1-periodic function defined in R, i.e., φ(x + 1) = φ(x).
We define the convection-diffusion operator

E[φ] = −uφ′ + κφ′′, (1)

where u ≥ 0 and κ ≥ 0 are the convective and diffusive coefficients, respectively. We restrict the study
case to the bounded domain [0, 1] by applying a periodic condition. Let I ∈ N and ∆x = 1/I. We denote
xi = i∆x, i ∈ Z, a uniform discretisation of the real axis and set Ψ = (ψi)i∈Z a vector with an infinite
number of real value entries. Periodicity yields ψi+I = ψi, for all i ∈ Z, hence the relevant data is only
given by components ψi, i = 1, . . . , I. We shall use the same notation Ψ = (ψi)I

i=1 to denote both the
whole vector and its finite representation, being the other components given by periodicity.
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2.1. Five-point discrete schemes
A generic conservative five-point numerical scheme is defined by an ordered list of 5 coefficients

which we indicate with

E = (a−2, a−1, a0, a1, a2), a j ∈ R, j = −2, . . . , 2, (2)

where the coefficients satisfy the null summation constraint for the sake of conservation

a−2 + a−1 + a0 + a1 + a2 = 0.

For any I-periodic vector Ψ = (ψi)i∈Z, the E-scheme applied to Ψ provides the vector EΨ given component-
wise by

(EΨ)i = a−2ψi−2 + a−1ψi−1 + a0ψi + a1ψi+1 + a2ψi+2, i ∈ Z.

Periodicity of Ψ yields that EΨ also satisfies the periodicity property hence the finite vector representation
EΨ = ((EΨ)i)I

i=1 completely describes the whole vector. We highlight the four particular cases

E1 =

(
1

12
,−

2
3
, 0,

2
3
,−

1
12

)
, E2 =

(
−

1
12
,

4
3
,−

5
2
,

4
3
,−

1
12

)
,

E3 =

(
−

1
2
, 1, 0,−1,

1
2

)
, E4 = (1,−4, 6,−4, 1),

that provide approximations for the first-, second-, third-, and fourth-order derivatives, respectively. De-
noting Ψ = (φ(xi))i∈Z for any regular 1-periodic function φ = φ(x), consistency errors read

(E1Ψ)i = φ(1)(xi) + O(∆x4), (E2Ψ)i = φ(2)(xi) + O(∆x4),

(E3Ψ)i = φ(3)(xi) + O(∆x2), (E4Ψ)i = φ(4)(xi) + O(∆x2).

The fourth-order five-point discretisation of operator (1) is given by the optimal combination

E = −
u

∆x

(
E1 −

E2

Pe

)
,

where Pe = u ∆x
κ

represents the cell Péclet number. Instabilities may appear and one has to damp the
oscillations by using third- and fourth-derivative approximations. To this end, we consider more general
five-point conservative schemes of the form

E = E(θ3, θ4, Pe) = −
u

∆x

(
E1 −

E2

Pe
+ θ3E3 + θ4E4

)
, (3)

parameterised by θ3, θ4 ∈ R, and Pe. Substituting the expressions of E1, E2, E3, and E4, scheme E reads

E(θ3, θ4, Pe) = −
u

∆x

(
(12θ4 − 6θ3 + 1)Pe + 1

12Pe
,−

(12θ4 − 3θ3 + 2)Pe + 4
3Pe

,

12θ4Pe + 5
2Pe

,−
(12θ4 + 3θ3 − 2)Pe + 4

3Pe
,

(12θ4 + 6θ3 − 1)Pe + 1
12Pe

)
. (4)

Remark 1. If u = 0 and κ , 0 (pure diffusive problem), Pe = 0 and expression (4) should be rewritten
specifically for u = 0 taking into account θ3 and θ4. If κ = 0 and u , 0 (pure convective problem) we will
write Pe = +∞, and expression (4) should be rewritten for κ = 0 taking again into account θ3 and θ4.
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2.2. Spectra
Due to the periodicity assumption, scheme (2) results in a circulant square matrix A of order I with

entries

ai j =


a j−i if | j − i| ≤ 2
a j−i−I if | j − i| ≥ I − 2
0 otherwise.

Schematically, we have

A =



a0 a1 a2 0 0 0 0 · · · 0 a−2 a−1

a−1 a0 a1 a2 0 0 0 · · · 0 0 a−2

a−2 a−1 a0 a1 a2 0 0 · · · 0 0 0
0 a−2 a−1 a0 a1 a2 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

a2 0 0 0 0 0 0 · · · a−1 a0 a1

a1 a2 0 0 0 0 0 · · · a−2 a−1 a0


.

The eigenvectors of the circulant matrices associated to schemes E1, E2, E3, and E4 are the same, hence
they also are the eigenvectors of the circulant matrix associated to scheme E and independent of θ3, θ4,
and Pe. They are given by

v(i) =
[
1 wi w2

i · · · wI−1
i

]
, i = 1, . . . , I,

with wi = exp(2πi(i∆x)) and i the unit imaginary number [13]. Identifying the discrete scheme E(θ3, θ4, Pe)
with the respective circulant matrix A(θ3, θ4, Pe), the eigenvalue λi(E(θ3, θ4, Pe)) associated to v(i) depends
on coefficients θ3, θ4, and Pe. Taking into account scheme (3) we get

λi(E(θ3, θ4, Pe)) = −
u

∆x

(
λi(E1) −

λi(E2)
Pe

+ θ3λi(E3) + θ4λi(E4)
)
. (5)

The eigenvalues for the four particular operators read:

• λi(E1) = i sin(2πi∆x)
(
1 −

1
3

{
cos(2πi∆x) − 1

})
∈

[
−i

4
3
, i

4
3

]
,

• λi(E2) =
(

cos(2πi∆x) − 1
)(

2 −
1
3

{
cos(2πi∆x) − 1

})
∈

[
−

16
3
, 0

]
,

• λi(E3) = 2i sin(2πi∆x)
(

cos(2πi∆x) − 1
)
∈ [−2i, 2i],

• λi(E4) = 4
(

cos(2πi∆x) − 1
)2
∈ [0, 16].

Letting I → +∞, we obtain the continuous parameterised spectral curve

λ(s; θ3, θ4, Pe) =
u

∆x
ρ(s; θ3, θ4, Pe), s ∈ [0, 1], (6)

with
ρ(s; θ3, θ4, Pe) = x(s; θ3, θ4, Pe) + iy(s; θ3, θ4, Pe) (7)

5



where

x(s; θ3, θ4, Pe) =
1

Pe

{
cos(2πs) − 1

}[
2 −

{
cos(2πs) − 1

}(1
3

+ 4Peθ4

)]
, (8)

y(s; θ3, θ4, Pe) = − sin(2πs)
[
1 −

{
cos(2πs) − 1

}(1
3
− 2θ3

)]
. (9)

Remark 2. It is worth noting that the spectral curve shape is characterised by function ρ(s; θ3, θ4, Pe)
while u

∆x is a scaling factor we shall blend with the time step parameter to produce a CFL-like coefficient.

2.3. Centered and upwind schemes
The centered scheme corresponds to θ3 = 0 and θ4 = 0 and provides the optimal fourth-order of

accuracy. The corresponding scheme for finite and positive Pe reads

Ec = −
u

∆x

(
1 + Pe
12 Pe

,−
4 + 2Pe

3 Pe
,

5
2 Pe

,−
4 − 2Pe

3 Pe
,

1 − Pe
12 Pe

)
.

We present in Table 1 the spectral curves for the centered scheme when Pe ∈]0,+∞[ and also for Pe = 0
and Pe = +∞.

Table 1: Spectral curves — centered scheme: θ3 = 0 and θ4 = 0.

