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Abstract: Plastic packaging, in the form of films, brought several advantages to the commercialization
of products given its lightness and durability. It provided better ergonomics, ease of transport,
increased shelf life, and easy handling and use. Despite that, plastic packaging is facing enormous
sustainability concerns associated with the traditional practice of linear economy, combined with
commonplace irresponsible handling by citizens since it is almost exclusively designed for single-use
and its end-of-life (EOL) management is not planned for. To mitigate that, the circularity of plastic
packaging must be more clearly studied and evaluated through approaches such as micro-level
circular economy (CE) indicators. This paper focuses on the selection of relevant CE micro-indicators
specifically for the plastic packaging sector among the plethora of indicators available. Relations
are also established between CE micro-indicators and CE guiding principles, as well as the most
prevalent Design for X (DfX) approaches, providing new insights into how these different aspects of
sustainability can be linked together. Results show three micro-level indicators as the most relevant
for circularity calculation in packaging, namely those termed ‘MCI’, ‘VRE’, and ‘CEIP’, because their
methodology and approach address most of the CE guiding principles and DfX approaches relevant
for the packaging sector. Finally, guidelines and good practices to promote circularity adoption in
the plastic packaging sector are highlighted. This work can guide companies aiming to adopt CE
micro-indicators in their practical implementation, overcoming the significant knowledge barrier that
currently exists.

Keywords: circular economy; circularity indicators; packaging; plastics; CE guiding principles;
Design for X

1. Introduction

Packaging should fulfill various purposes: containment, protection, preservation,
identification, information exhibition and appeal to the market [1,2]. For plastic packaging,
almost all non-biodegradable polymers are used, namely high- and low-density polyethy-
lene (HDPE and LDPE, respectively), polypropylene (PP), and polyethylene terephthalate
(PET) [3]. Of the plastic packaging applications, 73% correspond to plastic household
packaging to preserve food, reduce damage and improve the lifecycle and appearance of
products [4,5]. This type of packaging is currently still designed based on an open and
linear resource consumer model, in which the lifecycle is less than one day, causing large
amounts of plastic waste [5,6].

In 2022, the total European (EU27+3) plastics demand was 54 million tons, where
packaging by far represented the largest end-use market (39%) [7]. In 2020, 17.9 million
tons of post-consumer plastic packaging were collected, which corresponded to more than
half (61%, approximately) of post-consumer waste collected that year. Packaging wastes
collected were recycled (46%) or incinerated (37%), with energy recovery [3]. However,
incineration is not the most environmentally friendly process due to the release of toxic
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gases during combustion [3,8]. The short lifetime of plastic packaging, together with poor
waste management systems, causes a valuable loss of material resources [9,10].

The transition from the dominant linear economy to a model grounded in circularity
by intention and design can build a new foundation for the packaging sector and its
economy [11,12]. The solution to dissociate plastics from environmental pollution should
include the redesign of the lifecycle of plastics, products and services, from which no
waste is generated or economic value is lost [13–15]. According to several authors, it is
more advantageous to produce a sustainable product than to apply an efficient recycling
treatment [16,17].

Designers and manufacturers must think together to adapt the design, materials,
production processes, and product storage so that the sustainability of the packaging is
promoted [1,18]. So far, packaging is not considered by designers as a component of a
product. This behavior dissociates the responsibility of its treatment by the manufacturing
companies, hindering and compromising the efficiency of the recycling process [4,11].

In 2018, a set of initiatives were made to mitigate the impact of plastics on the envi-
ronment. The “Plastics Pact” was established by Europe in 2018 as a local and regional
initiative to gather the main stakeholders. The objective was to implement solutions to
the circular economy of plastics so that zero plastic packaging leaks into the environment
could be achieved by 2030. The following goals were set [19].

- Convert all disposable plastic packaging and plastic products into reusable and recyclable;
- Increase at least 25% of the collected capacity and the recycling of plastics used in

packaging and disposable products;
- Reduce by at least 20% the need for virgin materials in disposable plastic products

and packaging;
- Increase as much as possible the use of recycled plastics, and at least 30% on average

in packaging and single-use products.

The directive 94/62/EC, named “Packaging and packaging waste”, is the main EU
legislation for packaging. This directive provides a set of rules for all packaging types
and wastes with the scope of improving the quality of the environment, protecting human
health and guaranteeing the functionality of the internal market. Therefore, it requires that
member states ensure packaging has a reusable and recoverable design, a minimum weight
and volume, and a reduced content of hazardous substances [20]. The “European Strategy
for Plastics in a Circular Economy” emerged and identified the current environmental
challenges posed by plastics, surrounding production, use, and consumption. This strategy
aims for “at least 55% of all post-consumer plastic packaging in the EU to be reusable or
easily recycled until 2030” [21,22]. In 2019, the directive EU 2019/904 on the “Reduction
of the Impact of Certain Plastic Products on the Environment” was established. The
adoption of the single-use plastics directive and the European green agreement of the EU
Commission, set a number of restrictive measures that must be achieved until July 2024 [23].
However, to meet these ambitious OECD targets regarding plastic packaging recycling,
changes are necessary in the design of these products, the collection system, and even the
market demand [24].

