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A B S T R A C T   

A new procedure for a fast and comprehensive description of the collapse behavior of curved masonry structures 
is presented. The first step provides the identification of the exact collapse mechanism and the load-bearing 
capacity through adaptive NURBS limit analysis. This method is based on the discretization of the masonry 
vault through very few curved elements, assumed as rigid blocks with internal dissipation allowed only at in-
terfaces, whose shape is iteratively modified until interfaces coincide with the correct position of cracks. On the 
obtained mechanism, a kinematic non-linear analysis with rigid-softening behavior can be also applied to better 
understand how the load-bearing capacity decreases during the evolution of the mechanism. A finite element 
(FE) non-linear static analysis is then applied to obtain the force–displacement curve according to the real elastic- 
softening behavior. The NURBS optimized model is converted into a discrete FE model composed of three- 
dimensional elastic units joint together by interfaces where the non-linear mechanical properties are lumped. 
Within this assumption, non-linear interfaces are applied along the cracks previously found through the limit 
analysis in a fully automatic way, preventing any mesh dependency effect. Furthermore, the combination of such 
approaches allows overcoming the respective drawbacks of the methods. Selected masonry arches and vaults are 
here studied to present the reliability of the presented coupled approach.   

1. Introduction 

Masonry vaults, arches and bridges are tangible evidence of the 
impressive skills and intuition of ancient builders. Such structures stand 
as distinctive elements of historical buildings such as churches, castles, 
palaces, and even housing aggregates which give significance to many 
European historical centers. Indeed, masonry structures play a funda-
mental role in cultural heritage and their structural preservation is 
nowadays crucial. As clearly established by ICOMOS guidelines, a cor-
rect intervention for the mitigation of vulnerability requires a compre-
hensive knowledge of the investigated structures. Correct understanding 
of the actual behavior can be reached by combining different ap-
proaches, involving historical investigation, non-destructive tests, and 
advanced computational analyses (Roca et al., 2010). Computational 
advanced approaches are particularly important to explore the ultimate 
behavior of such structures when subjected to loads not considered in 
their construction period. In particular, it is well known that curved 
structures are largely efficient only when gravity and, in general, 

vertical loads are considered. Still, a massive increase of such vertical 
loads (due for instance to a change of the intended use), asymmetrical 
loads, or the presence of soil settlements may promote the spreading of 
dangerous crack patterns (Portioli and Cascini, 2016; Iannuzzo et al., 
2018; Fortunato et al., 2018; D’Altri et al., 2020; Zampieri et al., 2018; 
Zampieri et al., 2018; Zampieri et al., 2018). Full collapses are mainly 
related to extreme events such as earthquakes, explosions, or floods. In 
this context, the importance of developing efficient numerical tools for 
the analysis of curved masonry elements subjected to different load 
configurations is clear. As well known, the non-linear finite element 
approach is considered as the most powerful tool to carry out a wide 
range of analyses, from checks of the stress distribution under self- 
weight to more advanced simulations such as static and dynamic non- 
linear incremental analyses carried out with complex softening mate-
rials (Rossi et al., 2020). The level of complexity may become extremely 
high when a heterogeneous approach is used, see for instance (Calderón 
et al., 2019). As a matter of fact, the composite nature of masonry, made 
by mortar and bricks or stones assemblages, is accurately reproduced 
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only by separately modeling each constituent material, but one of the 
main cons affecting detailed micro-modeling is related to the small 
thickness of mortar joints, which needs a high level of detail and the 
consequent use of a considerable number of finite elements for both 
joints and bricks, thus leading to a huge increase in terms of computa-
tional effort. 

In this context, simplified micro-modeling can be adopted, where 
mortar thickness is neglected and assumed as an interface between 
adjoining blocks (Gaetani et al., 2020). A quite effective alternative can 
be found in a macro-modeling approach where masonry is substituted by 
a fictitious homogenous material (see for instance (Milani et al., 2009)). 
Such expedient is particularly useful when large-scale structures are 
analyzed and non-linear computations are carried out. Fictitious me-
chanical properties to be assigned to the homogenous material may be 
obtained in different ways, homogenization representing the most 
rigorous one. Homogenization can be carried out by means of several 
approaches, including FE-based methodologies (Rekik and Gasser, 
2016) and semi-analytical ones (Bertolesi et al., 2016; Di Nino and 
Luongo, 2019). For instance, performing homogenization steps in the 
linear and non-linear range generally ensures a huge reduction of the 
complexity of the problem, without renouncing to a high level of ac-
curacy (Krejčí et al., 2021). 