Pe spectrum curve λ ρc

]0,+∞[

λ(s; Pe) =
u

∆x
(xc(s; Pe) + iyc(s; Pe))

xc(s; Pe) =
1

Pe
(cos(2πs) − 1)

(
2 −

1
3

(
cos(2πs) − 1

))
yc(s; Pe) = − sin(2πs)

(
1 −

1
3

(
cos(2πs) − 1

))
0

0
A

B

C

0

λ(s) =
κ

∆x2
(xc(s) + iyc(s))

xc(s) = (cos(2πs) − 1)
[
2 −

1
3

(cos(2πs) − 1)
]

yc(s) = 0
0

0
AB

+∞

λ(s) =
u

∆x
(xc(s) + iyc(s))

xc(s) = 0

yc(s) = − sin(2πs)
[
1 −

1
3

(
cos(2πs) − 1

)]
0

0

A

We define the weak upwind scheme by cancelling coefficient a2 since we have assumed u ≥ 0.
Hence the following relation has to be satisfied

θ4 +
θ3

2
=

Pe − 1
12 Pe

. (10)
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In order to get the optimal accuracy, we set θ3 = 0 leading to a third-order and deduce by relation (10)
that θ4 = Pe−1

12Pe . The scheme for finite and positive Pe then reads

Ew = −
u

∆x

(
1
6
,−

Pe + 1
Pe

,
Pe + 4

2Pe
,

Pe − 3
3Pe

, 0
)
.

We present in Table 2 the spectral curves for the weak-upwind scheme for Pe ∈]0,+∞[ and also for
Pe = 0 and Pe = +∞.

Table 2: Spectral curves — weak upwind scheme: θ3 = 0, θ4 = Pe−1
12Pe .

Pe spectrum curve λ ρw

]0,+∞[

λ(s; Pe) =
u

∆x
(xw(s; Pe) + iyw(s; Pe))

xw(s; Pe) =
1

Pe
(cos(2πs) − 1)

(
2 −

Pe
3

{
cos(2πs) − 1

})
yw(s; Pe) = − sin(2πs)

(
1 −

1
3

(cos(2πs) − 1)
)

0

0
A

B

C

0

λ(s) =
κ

∆x2
(xw(s) + iyw(s))

xw(s) = 2
(

cos(2πs) − 1
)

yw(s) = 0
0

0
AB

+∞

λ(s) =
u

∆x
(xw(s) + iyw(s))

xw(s) = −
1
3

(cos(2πs) − 1)2

yw(s) = − sin(2πs)
(
1 −

1
3

(cos(2πs) − 1)
)

0

0
A

B

C

The strong upwind scheme consists in cancelling both coefficients a1 and a2 leading to the second-
order full upwind three-point scheme with

θ3 =
3 − Pe
3 Pe

and θ4 =
3 Pe − 7

12 Pe
.

The corresponding scheme for finite and positive Pe reads

Es = −
u

∆x

(
Pe − 2

2Pe
,−

2Pe − 2
Pe

,
3Pe − 2

2Pe
, 0, 0

)
.

We present in Table 3 the spectral curves for the strong upwind scheme when Pe ∈]0,+∞[ and also for
Pe = 0 and Pe = +∞.

Table 4 reports the relevant points of the spectral curves of the centered, weak upwind and strong
upwind schemes marked on Tables 1, 2 and 3, respectively.

We compare in Table 5 the spectral curves for the centered, weak upwind, and strong upwind schemes
when Pe = 1, 5, 30. We observe the similarity between centered and weak upwind space discretisations.
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Table 3: Spectral curves — strong upwind scheme: θ3 = 3−Pe
3Pe , θ4 = 3Pe−7

12Pe .

Pe spectrum curve λ ρs

]0,+∞[

λ(s; Pe) =
u

∆x
(xs(s; Pe) + iys(s; Pe))

xs(s; Pe) =
1

Pe
(cos(2πs) − 1)

(
2 − (Pe − 2)

{
cos(2πs) − 1

})

ys(s; Pe) = − sin(2πs)
(
1 −

Pe − 2
Pe

{
cos(2πs) − 1

})

]0, 1[

0

0
A

B

C

[1,+∞[

0

0
A

B

C

0

λ(s) =
κ

∆x2ρ(s) =
κ

∆x2
(x(s) + iy(s))

xs(s) = 2 cos(2πs)
(

cos(2πs) − 1
)

ys(s) = −2 sin(2πs)
(

cos(2πs) − 1
)

0

0
A

B

C

+∞

λ(s) =
u

∆x
ρ(s) =

u
∆x

(xs(s) + iys(s))

xs(s) = −(cos(2πs) − 1)2

ys(s) = − sin(2πs)[2 − cos(2πs)]
0

0
A

B

C

To highlight the interest of considering upwind schemes in order to improve the stability for large
Péclet number, we present the extreme situation of a pure steady-state convective problem E[φ] = 0 with
u = 1 and κ = 0 (Pe = +∞) — benchmark 1. The manufactured solution is given by

φ(x; δ) =
1
π

(
1 −

2
π

arccos((1 − δ) sin(
π

2
(2x − 1)))

)(
arctan(

1
δ

sin(πx))
)
, (11)

where parameter δ controls the roughness of the function. In the present case, we take δ = 0.1 and carry
out the numerical simulation with I = 25. We display in Figure 1 the shape of the solution and report
oscillations for the centered scheme approximation while the weak and strong upwind schemes eliminate
the numerical artefact.
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Table 4: Relevant points of the spectral curves

Pe scheme A B C

]0,+∞[
centered

weak upw (0, 0)
(−2

√
6−1

2Pe , 1.37)

(−0.5 − 2.45
Pe , 1.37)

(− 16
3Pe , 0)

(−4(3+Pe)
3Pe , 0)

]0, 1[

[1,+∞[
strong upw

( 4(1−Pe)
Pe , 0)

(0, 0)

(xs,B,1, ys,B,1)a

(xs,B,2, ys,B,2)b

( 1
Pe(Pe−2) ,

(Pe−1)
√

3−2Pe
Pe(Pe−2) )

( 4(1−Pe)
Pe , 0)

0

centered

weak upw

strong upw

(0, 0)

(−5.33, 0)

(−4, 0)

(1.5, 2.6)

–

–

(4, 0)

+∞

centered

weak upw

strong upw

(0, 1.37)

(0, 0)

(0, 0)

–

(−0.5, 1.37)

(−1.87, 2.2)

–

(−1.33, 0)

(−4, 0)

a xs,B,1 =
(3−Pe+

√
ξ)(1+Pe−

√
ξ)

4Pe(Pe−2) , ys,B,1 =

√
−2(2Pe−3)−2(Pe−1)

√
ξ(3Pe−3−

√
ξ)

4Pe(Pe−2) ,

b xs,B,2 =
(3−Pe−

√
ξ)(1+Pe+

√
ξ)

4Pe(Pe−2) , ys,B,2 =

√
−2(2Pe−3)+2(Pe−1)

√
ξ(3Pe−3+

√
ξ)

4Pe(Pe−2) ,
where ξ = 3Pe2 − 10Pe + 9.

0 1

−0.3

0

0.3

x

φ

0 1

−0.3

0

0.3

x

φ

0 1

−0.3

0

0.3

x

φ

Figure 1: Exact ( ) and approximate ( ) solutions for benchmark 1: centered (left), strong (middle), and weak (right).

3. Time-dependent convection-diffusion equation

We now turn to the time-dependent problem, considering the one-dimensional, 1-periodic in space,
convection-diffusion equation. We seek function φ = φ(x, t) solution of

φt = E[φ] + f , in Ω × (0, tf], (12)

where f = f (x, t) is a regular, 1-periodic in space, source term, and tf > 0 is the final time. Initial
condition is prescribed with φ(x, 0) = φ0(x), x ∈ Ω, while the periodic condition reads φ(0, t) = φ(1, t),
t > 0.