Mechanical recycling is the most used method for plastic packaging recycling [25,26].
However, although plastics theoretically have high recyclability and there are collection
and recycling systems in place for plastic packaging, the current recycling rates and quality
of most recycled materials are low [24]. This is mostly due to the huge diversity of plastics
in the packaging flow and also the inability of existing collection infrastructures to support
selective collection of high-value plastic packaging [25].

Furthermore, the current contamination of the post-consumer packaging waste stream
is so high that to achieve recycled materials with the purity and quality necessary for the
application in closed cycles, more efficient separation procedures are required. Naturally,
these improvements increase the cost of recycled material, sometimes making it even more
expensive than virgin material, thus leading the plastic packing sector to disregard it as a
viable option and delaying the transition of the sector to a circular economy [24].
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To monitor the transition to a circular economy in products and companies, several
tools were developed in recent years [27–29]. Among such tools are the circularity micro-
indicators, proposed by several authors in the literature [30–33]. Over 100 micro-level CE
indicators are mentioned in 11 literature review papers previously analyzed [34]. These
indicators are based on two implicit assumptions [28,33]: (A) the closure of the material
Loop at the product level, with the aim of improving the effectiveness and quality of the
material for a new cycle; and (B) maximizing the circularity of the material or product to
mitigate environmental impacts resulting from the production of virgin raw materials.

Kristensen and Mosgaard [30] selected 30 of those indicators to be the most predom-
inant in measuring nine different CE categories: reuse, resource-efficiency, disassembly,
lifetime extension, waste management, multidimensional indicators, end-of-life manage-
ment, remanufacturing, and recycling. Among those, 28 remain important in the scientific
literature, as described in [12,34], but not all of them are relevant to the packaging sector.
This is the motto that led to the present work.

In this paper, an analysis of micro-level CE indicators is made to identify the CE micro-
indicators that are particularly important to packaging products and companies. In a broad
sense, the engagement of the micro-level CE indicators with the CE guiding principles
is made together with the relationship between the selected indicators and the Design
for X (DfX) approaches that are currently most suitable for plastic packaging. Aiming at
highlighting directions and good practices to promote the circularity adoption in the pack-
aging sector, the most common parameters between different calculation methodologies
are related to the parameters of DfX approaches.

2. Barriers of Plastic Packaging Recycling

According to the study by Antonopoulos et al. [24] concerning plastic packaging
processing companies, the main barriers to recycling post-consumer plastic packaging are
technological limitations and the quality of the recovered post-consumer plastic material.

However, there are many other barriers that compromise the efficiency of the recycling
process and the quality of the recycled material in terms of modifying its properties and
requirements for specific processing techniques.

Currently, HDPE and PET plastic packaging are the most recycled. However, the
main challenge lies in using those recycled materials in higher-value applications due
to the contamination present in these waste streams as well as the mix of colors, which
prevents the recycled material from these wastes from being transparent or white. Plastics
of different types contain different melting temperatures. For this reason, if processing
mixed polymeric types in bundles, some of them may not melt during the recycling process,
while others may degrade, affecting the appearance, performance, and quality of the
recovered material and preventing its use in certain final products [25]. However, they can
be used in applications with lower value (downcycling), such as hangers, garbage bags,
etc. [24]. Investment in technologies that segregate colored plastic waste by color is not yet
viable, as market demand cannot justify this approach [25].

Furthermore, plastics have melt flow indexes that have been adapted for specific
processing techniques (injection and blow molding, thermoforming, extrusion, etc.), and if
recycling together a bundle of plastic packaging waste with products from different pro-
cessing techniques, the recyclate ends up with a melt flow index that might be inadequate
for any conventional technique [25].

Transparent and translucent packaging are currently the most recovered packaging
due to their high marketability and flexibility to be pigmented and recycled into new
products, thus being the highest-value plastic packaging materials. On the other hand,
due to the inability of colored plastics to be dyed in light colors, they are only used to
produce darker tones or black, making them difficult to compete with virgin materials. As
they are considered materials of lower value, they most often end up being incinerated or
landfilled [25].
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As contaminants in high-value recycled streams, we can find additives (plasticizers,
retardants, antioxidants, acid scavengers, light and heat stabilizers, lubricants, pigments,
etc.) and lower-quality materials (multilayer films, etc.). Additives incorporated into the
polymeric structure to improve the performance and functionality of polymeric packaging
can hamper the quality of the recycled material. Hazardous substances from additives
can be released during the recycling process, causing unwanted stains, color changes, or
melting problems, or they can be partially retained in the recycling, affecting their final
use [24,25]. The fillers’ presence in some packages causes them to sink instead of float
during separation by density, causing contamination in higher-density material flows [24].

Multilayer films are even more complicated as there is no market for mixed plastic
recyclate, and only chemical recycling solutions present great expectations for the future.
However, due to the high cost of chemical recycling, it will only be viable if market demand
for this type of recycled material increases significantly [35,36].