Along with the finite element method (FEM), also discrete element 
methods (DEM) (Lemos, 2007) proved to be successful in specific fields 
of application, especially for masonry vaults and curved structures in 
general. In DEM, units interact mutually in correspondence with the 
interfaces, which typically follow a cohesive-frictional behavior. Uni-
lateral contact and sliding in correspondence of the joints are accurately 
reproduced especially when dry joint masonry vaults are considered (for 
instance, successful 3-dimensional distinct element code 3DEC appli-
cations have been recently presented in (Foti et al., 2018; Sarhosis et al., 
2019; Gobbin et al., 2020)). To the family of DEM approaches belongs 
also the so-called “RBSM” (Rigid Body and Spring Model), where in-
terfaces are modeled with non-linear springs connecting rigid cells. Even 
though such a method proved to be sufficiently accurate, its application 
has been limited, in most cases, to separate in-plane (Casolo, 2004; 
Casolo and Peña, 2007; Milani and Bertolesi, 2017) or out-of-plane 
(Casolo and Uva, 2013; Silva et al., 2017; Bertolesi et al., 2019) 
loaded walls, given the intrinsic difficulty to keep rigorously coupled the 
membrane and flexural actions. Conversely, an automatic 3D discrete 
mesh generator for the non-linear analysis of curved masonry structures 
have been recently presented (Scacco et al., 2020). The method, vali-
dated by means of numerical and experimental comparisons, provided 
highly reliable and accurate results, while maintaining the computa-
tional burden under a certain threshold of acceptability. The great 
advantage of such a method was the concurrent reproduction of 
different features which are peculiar of masonry, like its orthotropic 
behavior and the influence of membrane normal stresses on the flexural 
behavior. In fact, the proposed method relies on an idealization of the 
structures constituted by the repetition of elastic cells connected by in-
terfaces where all non-linearity has been concentrated. In particular, 
such interfaces have a finite thickness and are modeled with 8-noded 
brick elements. The softening behavior in the post-elastic phase is 
input through a classic Concrete Damage Plasticity (CDP) model avail-
able in the commercial code Abaqus, whose mechanical parameters are 
suitably tuned to account for the masonry orthotropy and softening 
behavior along different directions. This latter step is implemented as 
automatic kernel that allows performing direct numerical simulations. 
The discrete mesh is obtained automatically by means of an ad-hoc 
routine which transforms a standard 2D homogeneous FE mesh into a 
3D orthotropic elastic model with interfaces where non-linearity is 
lumped. The orthotropy, preserved at each interface, can be automati-
cally linked to different mechanical parameters according to its spatial 
orientation. Furthermore, the choice of modeling the structures with 3D 
elements is particularly suitable for curved surfaces, where the coupling 
between membrane and flexural actions plays a crucial role, that can be 

considered automatically only using a 3D discretization. On the other 
hand, such procedure may exhibit, as any discrete method, a certain 
mesh dependency. This is a consequence of the fact that non-linearities 
are exclusively lumped at the interfaces and a wrong estimation of the 
possible collapse mechanism in the first steps of the mesh creation, if 
suggested by user’s intuition and not grounded on robust automatic 
procedures, might be responsible for inaccurate results. 

The above-mentioned approach allows generally to fully track the 
evolution of cracks and displacements within a structure, fulfilling the 
requirements of advanced structural engineering. Even though ap-
proaches based on limit analyses do not provide any information on 
displacements, they proved to be able to effectively capture collapse 
mechanisms within a relatively narrow interval without being affected 
by mesh dependency, if the initial mesh is subjected to automatic 
adaptation. Such methodologies are modern applications of the classic 
limit analysis theorems, extensively applied by Heyman (Heyman, 1966; 
Heyman, 1969) for masonry arches. 