Applying the method of lines, we seek for an approximation of the solution of the ordinary differential
system of equations

dΦ

dt
= AΦ + F, in (0, tf], (13)
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Table 5: Spectral curves for different values of Pe for the three pairs θ3, θ4 cases.

scheme θ3 θ4 spectra

centered
(fourth-order) 0 0

−6 −4 −2 0

−2

0

2
Pe = 1
Pe = 5

Pe = +∞

weak upwind
(third-order) 0 Pe−1

12Pe

−6 −4 −2 0 2 4

−2

0

2
Pe = 1
Pe = 5

Pe = +∞

strong upwind
(second-order)

3−Pe
3 Pe

3 Pe−7
12 Pe

−6 −4 −2 0 2 4

−2

0

2
Pe = 0.6
Pe = 1
Pe = 5

Pe = +∞

where vector Φ = Φ(t) = (φi(t))I
i=1, φi(t) ≈ φ(xi, t), and A = A(θ3, θ4, Pe) is the circulant matrix associated

to the scheme parameterised with θ3, θ4, and Pe. On the other hand, F = F(t) = ( fi(t))I
i=1, fi(t) = f (xi, t),

while the initial condition is given by φi(0) = φ(xi, 0).

3.1. Time discretisation
We aim at designing a multi-stage Runge-Kutta (RK) method to compute numerical approximations

in time that provides the better trade-off between stability, accuracy, and positivity taking into account
the cell Péclet number Pe and the parameterisation of the spatial scheme with respect to θ3 and θ4.

Let N be a positive integer and (tn)N
n=0 the discrete times. We consider the uniform subdivision tn =

n∆t, n = 0, . . . ,N, with the time step ∆t = tf
N . The generic s-stage Runge-Kutta method to solve the initial

10



value ODE system (13) is given by

Φn, j = Φn + ∆t
s∑
`=1

a j`K
n,`,

Φn+1 = Φn + ∆t
s∑

j=1

b jK
n, j,

Kn, j = AΦn, j + F(tn, j), j = 1, . . . , s,

where Φn = (φn
i )I

i=1, φn
i ≈ φ(xi, tn), and Φn, j = (φn, j

i )I
i=1, φn, j

i ≈ φ(xi, tn, j), with tn, j = tn + ∆tc j, are the
intermediate time sub-steps.

We store the entries (a j`), (b j), and (c j) in matrix ABT ∈ Rs×s, vectors bBT ∈ Rs and cBT ∈ Rs

respectively, presented in a table called Butcher tableau:

cBT ABT

bBT
=

c1 a11 · · · a1s
...

...
...

cs as1 · · · ass

b1 · · · bs

.

Notice that the explicit Runge-Kutta is achieved if ai j = 0 for i ≤ j.
Equation (13) leads to the uncoupled linear differential system

dφ̃i

dt
= λi(θ3, θ4, Pe)φ̃i + f̃i, φ̃i(0) = φ̃0

i , i = 1, . . . , I, (14)

taking into account the circulant matrix A eigenvalues given by equation (5), where φ̃i = φ̃i(t) and f̃i =

f̃i(t) are the projections of φi and fi, respectively, on the eigenbasis.
To deal with the stability of the Runge-Kutta scheme, we consider the homogeneous problem deriving

from (14), by cancelling the source term f̃i. Let zi = ∆tλi(θ3, θ4, Pe). The s-stage order p explicit Runge-
Kutta scheme for the homogeneous equation associated with equation (14) reads

φ̃n+1
i = Rps(zi; wp+1, . . . ,ws)φ̃n

i , with Rps(z; wp+1, . . . ,ws) = 1 +

p∑
k=1

zk

k!
+

s∑
k=p+1

wkzk, z ∈ C, (15)

where Rps is the polynomial transfer function and wk ∈ R, k = p + 1, . . . , s, stand for the free parameters
when p < s. No free parameters are available if s = p and we just denote Rp(z) ≡ Rpp(z; ) for the sake
of simplicity. We recall that stability scheme is achieved when the complex values z are such that the
absolute value of polynomial Rps is lower than one and the set

SRps(wp+1, . . . ,ws) = {z ∈ C : |Rps(z; wp+1, . . . ,ws)| < 1}, (16)

characterises the absolute stability region [15]. In addition, for s = p, we denote SRp ≡ SRpp.
As an example, we plot in Figure 2 the stability regions for three classical schemes: (i) SR2 — order 2

with w3 = w4 = 0, (ii) SR3 — order 3 with w3 = 1
6 , w4 = 0, and (iii) SR4 — order 4 with w3 = 1

6 , w4 = 1
24 .

3.2. Design of Optimal Absolute stability regions
The goal is to design an efficient explicit Runge-Kutta method allowing step sizes as large as possible,

still preserving the linear stability. The key idea of the optimisation of Runge-Kutta methods for tem-

11
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Figure 2: Stability regions of classical Runge-Kutta methods RK2, RK3, and RK4.

poral integration is to determine the parameters that yield both the largest stability limit and the highest
accuracy (expressed in terms of dissipation and dispersion). In [16], the authors focus on constructing
a stability polynomial which allows the largest absolutely stable step size and corresponding Runge -
Kutta method (number of stages and Butcher tableau) for a given problem when the spectrum of the
initial value problem is known. They formulated a stability optimisation problem and constructed an
algorithm based on convex optimisation techniques. They considered a global convergence in the case
that the order of approximation is one and the spectrum encloses a star-like region. Their optimality
criterium is the stability of the method. Ait-Haddou in [3] used the theory of polar forms of polynomials
to obtain sharp bounds on the radius of the largest disc (absolute stability radius), and on the length of the
largest possible real interval (parabolic stability radius) to be inscribed in the stability region associated
to the stability polynomial of an explicit Runge-Kutta method. Schlegel et. al. [22] constructed a multi-
rate time-step integration method for the convection equation. The method decouples different physical
regions so that the time step size constraint becomes a local instead of a global restriction. Moreover,
Schlegel introduced a generic recursive multirate Runge-Kutta scheme of third order accuracy. In [18],
the author developed an optimization of the explicit two-derivative sixth-order Runge–Kutta method in
order to obtain low dissipation and dispersion errors. The method depends on two free parameters, used
for the optimisation and the spatial derivatives are discretized by finite differences and Petrov–Galerkin
approximations.

In this study, we focus on 4-stage RK schemes (s = 4) at least second-order (p ≥ 2) as a guideline for
a more general situation. As indicated by Table 5, the shape of spectral curve s → λ(s; θ3, θ4, Pe) highly
depends on the cell Péclet number and the parameters values. On the other hand, stability regions are
controlled by w3 and w4 parameters and should be adapted in function of the spectrum curve to optimally
embedded the curve into SRps(w3,w4). Such an optimisation problem is almost intractable due to the high
non-linearity involved in the construction of the functional to minimise and we observe there exist three
major scenarios: (A) the spectral curve is almost vertical, (B) almost horizontal, and (C) an intermediate
case (see Table 5). Consequently, we aim to determine two absolute stability regions corresponding to
the two extreme scenarios.

12



3.2.1. The imaginary axis
Scenario (A) takes place for low diffusion schemes where the spectral curve is getting closer to the

vertical axis as long as the Péclet number increases. We also deal with the fourth-order centered scheme
where the spectrum lies “near” the left of the imaginary axis. Consequently, one has to design a RK
scheme by seeking real constants w3 and w4 such that the stability region includes the largest segment of
the imaginary axis centred at the origin.

The solution is given by the following optimisation problem

max
w3,w4∈R

{
η; [−ηi, ηi] ⊂ SR24(w3,w4)

}
,

but no analytical solution can be exhibited. Nevertheless, in [15], the authors present a solution of
the optimal problem when one maximises η for the three-parameters functional SR14(w2,w3,w4) (which
contains the particular case SR24(w3,w4), since we have one more free parameter). It is shown that
polynomial

P4(z) = 1 + z +
5
9

z2 +
4

27
z3 +

4
81

z4

provides the best largest segment of the imaginary axis with ηmax = 3.
We plot in Figure 3 the two stability regions associated to the popular RK4 scheme and the optimal

solution proposed in [15]. We observe that the RK4 scheme provides an excellent approximation with
ηmax = 2

√
2, [15]. Of course, the optimal case would provide a slightly bigger ηmax, but we consider that,

for our application, the RK4 is an excellent candidate for the first scenario.