Considering these barriers, it is imperative to substantially improve collection systems
so that it is possible to close the packaging cycle and promote the circularity of these
flows. One of the crucially necessary improvements concerns the segregation of high-
value polymer types since the composition and purity of the material recovered from
post-consumer packaging are the determining factors for its use in the processing of new
packaging [24]. Therefore, plastic packaging design needs to urgently evolve to follow the
principles of circular design.

3. Circular Packaging

Circular economy comprises several strategies to increase the circularity of a product,
namely: designing all stages of materials, products and services from the beginning of their
life cycle in order to maximize their useful life as much as possible, and ensuring that no
material is wasted [37]. To this end, a product should be reused, repaired, reconditioned,
remanufactured or ultimately recycled [38–40], if possible, always benefiting society [41]
and adding value [42,43].

Circularity in plastic packaging can be developed and implemented by first priori-
tizing the elimination/reduction of problematic and disposable packaging in circulation
through redesign and new supply and reuse models for these products. Also, decoupling
the consumption of finite resources and the prohibition of dangerous products for the
production of new packaging to the detriment of the implementation of reusable, recy-
clable or compostable resources are principles to consider for obtaining circular plastic
packaging [42].

The application of micro-level circularity indicators can be extremely useful in im-
proving the circularity of products, as they help in the design of new products, providing
decision-makers and managers in the decision-making process with information on how to
improve the circularity of these products [43]. Such tools can also assist in the preparation
of internal company reports by elucidating the level of compliance with legal standards by
the company and its products [44]. Furthermore, these indicators can be used to compare
different product ranges and demonstrate to customers the circular economy progress of a
given product compared to others on the market [45].

However, this wide range of indicators was developed ad hoc [38], presenting different
purposes, methodologies and metrics [39,40] and as the Circular Economy is a multifaceted
concept, the results of these indicators generate different interpretations [27]. That said,
the great diversity of indicators and the ambiguity of their objectives make it difficult to
choose which are most appropriate in a specific context or product [43], especially in the
packaging sector. The current work addresses and attempts to overcome this difficulty.

Several packaging brands on the market are modifying their production logic to
move towards a circular economy through the development of edible or biodegradable
packaging or by replacing liquid products with solid ones that do not require packaging [46].
In 2020, the packaging directive was updated to reduce the environmental impact caused by
plastics, and a restricted set of measures were enacted, with results obtained by 31 December
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2024 [47]. Also in the same year, the global commitment progress report was issued, which
states that despite the progress achieved, it will be necessary to accelerate global progress
to achieve the 2025 goals [48]. The most significant progress in this commitment was the
incorporation of recycled content in plastic packaging and the elimination of polymers
and problematic substances identified in packaging such as PS, PVC and carbon black.
However, progress in increasing packaging recyclability and reducing single-use packaging
has been more limited [48].

Therefore, there is still a need to improve resource efficiency and promote the circular-
ity of plastic packaging. For the goals of a circular economy to be successfully achieved, it
is still necessary to [49]:

- Accelerate research into alternative raw materials;
- Periodically update the life cycle inventory;
- Include new data on the circularity of packaging;
- Develop eco-design guidelines for plastic packaging;
- Support the standardization of quality standards for plastics;
- Innovate and standardize to increase the recycling of polyolefins;
- Harmonize quality standards for polymeric waste, testing methods for recycled poly-

mers and certification of recycling operations;
- Innovate and develop packaging-free markets to encourage the reuse of packaging;
- Stimulate innovation in recycling and reuse technologies;
- Develop technologies to recycle PS/EPS back into their original products;
- Improve waste collection and sorting systems.

4. DfX Approaches Relevant for Sustainable Packaging Products

Aside from the role that circularity micro-indicators play in the transition to a circular
economy in the packaging sector, it is extremely important to rethink the design concept,
acting on the earliest stages of the process, using “Design for X” (DfX) approaches [50].
The idea is to revise the product design and production processes before the product is
made, allowing detection of design problems without excessive costs and delays [51,52].
The DfX techniques are thought to improve the design process from a circular perspec-
tive [53]. Most of their focus the attention on the design process through circular metrics
and evaluations, but few of them have the objective of supporting decision-making along
the design process [53]. Although employing DfX approaches increases design time, it ends
up decreasing manufacturing time, as well as causing problems that often emerge at later
stages [50,51]. Design for X approaches is vast [54]; however, only some are particularly
suitable for packaging design.

Lee and Lye proposed the design for packaging approach [55], combining the princi-
ples of two other existing DfX approaches, namely design for environment (DfEnv) and
design for assembly (DfA), both of which are described in more detail below. The authors
argue that incorporating DfEnv principles mitigates the potential impact of practices and
materials that may be negative to the environment and overall, can improve the product
packaging process compared to standard DfA [55].

The DfEnv approach improves packaging’s environmental performance while reduc-
ing costs, since it aims to reduce waste generation and energy consumption, minimize trans-
port, and use of materials and energy recovered throughout the product life cycle [56,57].
In a study carried out by [58], a decrease of approximately 30% in the environmental impact
of a new sustainable packaging was achieved through the application of DfEnv principles.
This approach involves the development of products with environmentally friendly ma-
terials, fewer resources, and less packaging. Therefore, the packaging solutions are easy
to recycle, reuse or upgrade [56,57]. The DfEnv strategy to reduce packaging argues that
packaging should be reclaimed, integrating biodegradable, recovered, or recycled materials,
and belong to the product itself [57].