A modern implementation of the static theorem of limit analysis 
applied to double curvature structures, known as Thrust Network 
Analysis (TNA), can be found in (Block and Ochsendorf, 2007; Block and 
Ochsendorf, 2008). However, even if the possibility to apply horizontal 
loads has been proven in (Marmo and Rosati, 2017; Marmo et al., 2019), 
the main application of such an approach is mainly focused on shape and 
material optimization for new dry joint structures (Adriaenssens et al., 
2014). On the contrary, the latest implementations of the kinematic 
theorem revealed a versatility more oriented to studies related to 
earthquakes. In particular, some kinematic limit analysis tools based on 
an heterogeneous approach, i.e. with bricks and mortar modeled 
through rigid blocks and zero-thickness interfaces, have been presented 
during recent years (Portioli et al., 2014; Portioli et al., 2015; Cascini 
et al., 2020). In the field of masonry vaults, the first applications were 
carried out within classic FE formulations. An example is given by the 
use of rigid triangular six-noded elements enabling to fit satisfactorily 
the geometry of the vaults with few elements and with dissipation 
allowed only at the interfaces between contiguous triangles (Milani 
et al., 2008). On the other hand, if the mesh is not subjected to any 
adaptation scheme the solution remains mesh dependent. An attempt to 
circumvent such problem was tried initially by adjusting the mesh with 
Sequential Linear Programming (Milani and Lourenço, 2009; Milani, 
2015), and subsequently by using few NURBS (Non-Uniform Rational B- 
Spline, (Piegl and Tiller, 1995) rigid elements with mesh adaptation. 
This latter approach guarantees fast computations, excellent fitting of 
the real geometry and independence from the initial mesh adopted. 
Mesh adaptation has been carried out first in (Chiozzi et al., 2017), 
combining NURBS with a genetic algorithm, and the procedure proved 
to be stable and to have a limited computational burden, at the same 
time allowing a correct identification of the ultimate load and the cor-
responding mechanism. Subsequently, the method has been further 
refined and applied to several typologies of masonry vaults. As 
mentioned before, the main limitation consists in the impossibility to 
track displacement and crack patterns evolution during the application 
of the loads. Moreover, it has to be mentioned that the assumption of a 
rigid-plastic behavior for masonry, which is one of the fundamental 
hypotheses of the upper bound limit analysis theorem, can lead to 
overestimations of the real load carrying capacity, even in presence of a 
correctly identified active collapse mechanism (as explained in (Corradi 
Dell’Acqua, 1994)). This effect is clearly visible when non-null values of 
tensile strength are adopted in the computations and the typical soft-
ening in tension is largely overestimated by means of the adoption of a 
perfectly plastic behavior. In these cases, an incremental procedure 
becomes fundamental for the correct estimation of the real load-bearing 
capacity of the structure. 

The work proposed here is intended to provide an innovative 
coupling of the two aforementioned methodologies, in order to combine 
the successful features mentioned and tackle the respective drawbacks. 
Aiming at ensuring a limited computational burden, the discrete 
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approach proposed in (Scacco et al., 2020) is coupled with a previous 
kinematic adaptive limit analysis based on NURBS. In such a way, limit 
analysis is able to provide the correct collapse mechanism, which is 
automatically converted by the auto-meshing generator in Abaqus into a 
3D discrete mesh. The initial user-made choice of the mesh is therefore 
irrelevant and non-linear analysis can be performed by less experienced 
users. Furthermore, in order to show the consistency of the two applied 
methods, a kinematic non-linear analysis, where the deformed shape of 
the structure is considered step-by-step, is implemented. This means that 
the collapse load (the upper bound in a kinematic analysis) is found for 
different deformed configurations up to the point in which equilibrium 
of the structure cannot be satisfied by limit geometric conditions. 

The paper is organized as follows. In Section 2, the reliability of 
typical limit analysis outputs when the classic hypothesis of rigid-plastic 
behavior cannot be fulfilled is discussed. Section 3 contains a fully 
detailed explanation of the proposed coupled procedure. In Section 4, a 
range of structures of increasing complexity are studied and commented, 
including arches, skew arches, and a cloister vault. Finally, conclusions 
are drawn in Section 5. 

2. Reliability of limit analysis for quasi-brittle materials 

Consider a generic structure in the three-dimensional space x1x2x3, 
whose volume and its outer boundary are indicated respectively by V 
and S. This structure is subjected to a pattern of volume loads {Q0, λQ} 
and surface loads {q0, λq}, λ is a load multiplier applied to Q and q, and 
subscript 0 indicates the set of constant loads (e.g. gravity load in case of 
an earthquake load combination for which the maximum lateral load is 
sought). Consider an ideal rigid-plastic material, whose limit domain 
can be defined through M functions fα(σij), α = 1,… M, i, j = 1, 2, 3, in the 
stress space, the load multiplier is a static multiplier (λs) when an 
equilibrium configuration can be found with respect to plastic admis-
sibility. In other words, the following conditions must be verified: 