−3 −2 −1 0 1

−3

−2

−1

0

1

2

3 P4

SR4

Figure 3: Stability region associated to polynomials P4 and R4.

3.2.2. The real axis
Scenario (B) concerns numerical schemes with large diffusion characterised by low Péclet numbers.

Therefore, we seek real constants w3 and w4 such that the stability region includes the largest segment of
the negative real axis starting at the origin. An additional difficulty is that the stability region may not be
a simply connected region as exemplified in Figure 4. Consequently, we only consider the first connected
region which contains the origin as the effective stability region. There are also stabilized explicit Runge
- Kutta methods as, for example, Runge - Kutta - Chebyshev methods (RKC) dedicated to extended real
stability intervals and useful for semi-discrete parabolic problems. A second-order RKC method was
initially proposed by van der Houwen and Sommeijer [14] and a family of second- and fourth- order

13



Orthogonal - Runge - Kutta - Chebyshev methods (ROCK) were proposed by Abdulle and Abdulle and
Medovikov, [1, 2] but as we said these methods are based on Runge - Kutta and for our purposes, we
only deal with original Runge - kutta.

−15 −10 −5 0

−3

0

3 w3 = 0.08 w4 = 0.006
w3 = 0.0831 w4 = 0.0041
w3 = 0.073 w4 = 0.003

Figure 4: Stability regions for different values of w3 and w4.

Riha, in [21], proved that the optimal stability polynomial R̄ps(z) of order p and degree s

R̄ps(z; w̄1, . . . , w̄s) = 1 +

p∑
k=1

zk

k!
+

s∑
k=p+1

w̄kzk

such that
|R̄ps(z; w̄1, . . . , w̄s)| ≤ 1, z ∈ [−ζ, 0],

is unique and satisfies the so-called ripple property:

Property 1 (ripple property). Polynomial Rps(z; w1, . . . ,ws) satisfies the ripple property, if and only if,
there exist s − p + 1 points x0 < x1 < . . . < xs−p < 0, with x0 = −ζmax, such that

Rps(xi; w1, . . . ,ws) = −Rps(xi+1; w1, . . . ,ws), i = 0, 1, . . . , s − p − 1,
|Rps(xi; w1, . . . ,ws)| = 1, i = 0, 1, . . . , s − p.

There are no explicit analytic expressions for the optimal s − p + 1 coefficients wk, k = p + 1, . . . , s, but
the ripple property has been used to construct approximations to the optimal stability polynomial Rps(z)
as proposed for example in [15, 23], where the authors show that the optimal bound ζmax depends on s
and satisfies ζmax = cps2, cp ∈ R, asymptotically with s→ ∞.

For p = 2, there is a suitable approximate polynomial Bs based on Chebyshev polynomials, given by
M. Bakker in 1971, that generates about 80% of the optimal interval and for s = 4, the Bakker polynomial
reads

B4(z) = 1 + z +
z2

2
+

2z3

25
+

z4

250
, (17)

where ζmax = 10, w3 = 2
25 , and w4 = 1

250 . We plot in Figure 5 the Baker polynomial representation and
the corresponding stability region.

Such a stability region is suitable for Pe = 0 but not for small values of Pe since it is not radial at
the origin. Consequently, we have considered a small perturbation of parameters w3 and w4 in order to
produce a radial region still preserving a large interval on the real negative axis. We found a good trade-
off with w3 = 0.0834 and w4 = 0.0042 providing ζmax ≈ 11. We plot in Figure 6 the polynomial curve
and the corresponding region.
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Figure 5: Baker polynomial B4 = R24(x; 2
25 ,

1
250 ) graph (left) and the corresponding stability region (right).
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Figure 6: Polynomial R24(x; 0.083, 0.0042) graph (left) and the corresponding stability region (right).

3.2.3. Design of a non-negative scheme
A critical issue in some problems is to guarantee the positivity of the solution. Indeed, temperature,

concentration, or density are physical quantities that must be non negative at the discrete level. Figure 6
shows that the polynomial does not satisfy this criterion. For instance, if x ∈] − 10.3997,−6.9570[, the
scheme is stable but the polynomial is negative leading to a sign change.

We then consider a more constrained problem and define the new optimisation problem

max
w3,w4∈R

{
ζ; 0.01 ≤ R24(x; w3,w4) ≤ 0.7,∀x ∈ [−ζ, 0]

}
,

to create the appropriated region. The lower bound 0.01 and upper bound 0.7 are prescribed in order to
provide a radial domain. Indeed, extreme bound values 0.0 and 1.0 provide a stability region similar to
Bakker polynomial displayed in Figure 5.

Numerical solution of the optimal problem provides w3 = 603
6998 and w4 = 15

3212 with ζmax ≈ 9.43 and
we plot in Figure 7 the polynomial curve and the corresponding stability region. We obtain a large radial
stability region with ζmax close to the one provided by the Bakker polynomial. On the other hand, the
domain still preserves an important part of the horizontal axis in comparison to the non positive optimal
case given in Figure 6.

To conclude the analysis, scenario (A) concerns the low diffusive situation and the R4 polynomial is
well adapted for such situation. On the other hand, scenario (B) deals with high diffusive operator and
the polynomial

RD(z) = R24

(
z;

603
6998

,
15

3212

)
provides an excellent stability region.
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Figure 7: Polynomial RD(x) graph (left) and the corresponding stability region (right).

3.3. Butcher tableau construction
Stability issue provides coefficients w3 and w4 for polynomial RD and one has to compute corre-

sponding entries of Butcher tableau. We briefly outline the method for the general case R24(z; w3,w4)
and provide the Butcher’s tableau for the two scenarios, taking into account a crucial restriction: the two
tableaux must have the same time sub-steps for the sake of compatibility.

An explicit 4-stage Runge-Kutta method is given by the generic Butcher tableau

c1 0 0 0 0
c2 a21 0 0 0
c3 a31 a32 0 0
c4 a41 a42 a43 0

b1 b2 b3 b4

Consistency yields

ci =

i−1∑
j=1

ai j, i = 1, . . . , 4,

while the second-order assumption provides the constraints[
1 1 1 1

]
b = 1, bTc =

1
2
. (18)

Additional constraints are considered:

• The Runge-Kutta scheme is fourth-order for the non-homogeneous equation φ′(t) = f (t),[
(c1)2 (c2)2 (c3)2 (c4)2

]
b =

1
3
,

[
(c1)3 (c2)3 (c3)3 (c4)3

]
b =

1
4
. (19)

• The four stage method has to satisfy the consistency condition to suit the polynomial R24(z; w3,w4),

bTAc = w3, bTA2c = w4. (20)

Conditions (18), (19), and (20) are equivalent to the system

VTbT =


1 1 1 1
c1 c2 c3 c4

c2
1 c2

2 c2
3 c2

4
c3

1 c3
2 c3

3 c3
4



b1

b2

b3

b4

 =


1

1/2
1/3
1/4

 (21)
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together with equations

b3a32c2 + b4(a42c2 + a43c3) = w3 (22)
b4a43a32c2 = w4. (23)

Assuming c1 = 0, the determinant of the Vandermonde matrix V is (c4 − c3)(c3 − c2)c2 and two situations
arise:

• If c2 , 0, c4 , c3, and c3 , c2, the system has a unique solution b. Hence in this case, we choose
the free parameters to be c2, c3, c4, and a43. From the Vandermonde system, we obtain b.