The DfA defends a product that is simple in its nature, with few parts and simple
operation, so that it is easier and faster to assemble with few mistakes [1,52,59]. The
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following principles are defended by DfA: minimize the number of parts, build the fasteners
and connectors into the part itself, design using Commercial Off-the-Shelf (COTS) parts
and minimize the use of different tools, prevent incorrect assembly of product parts, pay
attention to product symmetry, identify the parts as right or left-handed parts, and optimize
their tolerance [60,61].

The CE principle of reducing packaging dismissal forces it to become circular by
extending its lifecycle through reuse or remanufacturing and maintaining its reliability
along successive cycles [62]. The “design for manufacturing and assembly” (DfMA), “de-
sign for reliability” (DfR), and “design for sustainability” (DfS) support the DfX approach
for packaging circularity [53]. The DfMA combines two DfX approaches: the DfA and
“design for manufacturing” (DfM) [53,63]. The DfM foresees that parts composing the
product can be made from common and maturate materials and processes that support the
general design intention [52,64]. In addition, designed parts or products must be manu-
factured at lower costs. Their principles are similar to the DfA, but they add the creation
of modular designs with multifunctional, multiuse and easy handling parts and the mini-
mization of the assembly direction to facilitate the manufacturing and remanufacturing of
the product [65,66].

The “design for sustainability” (DfS) approach, in addition to promoting efficiency in
the use of resources, is concerned with people’s well-being and places the sustainability
of the planet at the forefront [67,68]. Its principles are low environmental impact during
production, reduction of the number of consumed resources, reduction of the amount
of pollution emitted, increasing collection, and improving the recycled materials to pro-
duce new packaging [52]. The DfS also encourages people to think of nature as a model,
mentoring and developing products with biomimicry designs that fit into the earth’s
ecosystem [68–70].

In the “Design for Reliability” (DfR) approach, packaging should be tested through risk
analysis, such as FMEA (failure modes and effects analysis), VOC (voice of the consumer),
and DOE (design for experiments), and learning from mistakes from similar packaging
products. If an evaluation is made of already existing packages and faults are identified, it
is possible to avoid mistakes in the production of new packages [71,72].

Ergonomics are important characteristics for packaging. Therefore, design for er-
gonomics (DfE) is an approach to defending packaging that is adapted to the user’s body, a
more friendly and ergonomic product, having in mind the user’s physical attributes, and
signaling the correct use of packaging [52,73,74]. If the packaging has suitable ergonomics,
it should induce correct use, and the consequent reduction of the chance of it becoming
damaged promotes its reuse [73–75].

5. Methods

This work considers the 28 micro-level CE indicators that remain important in the
literature and were reviewed in a previous paper [34]. These 28 micro-indicators resulted
from the evaluation of 11 literature reviews obtained through a bibliographical search in the
Web of Science and Scopus databases, within the scope of micro-level circularity indicators.
This research resulted in a total of more than 100 circularity micro-indicators, which found
out which indicators were most frequently referenced [34].

In Section 6.1, the micro-indicators that can be used to assess the circularity level, specif-
ically of plastic packaging products, are identified. The selection of the micro-indicators
relevant for the packaging sector was made in collaboration with personnel responsible for
product development, production and management departments of a plastic packaging
product manufacturer, plus a team of four polymer engineers with competences in circular
economy and LCA. The collaboration with packaging manufacturers helped us gather
information about the availability of the data required to calculate these indicators. The en-
gineers, based on their knowledge and experience about the life cycle of plastic packaging,
made their contribution by analyzing the calculation methodologies for each indicator, eval-
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uating the feasibility of the calculations and determining whether each indicator properly
reflected the principles of the circular economy in its approach.

However, during this selection process, we found that the relevance of each indicator
will depend on the product under analysis and the type of input expected by the company,
depending on which aspects of circular economy they want to improve.

Therefore, to help packaging manufacturers and companies in circularity indicators’
selection to assess the circularity of their products, we developed a series of comparative
analyses, which resulted in tools that can be used by companies in decision-making.

To know how far the CE micro-indicators are truly in line with these CE guiding
principles provided by the Ellen MacArthur Foundation and defined by the new plastic
economy initiative, the 18 micro-indicators selected as relevant for packaging are grouped in
their CE focus categories and linked to a guiding principle for circular economy (Section 6.2).
To group the indicators and link them to CE guiding principles, we analyzed the calculation
methodology for each indicator and verified which of these contained parameters that were
in line with these principles. This analysis can aid companies in selecting the indicators
for evaluating the circularity of a given product, bearing in mind the guiding principle on
which they intend to focus their study.