σij,i + Q0j + λsQj = 0 in  V,

σijni = q0j + λsqj in S, i, j = 1, 2, 3
σijni = q0j + λsqj in S, i, j = 1, 2, 3

(1) 

where the equilibrium within the volume and along the outer 
boundary is expressed, and: 

fα
(
σij
)
⩽0, α = 1,… M, i, j = 1, 2, 3 (2) 

which represents the plastic admissibility. 
Consider now a possible mechanism, defined by a discontinuous 

velocity field u̇ with respect to an associative plastic flow rule, i.e. plastic 
velocities directed orthogonally to the limit domain, and such that the 
power dissipated by λQ and λq is positive. Discontinuities in the velocity 
field, indicated as Δu̇, constitute the purely plastic deformations. The 
associative plastic flow rule is stated as follows: 

Δu̇ij =
∑M

α=1

∂fα

∂σij
ṗα in S, i, j = 1, 2, 3 (3) 

where ṗα ≥ 0 are the non-negative plastic multiplier rates. By 
applying the Principle of Virtual Power, a kinematic multiplier (λk) is 
identified: 

λk

(∫

V
Qu̇jdV +

∫

S
qu̇jdS

)

+

∫

V
Q0u̇jdV +

∫

S
q0u̇jdS =

∫

S
σijΔu̇ijdS

i, j = 1, 2, 3
(4) 

where the right-hand side of Eq. (4) represents the internal dissipated 
power. 

Under the hypotheses of small displacements, perfectly plastic 
behavior, and associative flow rule, the static and the kinematic theorem 
of limit analysis can be expressed, and the collapse multiplier (λc) can be 
identified as the minimum of the kinematic multipliers λk and the 
maximum of the static multipliers λs (Drucker et al., 1952): 

λc = min(λk) = max(λs) (5) 

The collapse multiplier is not affected by the elastic properties, 
provided that deformability is limited, i.e. the collapse mechanism can 
occur with small displacements. Whatever approach is followed (static 
or kinematic), limit analysis allows to evaluate the peak load and the 
behavior at the collapse of the structure, provided that the previously 
mentioned hypotheses are verified. Otherwise, Eq. (5) is not valid and 
the failure evaluation can lead to partially inaccurate results. If limit 
analysis is used despite the lack of one of the fundamental hypotheses, 
the reliability of the result obtained must be checked on a case by case 
basis. 

In particular, the hypothesis of perfectly plastic behavior of the 
material is the focus of attention here. Indeed, whereas this assumption 
is justified for steel, for masonry structures a different situation can be 
found. Limit analysis has been widely applied to curved masonry 
structures, such as arches and vaults (Heyman, 1966; Heyman, 1969; 
Como, 1992; Como, 2013). The assumption of infinitely rigid elements is 
justified for masonry, where the weak capacity to sustain tensile stresses 
usually leads to failures described through mutual rotations and trans-
lations of macro-blocks. A typical no-tension material is usually rec-
ommended for masonry, with a null value of limit stress in tension and 
the possibility to include failures in compression with respect to the 
hypothesis of perfect plasticity. However, exception made for dry-joints 
structures, the tensile strength of the mortar is usually low but not null 
(as shown during several experimental tests, see for instance (Hamid and 
Drysdale, 1988). Small values of tensile strength are often adopted in 
finite element incremental non-linear analyses (Scacco et al., 2020) and 
dynamic non-linear analyses with the aim of providing a more realistic 
representation of the structural behavior of masonry constructions and 
numerical convergence of the solutions. In these cases, an elastic- 
softening behavior with low fracture energy is assigned in tension. 

When not-null tensile stress values are used within limit analysis 
procedures, perfectly plastic behavior is implicitly considered in tension. 
In reference to the kinematic theorem, the mechanism is associated with 
an internal dissipation which depends linearly on the jumps of velocity 
along the cracks (as indicated by the right-hand side of Eq. (4)). This is 
less realistic since the behavior of mortar is typically brittle in tension. 
When a crack occurs, its internal dissipation rapidly decreases to zero 
under small rotations, then the crack continues opening without dissi-
pation. Therefore, it can occur that the maximum amount of internal 
power has been already dissipated along some fracture lines when the 
mechanism is completely developed, i.e. during the formation of the last 
crack needed for the mutual roto-translation of more blocks. 