• If c2 = 0 or c4 = c3 or c3 = c2, we have a dependent linear system. For instance, assuming that
c2 = c3, system (21) turns to be

1 1 1 1
0 c2 c2 c4

0 0 0 c4(c4 − c2)
0 0 0 0



b1

b2

b3

b4

 =


1

1/2
1/3 − c2/2

1/4 − (c4 + c2)/3 + c4c2/2

. (24)

The system has several degrees of freedom we have to fix with relations

1
4
−

c4 + c2

3
+

c4c2

2
= 0, c4(c4 − c2) , 0, c2 , 0.

We get vector b with

b4 =
2 − 3c2

6c4(c4 − c2)
, b3 =

3c4 − 2
6c2(c4 − c2)

− b2, b1 =
c4 + c2 − 1

6c2c4
.

Notice that the user has to choose the free parameters c2, a43, and b2.

From vectors c and b, we compute the remaining Butcher tableau elements a21, a31, a32, a41, and a42

and we obtain

a21 = c2, a32 =
w4

b4a43c2
, a42 =

w3 − b4a43c3 − b3c2a32

b4c2
, a31 = c3 − a32, a41 = c4 − a42 − a43.

At last, we present in Table 6 the two Butcher tableaux with 4-stage corresponding to R4 and RD poly-
nomials. We tag the associated methods as RK4 and RKD, respectively. It is important to notice that the
RKD has been designed with the same time sub-steps according to the classical RK4 scheme.

Table 6: Butcher tableaux for the classical scheme RK4 (left) and RKD (right).

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

0 0 0 0 0

1/2 1/2 0 0 0

1/2 334/861 373/3328 0 0

1 481/3310 587/1655 1/2 0

1/6 0.4 4/15 1/6
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4. Optimal time step for stability

We now reach the key point of the paper: the confrontation between the RK stability region with
the spatial operator spectrum. More precisely, we have, on the one hand, a complex value parametric
curve given by relation (6), s ∈ [0, 1]→ λ(s; θ3, θ4, Pe) that contains all the eigenvalues λi of the discrete
operator. On the other hand, applying the RK scheme with time step ∆t and setting zi = ∆tλi(θ3, θ4, Pe),
one has to choose ∆t small enough such that zi ∈ SRps(wp+1, . . . ,ws) to guarantee the stability.

4.1. The CFL condition
Let

z(s; θ3, θ4, Pe) = ∆tλ(s; θ3, θ4, Pe) = CCFL ρ(s; θ3, θ4, Pe), (25)

where CCFL = u∆t
∆x and ρ be given by relation (7) for u , 0. Stability condition for the discrete problem is

achieved if we satisfy the condition

CCFL ρ(s; θ3, θ4, Pe) ⊂ SR24(w3,w4), s ∈ [0, 1]. (26)

Note that the scheme stability depend on the six parameters θ3, θ4, w3, w4, Pe, and CCFL and the goal
of this section is to analyse the stability of the full time-dependent convection-diffusion equation.

Remark 3. The stability condition combines two main ingredients. On the one hand, the shape of the
stability region is characterised by function ρ that provides a complex value curve where all the eigen-
values lie, independently of the space parameter ∆x. On the other hand, the CFL value CCFL scales the
previous curve to fit inside the stability region.

Assuming that scheme in space is given (parameters θ3, θ4 are prescribed) and the scheme in time is
given (parameters w3, w4 are prescribed), we define the optimal CFL curve as a function of the Péclet
number

Pe→ ĈCFL(Pe) = lim sup
{
CCFL ≥ 0, such that (26) holds

}
.

We compute ĈCFL(Pe) = ĈCFL(Pe; θ3, θ4,w3,w4) with the following algorithm (see Figure 8):

0

0

τi

ρi O

0

0

τi

ρi

O

Figure 8: How to calculate the limiting scaling factor: ĈCFL > 1 (left) and ĈCFL < 1 (right).

1. Compute eigenvalues ρi, i = 1, . . . , I, from the space discretisation operator spectrum;

2. Compute intersection points τi of the segment line Oρi with the stability region boundary;

3. Compute ĈCFL = min
i=1,...,I

|τi|

|ρi|
.
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Afterwards the maximum stable time step is given by

∆tmax =
ĈCFL∆x

u
. (27)

Remark 4. Two extreme situations require a specific treatment.

• If Pe = 0, i.e., u = 0, a CFL constant based on the velocity is no longer available. In that case, the
spectrum is given in Table 1 for the centered scheme, Table 2 for the weak upwind, Table 3 for the
strong upwind and reads

∆tλ(s) = CCFL ρ(s) =
κ∆t
∆x2 2(cos(2πs) − 1)


(7

6 −
1
6 cos(2πs)) centered,

1 weak,
(cos(2πs) − i sin(2πs)) strong.

In this case the maximum stable time step is given by

∆tmax =
ĈCFL∆x2

κ
.

• If Pe = +∞, i.e., κ = 0, one has to pass to the limit to determine the spectrum curve, remaining (27)
valid.

As an example, we present in Figure 9 two situations with Pe = 5 and Pe = 10 where we adjust the
CFL constant to fit the spectrum into the stability region: centered scheme in space with the RK4 scheme
in time (top left) and the RKD (down left) while the pictures in second column present the weak upwind
case.

4.1.1. Analysis of spatial schemes
A full discretised scheme consists in fixing the time and spatial scheme parameters. We have iden-

tified two schemes in time — RKD and RK4 — for low and high Péclet situations and three schemes in
space — centered, weak upwind, and strong upwind. We shall discard the strong upwind scheme due to
the high dispersion effect. Indeed, let us consider the advection problem E[φ] = 0 with u = 1 and κ = 0
(Pe = +∞). Function

φ(x, t;ω) = sin(2πω(x − ut))

with ω = 3, is a periodic solution. We carry out the numerical simulation with the RK4 scheme in time
and the three schemes in space with ∆t = ∆tmax (see expression (27)) until the final time tf = 1. We
plot the numerical solutions in Figure 10 computed with I = 25 and I = 50 nodes — benchmark 2. We
observe the large phase errors produced by the strong upwind scheme which justify the choice to discard
it.

We turn to a situation where a rough function is convected (u = 1, κ = 0, Pe = +∞) and compare the
centered and weak upwind scheme. The manufactured solution is given by

φ(x, t; δ) =
1
π

(
1 −

2
π

arccos((1 − δ) sin(π(x − t −
1
2

)))
)(

arctan(
1
δ

sin(π(x − t)))
)

(28)

with δ = 0.01 that corresponds to a rough solution due to the sharp transition. The numerical solutions
are computed with the RK4 scheme in time taking ∆t = ∆tmax, I = 25, and the centered and weak upwind
schemes in space — benchmark 3.

19



centered weak upwind

Pe = 10, ĈCFL = 2.0935, ∆tmax = 0.0837 Pe = 5, ĈCFL = 1.3117, ∆tmax = 0.0525
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Figure 9: Examples of stability regions ( boundary of stability region; “discrete” ρ; “discrete” ĈCFL ρ).

In Figure 11 we present the numerical solutions after two time steps. We observe the centered scheme
is more unstable with a larger number of over- and undershoots. Of course, a definitive method would
consist in employing a high viscous scheme (the simple two-points upwind one) but with a dramatic cut
of the accuracy. Hence, the weak upwind scheme is regarded as an alternative to the centered one when
large oscillations appear.

4.1.2. Optimal CFL curves
The curves Pe→ ĈCFL(Pe; θ3, θ4,w3,w4) are determined for the four situations we want to highlight:

RK4 and RKD for time; centered and weak upwind for space. We plot in Figure 12 the optimal CFL curves
for the fourth-order centered scheme and the third order weak upwind scheme with Pe ∈ [0.001, 20] (note
that the oscillations we observe for the centered case are a consequence of the discrete consideration of
the spectral curve). We complement the figure with Table 7 indicating the optimal CFL values, ĈCFL, for
Pe = 0 (an expression depending on ∆x) and large Péclet values.