As DfX approaches can guide product design to be more in line with the principles
of a sustainable and circular product, in Section 6.3, we carry out a comparative analysis
between the circularity indicators relevant to packaging and the guidelines of the most
applicable DfX approaches. The grouping of these indicators was carried out according to
the same approach as the comparative analysis of the CE guiding principles.

Finally, as micro-indicators assess circularity through the input of several parameters,
many of which are used in different circularity indicators, in Section 6.4, patterns are
analyzed to identify which are the most common parameters among all CE micro-indicators
relevant to packaging. The featured parameters are those that most frequently appear in
indicator calculation methodologies. This study highlights which specific actions and
improvements can have a broader impact on different aspects of circularity.

6. Results

This section concerns the circularity micro-indicators we considered relevant and,
among those, the most relevant for packaging products, and the results obtained for each
comparative analysis. Aside from presenting in detail the analysis performed for each
comparative analysis, the results are discussed within the framework of circularity guiding
principles and Design for X approaches.

6.1. Circularity Micro-Indicators Relevant for Packaging

In a general view, if the most common packaging is considered, e.g., films, containers,
and discarded packages, it is easy to understand that disassembly is not applicable to those
products. Also, if packaging with more than one component or multilayer is considered,
materials will not be separated at EoL. Furthermore, for the majority of plastic packaging
products, there are no take-back collection systems to promote the reuse or remanufac-
turing of plastic packaging. For these reasons, the CE indicators focused on Disassembly
are generally not applicable to the packaging industry, and, depending on the specific
packaging product, many indicators in the EoL Management, Reuse and Remanufacture
categories may also not be applicable.

The most relevant micro-indicators for the packaging sector are the ones represented
in bolt and underlined in Figure 1. These are the Material Circularity Indicator (MCI) [76],
Recycling Desirability Index (RDI) [77], Reuse Potential Indicator (RPI) [78], Circularity
Calculator (CC) [79], Material Reutilization Score (MRS) [80], Circular Economy Index
(CEI) [81], Product-level Circularity Metric (PLCM) [82], Longevity Indicator (LI) [83],
Model of Expanded Zero Waste Practice (EZWP) [84], Value-Based Resource Efficiency
Indicator (VRE) [85], Circularity Design Guidelines (CDG) [86], and Circular Economy
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Indicator Prototype (CEIP) [87]. The majority of these indicators are in the Recycling,
Lifetime extension, Waste Management, and Multidimensional Indicators categories.
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RI: Recycling Indices, RPI: Reuse Potential Indicator, SDEO: Sustainable design and end-of-life
options, SICE: Sustainability indicators in Circular Economy, TQP: Typology for Quality Properties
and VRE: Value-Based Resource Efficiency.

Other less relevant micro-indicators are Eco-efficient Value Creation (EEVC) [88],
Combination Matrix (CM) [89], End-of-life Index (EOLI) [90], End-of-life Indices (Design
Methodology) (EOLI-DM) [91], Eco-cost/value Creation (EVR) [88], and Typology for
Quality Properties (TQP) [92]. The extensive list of source references and the definition of
the micro-indicators were previously presented in [34].

Regarding MCI, it measures how restorative the material flows of a product are,
considering the recycled content linked to the waste and its usefulness [76], as shown
in Equation S.1 in the Supplementary Information file. This indicator is very useful for
checking whether the flow of materials involved in the product is closer to a linear economy
of extraction-production-use-disposal or a circular economy.

In general, the plastic materials used in packaging applications are collected and
separated from municipal solid waste (MSW) for further recycling. The RDI is essential to
the packaging sector because this indicator evaluates how desirable the recycling process is
for a product [77]. This indicator varies between 0 and 3 and is calculated by Equation S.2
in the Supplementary Information file.

Material wastes provided by plastic packaging products have a variety of polymers
that are difficult to separate, and therefore the properties of recycled materials are some-
times compromised, where the RPI indicator can be very useful. This micro-indicator
evaluates how similar the recovered materials are to waste or a resource and whether any
waste material recovery process is economically viable in comparison to their disposal
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in landfills [78] through Equation S.3 in the Supplementary Information file. In addition,
the difficulty in separating the materials that make up packaging sometimes makes the
recycling process economically unfeasible compared to the production of a new, totally
virgin product. The CEI micro-indicator evaluates the recycling efficiency in economic
terms and compares this value with the value necessary to produce a new product [81], as
shown in Equation S.4 in the Supplementary Information file.

After obtaining the plastic recycled from packaging waste collected from a specific
collection system, this material can be used to produce new plastic packaging. The CC is an
online tool that calculates the recycled content of a product, considering the contributions
of recycled content through the original product and recycled content through recycling in a
closed loop, thus assessing the potential value captured by circular business models [30,79].

Recycling processes are frequent in packaging plastic materials, as well as the use of
biodegradable, recycled or compostable materials. The MRS micro-indicator evaluates the
material involved in the product and if it can be recycled at EOL [80] through Equation S.5
in the Supplementary Information file.