Within this context, it is clear that the internal dissipation evaluated 
as shown in Eq. (4) assumes a fictitious role when brittle behavior is 
involved, since it represents the amount of power that would be dissi-
pated if the behavior were perfectly plastic. The rigid plastic behavior is 
the behavior that maximizes the load-bearing capacity of the analyzed 
structure. As a consequence, even if the correct collapse mechanism has 
been identified, the related kinematic load multiplier must be consid-
ered as a theoretical value which is an upper bound of the real collapse 
multiplier. If the mechanism takes place within the hypothesis of small 
displacements, the kinematic multiplier identifies a peak load equal to 
that found through incremental elastic–plastic analysis. Still, in presence 
of softening, the kinematic multiplier identifies a peak load that is higher 
than that obtained through incremental analysis with elastic-softening 
behavior (Corradi Dell’Acqua, 1994). 

For a complete description of failure in presence of brittle behavior, 
incremental non-linear analyses with elastic-softening material and non- 
linearities in geometry are usually needed. Alternatively, an incremental 
rigid-plastic analysis in which the ultimate resistance values are pro-
gressively decreased during the opening of the cracks can be performed. 
This procedure mainly consists in the evaluation of the load-bearing 
capacity during the evolution of the mechanism. In this way, a 

J. Scacco et al.                                                                                                                                                                                                                                  



International Journal of Solids and Structures 236–237 (2022) 111265

4

decreasing force–displacement curve is obtained, where displacement is 
referred to a control point and is representative of the evolution of the 
collapse mechanism. According to the previous considerations, this 
curve represents the upper bound of the peak load for each deformed 
configuration, which is described through the displacement of the con-
trol point from the undeformed configuration. Therefore, this rigid- 
softening curve will find higher load values than the non-linear 
elastic-softening force–displacement diagram as long as the structure 
is within the elastic field. Once the structure starts damaging and cracks 
occur, the two curves become tangent to each other. 

A schematic representation of the force–displacement diagrams 
related to those different behaviors is depicted in Fig. 1, where the 
tensile stress ft of masonry structures is used as the parameter repre-
sentative of the softening behavior. The analogous linear rigid-plastic 
and non-linear rigid softening curves that would be found by using ft 
= 0, i.e. the case with no internal dissipation, are shown for sake of 
completeness. 

3. Proposed method combining limit analysis and non-linear 
finite element analysis 

The main steps of the proposed approach are now described in detail. 
The first one consists of a kinematic limit analysis based on NURBS 
discretization and mesh adaptation. This first analysis is required to 
identify the maximum load-bearing capacity, i.e. the theoretical peak 
load under the hypothesis of ideal rigid-plastic material, and the correct 
shape of the failure mechanism. Once the collapse mechanism has been 
found, a kinematic non-linear analysis with softening in tension is also 
performed to determine how the load-bearing capacity decreases in each 
deformed configuration. The load–displacement curve for the rigid- 
softening material is obtained and taken into account as a reference 
for the final outcome. The next and final step is the FE incremental 
analysis with material and geometric non-linearities. This analysis is 
applied on a discrete model composed of elastic macro-blocks and non- 
linear interfaces located along the fracture lines previously identified 
through adaptive NURBS limit analysis. An elastic-softening 
load–displacement curve, which is an accurate representation of the 
real non-linear response of the structure, is found. The tangency be-
tween the rigid-softening and the elastic-softening curves must be 
observed in the numerical simulations. 

3.1. Adaptive NURBS kinematic limit analysis 

The first step of the proposed procedure is the adaptive NURBS ki-
nematic limit analysis. This numerical technique was proposed as a 
reliable method for the limit analysis of masonry vaults (Chiozzi et al., 
2017) and it has been extended to several typologies of masonry struc-
tures during recent years. This approach relies on the use of NURBS 
parametric surfaces for a faithful representation of curved geometries. A 
NURBS (Non-Uniform Rational B-Spline) surface is described by a set of 

control points in the three-dimensional space and the so-called NURBS 
basis functions, i.e. rational basis functions obtained from two non- 
uniform knot vectors and the traditional B-spline basis functions (Piegl 
and Tiller, 1995). 

Within the Rhinoceros environment, a few surfaces can be used to 
represent the middle surface of a masonry vault (Fig. 2(a)). Then, the 
model is imported in MATLAB as an IGES file (Kennicott, 1996) where 
each surface is converted into a curved shell-element through the 
assignment of a thickness value. Within MATLAB, the subdivision of 
each NURBS surface into a low number of trimmed surfaces allows 
defining an initial mesh composed of a few elements which still main-
tains unaffected the geometry of the structure (Fig. 2(b)). 