From Figure 12 and Table 7 we draw the following conclusions:

• centered scheme RKD provides the largest time-steps for Pe < 5 while RK4 is more efficient for
Pe > 5. In particular, the limit for Pe → +∞ of ĈCFL is 2.55 for RK4 while ĈCFL converges to 0
with RKD.
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Figure 10: Exact ( ) and approximate ( ) solutions considering RK4 time scheme for benchmark 2.
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Figure 11: Exact ( ) and approximate ( ) solutions for tf = 2∆tmax considering RK4 time scheme for benchmark 3:
centered (left) and weak upwind (right).

Table 7: Comparison of ĈCFL for RKD and RK4.

Pe RKD RK4

centered weak upwind centered weak upwind

0 1.77∆x2 2.36∆x2 0.53∆x2 0.70∆x2

20 1.04 1.60 1.62 1.66
200 0.45 1.34 2.04 1.74

20000 0.09 1.25 2.06 1.75
200000 0.04 1.24 2.06 1.75

+∞ 0 1.24 2.55 1.75

• weak upwind scheme For Pe < 15, ĈCFL value is larger with RKD scheme than RK4. The parti-
cular case Pe = 0 shows that RKD case allows a time parameter about three times larger than the
RK4 case. For Pe > 15, RK4 method turns out to be more efficient.
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Figure 12: Pe → ĈCFL curves for the four scenarios that we are considering: centered (left) and weak upwind (right), with
solid — RK4, dashed — RKD.

4.1.3. Convergence order and stability
To compare the convergence error between the centered and the weak upwind discretisations, we

consider the advection (u = 1, κ = 0, Pe = +∞) of the manufactured solution (28) with δ = 0.1,
corresponding to a smooth solution since the transitison takes place in more than 5 nodes — benchmark 4.
We carry out the RK4 scheme in time with a time step ∆t = 0.8∆tmax until tf = 1. We present in Table 8
the time step, error E∞

E∞ ≡ E∞(ΦN , I) =
I

max
i=1
|φN

i − φ(xi, tf)|,

and the respective convergence order O∞ between two solutions/grids (Φk, Ik), for k = 1, 2 where I1 < I2

as

O∞ ≡ O∞
(
(ΦN

1 , I1), (ΦN
2 , I2)

)
=
| log E∞(ΦN

1 , I1)/E∞(ΦN
2 , I2)|

| log I1/I2|
,

while we display in Figure 13 the numerical approximations for the centered and weak upwind schemes.
We reach the fourth-order in space for the centered method and the expected third-order in space for the
upwind case (the fourth-order method in time turns to be insignificant for large values of I, since small
values of ∆t are needed due to the CFL condition).

Table 8: Time steps and errors using 80% of the maximal time step given by ĈCFL considering RK4 time scheme for bench-
mark 4.

I centered weak upwind

∆t E∞ O∞ ∆t E∞ O∞

100 1.65E−2 1.68E−2 — 1.40E−2 2.20E−2 —
200 8.25E−3 3.88E−3 2.1 6.98E−3 6.29E−3 1.8
400 4.12E−3 4.88E−4 3.0 3.49E−3 1.20E−3 2.4
800 2.06E−3 3.83E−5 3.7 1.75E−3 1.70E−4 2.8

1600 1.03E−3 2.46E−6 4.4 8.73E−4 2.15E−5 3.0

To check the stability condition, we have performed the computation with the RK4 time scheme
with three different time steps: (1) the time step ∆tmax corresponding to the optimal CFL value given by
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I centered weak upwind
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Figure 13: Exact ( ) and approximate ( ) solutions considering RK4 time scheme for benchmark 4.

ĈCFL(Pe), (2) a 20% smaller time step, and (3) a 10% larger time step. We present in Table 9 the errors
E∞ together with the number of iterations nTS needed to reach the final time tf = 1. For the latter case,
stability is no longer preserved and the error blows up. With the critical time step ∆tmax, we manage to
compute the solution until the final time but with an error slightly larger than the one obtained with the
smaller ∆t. Notice that, as expected, the number of steps linearly increases with the number of nodes.

4.2. Hybrid scheme
Hybrid time scheme consists in choosing between the RK4 and the RKD scheme in function of the

Péclet number to provide the largest time step. For space (and time) dependent velocity and diffusion
coefficient, the scheme then would be different from one node to another. For example, for the centered
scheme in space, the left panel of Figure 12 shows that the highest ĈCFL(Pe) values are reached with the
RKD scheme when Pe < 5 while the ĈCFL(Pe) is larger with RK4 when Pe > 5. We implement an hybrid
scheme that switches from one method to the other in function of the velocity and diffusion coefficients
to optimise the time step and reduce the computational effort.

We consider the space-dependent parameter equation ∂tφ + E(x)[φ] = f (x) with

E(x)[φ] = −u(x)φ′ + κ(x)φ′′ (29)
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Table 9: Stability study considering RK4 time scheme for benchmark 4.

I space scheme ĈCFL ∆tmax ∆t = ∆tmax ∆t = 0.8∆tmax ∆t = 1.1∆tmax

E∞ nTS E∞ nTS E∞ nTS

25
centered 2.06 8.25E−2 1.13E−1 13 9.52E−2 16 1.01E+1 12

weak upwind 1.77 7.06E−2 1.12E−1 15 1.02E−1 18 4.62E−1 13

50
centered 2.06 4.13E−2 5.44E−2 25 4.86E−2 31 2.35E+3 23

weak upwind 1.75 3.49E−2 5.46E−2 29 5.05E−2 36 4.02E+0 27

100
centered 2.06 2.06E−2 2.23E−2 49 1.68E−2 61 1.44E+8 45

weak upwind 1.75 1.75E−2 2.45E−2 58 2.20E−2 72 4.79E+2 53

200
centered 2.06 1.03E−2 5.87E−3 98 3.88E−3 122 NaN 89

weak upwind 1.75 8.73E−3 7.05E−3 115 6.29E−3 144 1.03E+7 105

and f a given source term. Since the cell Péclet number depends on the position, we set Pei =
ui∆x
κi

for node i with ui = u(xi) and κi = κ(xi) for the velocity and diffusion, respectively. Taking the centered
scheme for the discretization in space of operator (29), the hybrid scheme in time is obtained with the
following rule:

• if Pei < 5, we use the RKD scheme for node i;

• otherwise, we use the RK4 scheme.

Note that the two time schemes are compatible since we have the same sub-steps by construction.
The weak upwind scheme in space is also considered and the hybrid time scheme derives from the

right panel of Figure 12, and is given by:

• if Pei < 15, we use the RKD scheme for node i;

• otherwise, we use the RK4 scheme.

To update the solution from tn to tn+1 = tn + ∆t, we compute the global time step ∆t in the following
way: the Péclet number Pei and the corresponding optimal CFL number (ĈCFL)i are computed leading
to an optimal time step ∆ti that provides the stability. In order to guarantee the global stability, we then
choose

∆t = min
i=1,...,I

∆ti. (30)

To test the hybrid scheme, we consider the manufactured solution φ(x, t;ω) = sin(2πω(x − ut)), with
ω = 1 where the velocity u = 1 is constant and the diffusion is given by

κ(x) = a0 exp(25(x − 1/2)2) + a1, a0 = 10−4, a1 = 10−5,

— benchmark 5. The source term is calculated to satisfy relation ∂tφ = E(x)[φ] + f (x) from the manu-
factured solution. Numerical simulations are carried out until the final time tf = 1. It is worth noting that
at the same time step or sub-step, we handle two different schemes in time depending on the cell Péclet
number, with different Butcher’s tableaux.
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We display in Figure 14 the ĈCFL,RK4 calculated with the full RK4 scheme and the ĈCFL,RKD with the
RKD scheme while we highlight the ĈCFL,hybrid for the hybrid scheme with the green mark. We observe
that, except for a small number of nodes, we have the property

ĈCFL,hybrid = max
(
ĈCFL,RK4 , ĈCFL,RKD

)
,

that confirms we have taken the best scheme in time for each node providing the larger global time
step ∆t.
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Figure 14: ĈCFL plots for benchmark 5: centered (left) and weak upwind (right) for I = 100 with ĈCFL,hybrid values ( ),
ĈCFL,RK4 curve ( ), and ĈCFL,RKD curve ( ).