Packaging products such as containers for water, cleaning detergents, and personal
hygiene products, among others, beyond the recycling process, can be recirculated by
the user in multiple cycles through refilling systems. The PLCM and LI are two micro-
indicators that evaluate this aspect of circularity. The PLCM is based on the relationship
between the economic value of the recycled product and the total economic value of the
product [82]. On the other hand, the LI measures the time that the material is retained
in the product cycle, providing for multiple reuse and recycling cycles and decreasing
natural resource exploration [83]. The equations to calculate this indicator are provided
in the Supplementary Information file (Equations (S.6)–(S.8)). To evaluate circularity in
the social dimension and monitor employees’ engagement with zero-waste practices, the
EZWP [84] is a very useful micro-indicator. To achieve circularity, resources associated
with the production process must also be used in a sustainable way, in terms of which
the VRE [85] micro-indicator can be employed to consider the value of non-sustainable
inputs that concern the product (energy, materials, labor, components, and others), as per
Equation S.8 in the Supplementary Information file.

Sometimes, a company may need to make quick decisions and is unable to collect data
to calculate circularity (or that data might still not exist for a new product being planned).
In this scope, the CDG [86] and CEIP [87] indicators are ideal for providing guidance on
improvements they can make to their product and at which stages of the life cycle the
product should be further improved to achieve greater circularity.

Although CM, EVR, EOLI, EOLI-DM, and TQP are important micro-indicators for
estimating the circularity of a packaging product, they present complex calculation method-
ologies, some of which require an LCA to be carried out, making it sometimes difficult to
gather the data required for their calculation, which makes these indicators less relevant
for this application sector.

The micro-indicators depicted in gray in Figure 1 were considered to not be relevant
for the packaging industry. The Sustainability indicator in CE (SICE) [93] was not consid-
ered because it calculates the circularity through parameters such as the amount or value
of remanufactured or reusable material and also involves parameters like functionalities
achieved with little configuration change in the product’s components, and the majority
of packaging products do not have collection systems implemented for reuse or remanu-
facturing. Packaging products are not designed for disassembly, so these indicators (DEI,
EDT and eDIM) do not fit into the packaging sector. Also, most scenarios of reuse are
unfeasible in packaging, such as those of food protection films or product seals, since they
are destroyed by the consumer at the moment of extracting the stored product. Thus,
indicators like the Designed method for end-of-use product value recovery (EPVR) [94],
Remanufacturing Product Profiles (REPRO2) [95], the Product Recovery Multi-criteria
Decision Tool (PR-MCDT) [96], and the Decision Support Tool for Remanufacturing (DSTR)
are also not considered suitable for packaging products. Last, the Recycling Indices (RI) [97]
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and Sustainable Design and End-of-Life Options (SDEO) [98] feature a very high level
of detail and complexity, showing apparent impracticality of application in a common
industrial environment, making their calculation unfeasible in assessing the circularity of
plastic packaging.

In conclusion, a vast number of micro-indicators are already available in the literature.
However, for the plastic packaging sector, a selection of 18 micro-indicators was made that
are mainly directed to the categories of recycling, lifetime extension, waste management
and multidimensional indicator categories, 12 of which were considered highly relevant
for this sector.

6.2. Engaging Micro-Level Indicators to CE Focus Categories and Guiding Principles

To further the implementation of circular economy in the packaging sector, it is neces-
sary to follow some guiding principles, namely: (1) to eliminate unnecessary packaging
through design reformulation and new delivery models; (2) to reduce discarded packaging
and promote reuse models where relevant; (3) to implement 100% reusable, recyclable or
compostable plastic packaging; (4) to disengage plastic materials produced with finite re-
source consumption; and (5) to ban dangerous chemical products in plastic packaging [19].

As shown in Figure 2, the guiding principles associated with most packaging micro-
indicators (only among the 18 indicators identified as relevant for the packaging sector)
are “the reduction of discharged packaging and implementation of reuse models where
relevant” (circa 78% of the indicators, meaning 14 out of the 18 relevant indicators) and
“the implementation of 100% reusable, recycling, or compostable plastic packaging” (circa
44% of the indicators).
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sector are marked in bold.

CE focus categories such as “recycling”, “waste management”, “resource efficiency”,
and “multi-dimensional indicators” contain indicators that are transversal to all the guiding
principles. Special attention should be given to CEIP, which is transversal to all circular
economy principles, and also to CC, MCI, EZWP, and VRE, which approach at least
three guiding principles each. These are considered the best indicators for circularity
calculation in packaging products, given their emphasis on factors such as the amount of
waste recovered, the cost of waste recovery through EoL options (reuse, reform, recondition,
reuse and, finally, recycle), and the amount of reused, recycled, bio- or compostable material
incorporated into the product.
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Some other guiding principles, such as “eliminate the unnecessary packaging through
design reformulation and new delivery models” (linked to about 39% of the indicators),
“disengage plastic material produced with finite resource consumption” (circa 33% of the
indicators), and “prohibit dangerous chemical products in plastic packaging” (circa 39%
of the indicators), are much less discussed. The reason is related to the current plastic
packages being made of plastics coming from finite, non-renewable resources with additives
or multilayered solutions for better properties to maintain the integrity of the product until
the final consumer. Moreover, the current business model implemented in the packaging
sector does not promote reuse or take-back collection systems, which would return these
packages to the manufacturing companies.

6.3. Relationship between Packaging Micro-Level CE Indicators and DfX Approaches

In Figure 3, the CE micro-indicators selected as relevant for the packaging sector are
classified in terms of their alignment to the DfX approaches previously described. Most
of the indicators exhibit principles that are framed by the DfEnv (circa 94%, meaning 17
out of 18 relevant indicators) and DfS (circa 89% of the indicators) approaches, perhaps
due to the simple fact that both relate to efficient use of resources and the reduction of
the impact caused on the planet. Fewer micro-indicators can be correlated to the DfMA
and DfR approaches (circa 44% and 50% of the indicators, respectively), and none follows
the DfE approach. The DfMA approaches are included mainly in the indicators related to
EoL management, Resource efficiency and Remanufacturing categories. These micro-level
indicators focus their circularity calculations on the evaluation of the product functionality,
the ease of handling parts, the selection of common and mature manufacturing processes,
the selection of fasteners and tools necessary to assembly the product with few mistakes,
more efficiency and low emissions. For these micro-indicators, if a product is easily assem-
bled and is environmentally friendly during its production and lifespan, it is easy to repair,
refurbish or recycle its parts and materials. That allows the product to return to the system.
The DfR is revealed in most indicators of the resource efficiency and multidimensional
indicator categories because the micro-indicators of these CE categories allow the designers
to estimate the product’s behavior during its lifespan. It gives them the possibility to
identify the mistakes involved, redesign the product, and increase its circularity.
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The CE focus categories of Resource efficiency, Multidimensional indicators and Re-
manufacturing are those where the indicators are found in most DfX approaches. The
indicators belonging to these categories consider the efficiency of resource consumption
(water, energy, and labor) during manufacturing, transport and logistics; the dematerializa-
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tion of the products; the amount of waste generated; the impacts and costs of EoL options;
and the economic value returned through the recovery of the product by calculating the
circularity of a single product. This analysis reveals that MCI, VRE, CDG, CEIP and PLCM
are very developed indicators in terms of DfX approaches, which are important for the
circularity calculations in plastic packaging products.

Considering the characteristics of plastic packaging and according to the previous
analysis, it can be concluded that the DfX to design a circular and sustainable packaging
product are DfEnv, DfMA, and DfS.

6.4. Principles for CE and Its Relationship with Micro-Level Indicators and DfX Approach

CE micro-indicators calculate the product’s circularity through the input of several
parameters. They can be grouped into eight categories that evaluate different CE principles,
namely: sustainability of raw material input, addition of non-harmful additives, prevention
of waste production, extension of product life, prevention of unrecoverable waste, waste
recovery, easy separation and recycling efficiency.

In Figure 4, it is possible to see that 83% of the packaging-relevant indicators (15 out of
the 18 relevant CE micro-indicators) require inputs related to waste recovery. The indicators
included in this group require data such as the amount of material collected for recycling
or incineration, the value returned to the cycle through the recycling process, and/or the
cost of waste recovery to calculate the circularity of a product.
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The second most common group of parameters (in circa 61% of the indicators) is
related to the sustainability of the input of raw materials. This group involves inputs such
as the amount of recycled, biodegradable, or compostable material and the cost or value of
the raw material used in the product.

The third most common group of inputs among packaging indicators (circa 56% of
the indicators) is related to the prevention of irrecoverable waste. The indicators involved
in this group require data such as the cost of the waste recovery process (such as reuse,
remodeling or recycling) and the amount of material recovered.

Half of the indicators selected as relevant for packaging (nine CE micro-indicators)
also require inputs related to recycling efficiency, such as the percentage of efficiency of
the recycling process to recycle an end-of-life product or the quantity of product that it is
possible to recycle or recirculate.

However, inputs related to the addition of non-harmful additives (circa 17% of the
indicators), prevention of waste production (circa 17% of the indicators), extension of
product life (circa 28% of the indicators), and easy separation (circa 22% of the indicators)
are not common among the indicators selected as relevant to the packaging sector. These
parameters are more specific and therefore only relevant in some aspects of circularity.

Figure 4 also shows the relationship between these inputs and the most relevant
Design for X strategies for the packaging sector.

The inputs related to recycling efficiency, prevention of irrecoverable waste, and
prevention of waste production follow principles that are defended by the three most
relevant DfX approaches for plastic packaging (DfEnv, DfS and DfMA), namely principles
such as reducing the diversity of materials, using compatible materials, and employing
mature processes.

7. Good Practices and Concluding Remarks

As circularity indicators are a fairly recent and ad hoc development in the academic
community, they present a plethora of approaches, calculation methodologies and metrics.
Furthermore, these indicators are not described in the literature as sectoral indicators,
making it difficult to understand the relevance of their application to a given product, for
example, by applying them specifically to the packaging sector. It is in this aspect that the
present work becomes innovative. Based on the vast literature available on the circularity
of products, a selection of micro-level CE indicators for the plastic packaging sector was
made. However, it is important to highlight that this selection was carried out based on the
knowledge and experience of the parties involved in this work, where a different panel of
experts or a focus on a different type of packaging could have led to different indicators
being prioritized.