Table 10: Error and number of iterations for the full RK4 and hybrid scheme for benchmark 5.

I scheme centered weak upwind

∆t E∞ nTS trel ∆t E∞ nTS trel

100
hybrid (RK4/RKD) 3.50E−3 5.56E−5 286 1 4.38E−3 1.46E−4 229 1

RK4 1.01E−3 3.03E−6 993 2.61 1.26E−3 7.80E−5 792 2.40

200
hybrid (RK4/RKD) 8.75E−4 4.37E−6 1144 1 1.13E−3 1.07E−5 886 1

RK4 2.52E−4 1.90E−7 3969 3.30 3.26E−4 4.25E−6 3073 3.40

We compare the hybrid scheme with the full RK4 time scheme (which does not depend on the Péclet
number) and report in Table 10 the comparison between the two methods, where the column trel gives the
relative execution time by scaling to the unit for the hybrid scheme.

The full RK4 scheme achieves the best accuracy (errors cut almost by twenty for the centered case
and almost by two for the weak upwind) but the hybrid scheme provides the largest time steps with a
strong reduction of the number of iterations and execution time (almost four times faster). We highlight
that no oscillations appear and stability is achieved for both schemes as shown by the errors convergence
rate.
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5. The a posteriori method for optimal time step scheme

At the numerical level, smooth solutions are functions where the numerical derivative is bounded for
∆x small enough and transitions between successive extremes are spread on, at least, five or six nodes.
In that case, even with a large Péclet number, the centered scheme is stable and the time step is ruled by
the hybrid scheme condition. On the other hand, to handle sharp gradients or even discontinuities, the
weak upwind scheme turns out to be the candidate method substituting the centered scheme, possibly
leading to a change of the scheme in time. At time tn and for each node i, the scheme in space has to be
chosen with respect to the local regularity for that particular node. Then the scheme in time is chosen
with respect to the scheme in space, the local cell Péclet, and ĈCFL to provide the optimal local time step
∆tn

i . Then, using the time parameter ∆tn given by relation (30), we update the solution at time tn+1.
In order to make the optimal choice for the space and time schemes (node by node), we use the a

posteriori paradigm also mentioned as MOOD method for Multi-dimensional Optimal Order Detector
[9, 10]. In this context, the strategy is based on the choice between a high accurate scheme in space
(the centered scheme) and a high stable scheme (the weak upwind scheme) together with the associated
optimal time scheme we studied in the hybrid scheme section.

5.1. Basics on a posteriori strategy
We present a brief description of the a posteriori paradigm and introduce the notations we need in

this section. Assume that the numerical solution Φn is known at time tn.

1. We compute a candidate solution Φ? for time tn+1 using the most accurate schemes in space and
time, namely the centered scheme and the RK4.

2. We check, node by node, the admissibility of the solution using detectors, i.e. small routines that
analyse specific aspects of the approximations such as extrema, oscillations, and physical property
violations if any.

3. The nodes detected as non-admissible are computed again but with the weak upwind and time
schemes using the hybrid scheme procedure.

Remark 5. The method is tagged a posteriori since we analyse a candidate solution Φ? after computing
a time step. On the contrary, MUSCL and WENO method are said a priori since we perform the limitation
strategy based on solution Φn, [19, 20].

5.1.1. Node space and time scheme tables
In practice, we introduce two tables CSS and CTS for Cell Space Scheme and Cell Time Scheme,

respectively, with the following rules.

• We set CSS[i] = 0 if we use the centered scheme otherwise CSS[i] = 1 for the weak upwind scheme.

• We set CTS[i] = 0 if we use the RK4 scheme otherwise CTS[i] = 1 for the RKD scheme.

Given the numerical solution Φ?,0 = Φn and tables CSS and CTS, we rewrite the RK scheme taking the
two tables into account. For each node i the terms Φ

?, j
i and K

?, j
i are computed with

Φ
?, j
i = Φ?,0

i + ∆t
s∑
`=1

a j`(CTS[i])K?,`
i ,

Φ?
i = Φ?,0

i + ∆t
s∑

j=1

b j(CTS[i])K?, j
i ,

K
?, j
i = Ei(CSS[i])Φ?, j + F(xi, t?, j), j = 1, . . . , s.
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Expressions a j`(CTS[i]) and b j(CTS[i]) indicate that we use RK4 scheme if CTS[i] = 0 or RKD scheme if
CTS[i] = 1. On the other hand, the term Ei(CSS[i]) states that we use the centered scheme for node i if
CSS[i] = 0 or the weak upwind scheme if CSS[i] = 1.

5.1.2. Detectors
Detectors are small routines to check a specific property of the candidate solution. We assemble the

detectors in a chain of operations which basically indicate if a node would be cured (change the scheme
in space) or not. We list hereafter the detectors we use in the present document and refer to [11] for a
detailed presentation of the most useful detectors.
• ED. The Extrema Detector intends to localise the extrema of the numerical function by checking

si = sign
(
(φ?i − φ

?
i+1)(φ?i − φ

?
i−1)

)
.

If si > 0 we have an extremum and the detector is activated and returns true otherwise it corresponds to
a monotone situation and the detector returns false.
• SCD. The Small Curvature Detector helps to select the very small oscillations that we consider

innocuous from the stability point of view. We calculate the variation quantity

vi = max
(
|φ?i − φ

?
i+1|

∆x
,
|φ?i − φ

?
i−1|

∆x

)
and, for a user parameter θ > 0, the detector returns true if vi < θ∆x and false otherwise since a small
value of vi indicates oscillations with too low magnitude to be considered as an issue.
• LOD. Local Oscillation detection aims to detect variations deriving from oscillations. Indeed, a

local oscillation is characterised by a variation of the curvature sign. To this end, we compute the second
derivative

χi =
φ?i+1 − 2φ?i + φ?i−1

∆x
.

Then the detector is deactivated (return false) if χi−1, χi, and χi+1 have the same sign and is activated
(return true) if one of the curvatures has a different sign of the two others.
• SD. Smooth Detector consists in assessing the local numerical smoothness to determine if an ex-

tremum is physical or if it corresponds to a numerical artefact. To evaluate the smoothness of the solution
we use, once again, the curvature and define the minimum and maximum absolute curvature

χi,m = min(χi−1, χi, χi+1), χi,M = max(χi−1, χi, χi+1).

For a given user parameter θ ∈ [0, 1], the solution is not smooth (detector activated true) if χi,m < θχi,M

since we detect large variation of curvature on the three consecutive points. Otherwise, the detector
returns false that indicates the solution is considered smooth enough at the numerical level.

5.1.3. Detector chain and a posteriori cure
The detectors being defined, we assemble it into an ordered chain that enables to decide whether

a node would be corrected or not. The detector chain is carried out for nodes with CSS[i]=0, that is
the centered scheme. We preserve the high accuracy scheme if there is no extremum (ED false) or
generated by too small variations (SCD false). When a potential oscillation is detected (ED true), we
try to relax the scheme (and preserve the accuracy) with other detectors that assess if the extremum is a
real physical one. The LOD is activated if we observe the sign change of the curvature and then we set
CSS[i] = 1 to indicate that the node has to be cured. In the same way, a node with too large variations
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Figure 15: The chain detector.

of the curvature is considered as a problematic node and we set CSS[i] = 1 if SD is true. At the end
of the chain, we have a new CSS map that indicates the points we have to compute again with the weak
upwind scheme. The time scheme is determined with the hybrid scheme strategy and we flag the CTS[i]
accordingly.