This article also provides tools that assist designers and managers in selecting which
indicators to use to evaluate the progress of a given package in terms of implementing
circular economy principles and DfX approaches, considering the parameters involved in
the calculation methodology for each indicator.

This is also expected to be a helpful tool for designers and companies producing
plastic packaging to guide the development of more circular packaging products.

From their relation to the guiding principles for CE transition and DfX approaches,
it was possible to identify guidelines and good practices to improve the circularity of
packaging products. Figure 5 summarizes these guidelines and good practices for in-
creasing circularity in packaging products. For each of the guidelines mentioned, the DfX
approaches that are best applied to plastic packaging are identified.
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In conclusion, circularity indicators are useful tools for assessing risks and identifying
opportunities for improvement. However, the knowledge base associated with most of
the available indicators is not sufficient for a clear and reliable assessment [99,100], as the
purpose of the indicator is not always clear [27], and results can be interpreted in various
ways, which promotes misleading conclusions [31].

For plastic packaging processors to adopt the application of circularity indicators in
their product development and quality control processes, there is a need to make these
metrics credible and relevant to communicate to customers the circularity of their products
compared to others on the market. For this, it is necessary to standardize the indicators.

Nevertheless, our analyses, through studying in depth the methodology behind each
indicator relevant to packaging, show that there are actions that clearly promote circularity
in this sector, which sometimes goes against the government measures currently imple-
mented. This is because, even if packaging incorporates more sustainable plastic materials
(biological, compostable or recycled), proper packaging collection and recovery systems
are not yet in place, leading to low-performance recyclates.

Thus, regulatory policies would benefit from the results obtained in this work and the
previously proposed guidelines, namely:

- Establish measures that restrict the tipology of polymeric materials allowed per pack-
aging type.

- Encourage the incorporation of recycled or biological material, taking measures to
reduce the market cost of these materials, for example, through tax incentives.

- Prohibit the use of toxic elements, such as harmful additives.
- Encourage product developers to consider their choices according to the possibilities

of end-of-life treatments available, so that unnecessary waste is not generated.
- In packaging that requires more than one material, encourage product developers to

design packaging that can easily separate the different materials without contaminat-
ing the individual components.
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- Develop more efficient recycling systems and new waste streams, mainly for bio-based
and degradable packaging, so that they do not contaminate existing waste streams
(and implement educational programs for the population to properly dispose of them
in these new streams).

- Packaging design should follow universal design solutions for the same product
between different brands to facilitate the recycling process.

Finally, recycling is not the only solution for reducing packaging plastic waste pol-
lution. Producers and consumer associations should create collection locations and/or
promote packaging reuse whenever possible, for example, by allowing refills when possible
and implementing take-back systems.

Through the increased implementation of circular economy principles and evaluating
their progress with circularity micro-indicators, the packaging sector can shift towards a
sustainable (and more circular) future, vital for modern society.

In our future work, we will identify case studies with industrial partners to validate
and demonstrate the practical application of this selection of relevant indicators for the
packaging sector.
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Abbreviations

Polymer Families
ABS Acrylonitrile Butadiene Styrene
HDPE High Density Polyethylene
LDPE Low Density Polyethylene
PET Polyethylene Terephthalate
PP Polypropylene
Circularity Micro-Indicators
CC Circularity Calculator
CDG Circularity Design Guidelines
CEI Circular Economy Index
CEIP Circular Economy Indi-cator Prototype
CM Combination Matrix
DEI Disassembly Effort Index
DSTR Decision Support Tool for Remanufacturing
eDIM Ease of Disassembly Metric
EDT Effective Disassembly Time
EEVC Eco-efficient Value Cre-ation
EOLI End-of-life Index
EOLI-DM End-of-life Indices (Design Methodology)
EPVR End-of-use product value recovery
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EVR Eco-cost/value Creation
H EZWP Model of Expanded Zero Waste Practice
LI Longevity Indicator
MCI Material Circularity In-dicator
MRS Material Reutilization Score
PR-MCDT Product Recovery Multi-criteria Decision Tool
RDI Recycling Desirability Index
REPRO2 Remanufacturing Product Profiles
RI Recycling Indices
RPI Reuse Potential Indicator
SDEO Sustainable design and end-of-life options
SICE Sustainability indicators in Circular Economy
TQP Typology of Quality Properties
VRE Value-Based Resource Efficiency
Design for X Approches
DfX Design for Excel-lence
DfA Design for Assem-bly
DfEnv Design for Envi-ronment
DfE Design for Ergo-nomics
DfM Design for Manu-facturing
DfMA Design for Man-ufacturing and Assem-bly
DfR Design for Reliabil-ity
DfS Design for Sustain-ability
Others
CE Circular Econo-my
COTS Commercial off-the-shelf
DOE Design of Ex-periments
EOL End of life
EU European Union
FMEA Failure Mode and Effects Analysis
LCA Life Cycle Analysis
MSW Municipal solid waste
VOC Voice of the Customer
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