From the CSS map and the cell Péclet number, we modified the CTS map following the rule given by
the hybrid scheme. At the end of the day, we get a new ∆tn

i for each node i and use the minimum time
step for ∆tn following (30).

Remark 6. Computational resources are reduced by only computing again the node i that have been
cured together with the neighbour nodes that may be affected by the values of Φ?

i during the four-stage
Runge-Kutta procedure. In practice, very few nodes are modified by the a posteriori correction (less than
5%, see [10]) and the additional cost is of the same order.

5.2. Numerical tests
We present two numerical tests to examine the efficiency of the a posteriori method. The first sanity

check consists in carrying out a simulation with a regular solution. Indeed, for smooth approximations,
the limiter strategy has to preserve the higher accuracy and the chain detector has to return CSS[i] = 0 for
all nodes i.

— benchmark 6. We consider the manufactured solution (11) with δ = 0.15. We take constant
physical parameters u = 1, κ = 2.7778E−03 and a grid of I = 60 nodes to obtain the cell Péclet number
Pe = 6. The simulation is carried out until the final time tf = 0.5, corresponding to half a revolution
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Figure 16: Exact ( ) and approximate ( ) solutions for tf = 0.5 the full RK4+centered scheme (left) and the a posteriori
strategy (right): the smooth solution case — benchmark 6.

We display in Figure 16-left the numerical approximation with the most accurate scheme (RK4+centered)
while we reproduce on the right side the approximation computed with the a posteriori strategy. We have
checked that the table CSS has never been altered during the simulation, that is, computation have been
achieved with the centered scheme and the RK4 scheme in time due to the Péclet number.
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— benchmark 7. The last benchmark deals with a rough function (regarded to the characteristic
mesh size) using the manufactured solution (11) but with δ = 0.015 corresponding to a steep variation we
assimilate as a shock regarded to the small number of nodes I = 60. We take constant physical parameters
u = 1 and κ = 5.5556E−03 to obtain the cell Péclet number Pe = 3. The simulation is again carried out
until the final time tf = 0.5, corresponding to half a revolution

0 1

−0.5

0

0.5

x

φ

0 1

−0.5

0

0.5

x

φ

Figure 17: Exact ( ) and approximate ( ) solutions for tf = 0.5 the full RK4+centered scheme (left) and the a posteriori
strategy (right): the rough solution case — benchmark 7.

We display in Figure 17 the solution obtained with the “unlimited” RK4+centered scheme (left) and
the a posteriori method (right). Clearly, the steep gradient provokes oscillations when employing the low
diffusive centered scheme while the introduction of the weak upwind scheme in some nodes (indicated
with the red X on the figure) manages to stabilise the solution and strongly reduces the over- and under-
shooting. Moreover the scheme in time on the node i such that CSS[i] = 1 (weak upwind) switch to
the RKD once CTS[i] = 1 while the nodes where we maintain the original centered scheme CSS[i] = 0
(centered upwind) use the RK4 once CTS[i] = 0. Notice that the number of nodes that have been cured is
almost 3 or 4, i.e., less than 8% for a 60-nodes grid.

6. Conclusions and further work

We have developed a strategy to analyse and optimise the stability based, on the one hand, on the
two-parameter family of continuous spectral curves that characterize the space discretization and, on
the other hand, a two-parameter family of Runge-Kutta stability regions. Optimisation results from the
inclusion of the spectral curves into the stability region with the help of the additional CFL parameter.
We have detailed the procedure with the one-dimensional five-point finite difference method context
but extension to other methods such as finite volume or finite elements methods could be considered.
A hybrid time scheme as a function of the Péclet number have been proposed and analysed with the
objective of providing the largest time step while preserving the stability. At last, we have presented
an adaptation of the a posteriori strategy to handle the schemes in space and time to preserve both
the accuracy and the stability, even for rough solutions, while we optimise the time step to reduce the
computational effort.

The two- and three-dimensional cases bring new difficulties in relation to the discretization in space.
While Cartesian grids with constant space parameter are very close to the one-dimensional case (for
instance by applying a dimensional splitting technique), situations with general unstructured meshes are
more difficult to analyse. First, determination of the eigenvalues values associated to the discrete operator
are not available in general. Second, pathological situations such as high stretched cells strongly affect the
cell Péclet number. Connection between stability conditions in time and spatial operator in space turns
to be analytically quite cumbersome and would require numerical approximations of the eigenvalues
associated to the discretization in space.
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Castelo, M. F. Tomé, S. McKee, Assessment of a high-order finite difference upwind scheme for
the simulation of convection–diffusion problems, Int. J. Numer. Meth. Fluids 60 (2009) 1–26.

30



[13] F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Co., NY 1960.

[14] P. J. van der Houwen, B. P. Sommeijer, On the internal stability of explicit, m-stage Runge-Kutta
methods for large m-values, Z. Angew. Math. Mech. 60 (1980) 479–485.

[15] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction
Equations, Springer–Verlag Berlin Heidelberg, 2003.

[16] D. I. Ketcheson, A. J. Ahmadia, Optimal Stability Polynomials for Numerical Integration of Initial
Value Problems, Comm. App. Math. and Comp. Sci. 7 (10) (2012) 247–271.

[17] T. Knopp, G. Lube, G. Rapin, Stabilized finite element methods with shock capturing for advec-
tion–diffusion problems, Comput. Methods Appl. Mech. Engrg. 191 (2002) 2997–3013.

[18] G. V. Krivovichev, Optimized low-dispersion and low-dissipation two-derivative Runge-Kutta
method for wave equations, J Appl Math Comput, 63 (2020) 787–811.

[19] B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to
Godunov’s Method, J. Com. Phys., 32 (1979) 101–136.

[20] X.-D. Liu, S. Osher, T. Chan, Weighted Essentially Non-oscillatory Schemes, J. Comput. Phys.,
115 (1994) 200–212.

[21] W. Riha, Optimal stability polynomials, Computing 9 (1972) 37–43.

[22] M. Schlegel, O. Knoth, M. Arnold, R. Wolke, Multirate Runge-Kutta schemes for advection equa-
tions, J. Comput. Appl. Math. 226 (2009) 345–357.

[23] L. M. Skorvtsov, Explicit stabilized Rung-Kutta methods, Comput. Math. Math. Phys., 51 (2011) 7
1153–1166.

[24] L. N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equa-
tions, Unpublished Text, (1996) http://people.maths.ox.ac.uk/trefethen/pdetext.html.

[25] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,
Wiley–Teubner, Stuttgart, 1996.

[26] C.-W. Shu, Total-variation diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988),
1073–1084.

[27] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, J. Comput. Phys. 77 (1988) 439–471.

[28] S. Wang, An a posteriori error estimate for finite element approximations of a singularly perturbed
advection–diffusion problem, J. Comput. Appl. Math. 87 (1997) 227–242.

[29] H. C. Yee, N. D. Sandham, M. J. Djomehri, Low dissipative high order shock-capturing methods
using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238.

31


	Introduction
	Discrete convection-diffusion operator analysis
	Five-point discrete schemes
	Spectra
	Centered and upwind schemes

	Time-dependent convection-diffusion equation
	Time discretisation
	Design of Optimal Absolute stability regions
	The imaginary axis
	The real axis
	Design of a non-negative scheme

	Butcher tableau construction

	Optimal time step for stability
	The CFL condition
	Analysis of spatial schemes
	Optimal CFL curves
	Convergence order and stability

	Hybrid scheme

	The a posteriori method for optimal time step scheme
	Basics on a posteriori strategy
	Node space and time scheme tables
	Detectors
	Detector chain and a posteriori cure

	Numerical tests

	Conclusions and further work