A kinematic limit analysis is then applied. Each element is supposed 
infinitely rigid and infinitely resistant. Curved interfaces are defined at 
the common boundaries between adjacent elements. Here, the internal 
dissipated power is evaluated by imposing a classical associated plastic 
flow rule depending on an assigned limit domain. With the aim of 
defining a limit domain with finite ultimate stress values, a Mohr- 
Coulomb three-dimensional failure domain with a tension cut-off and 
a linear cap in compression is used (Fig. 2(c), where ft is the tensile 
strength, fc is the compressive strength, c and φ are respectively the 
cohesion and the friction angle). This model also allows to assume not- 
null values of tensile strength within the hypothesis of rigid-plastic 
behavior. In addition, the typical orthotropic behavior of masonry can 
be reproduced by assigning two distinct limit domains (with the same 
shape but different resistance values) to the two main directions of each 
NURBS surface. Then, for each inclined interface, the two main domains 
are combined to provide the homogenized limit domain related to the 
direction of the current interface. Once a load-configuration [q0, λkq] 
(partially dependent on a load multiplier) is defined, the kinematic 
multiplier λk related to the initial mesh is derived by finding the vector of 
centroid velocities and plastic multiplier rates as x  = [u̇, ṗ] that solves 
the following linear programming (LP) problem: 

min
{

λk =
cṗ − q0u̇

qu̇

}

such that

⎧
⎪⎨

⎪⎩

Au̇ = 0
RΔu̇ − Bṗ= 0

qu̇ = 1
ṗ⩾0

(a)
(b)
(c)
(d)

(6) 

where: (a) represents the geometric constraints, (b) is the imposition 
of the associated plastic flow rule at the interfaces (in which Δu̇ are the 
jump of velocities and R is the matrix of the local reference systems), (c) 
is the normalization of the power dissipated by the base load q and (d) is 
the constraint of non-negativity of the plastic multiplier rates. 

A mesh adaptation procedure aimed at minimizing the kinematic 
multiplier is now needed. Indeed, since the mechanism derived from Eq. 
(6) depends on the pre-assigned position of possible cracks, i.e. the 
initial mesh adopted, the collapse multiplier is determined by finding 
the mesh where the interfaces between elements correspond to the 
correct position of cracks. A Genetic Algorithm (GA) is thus used to 
iteratively modify the shape of elements until the absolute minimum of 
the kinematic multipliers is found. GA is one of the most suited approach 

Fig. 1. Schematization of typical load–displacement diagram with different mechanical behaviors.  
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for mesh adaptation schemes in masonry vaults (Milani, 2015; Ponter-
osso et al., 2000), even if other meta-heuristic algorithms can be suc-
cessfully used within the adaptive NURBS limit analysis (Grillanda et al., 
2020). At the end of this procedure, the collapse multiplier and the 
correct collapse mechanism have been automatically determined (Fig. 2 
(d)). 

The final mesh, optimized to reproduce the real position of cracks, 
can be easily exported from MATLAB again as an IGES file. This will be 
the input file for the discrete approach that will be described in the 
following sub-sections. 

3.2. SLP kinematic non-linear analysis 

Once the correct failure mechanism has been found, a procedure of 
kinematic non-linear analysis can be applied. According to the brief 
theoretical discussion presented in Section 2, this step is aimed at 
providing an upper bound load value for each deformed configuration 
until the equilibrium is no longer verified. Within this post-processing 
analysis, a load–displacement diagram which shows the dependence 
of the collapse load multiplier on the evolution of the mechanism is 
derived. For a reliable estimation of the structural capacity, a rigid- 
softening behavior in tension can be considered. An iterative proced-
ure based on a Sequential Linear Programming (SLP) is here applied. At 
the first iteration, denoted as iteration 0, the initial geometry is updated 

by applying a displacement field u0 = dt⋅u̇0, where u̇0 is the velocity field 
that identifies the collapse mechanism and dt is a small amount of time, 
allowing to treat u0 as a small displacement. A deformed configuration, 
where some of the cracks are partially open, is obtained in this way. At 
this point, if a rigid-softening behavior is considered in tension, the ul-
timate tensile strength values assigned to each interface must decrease. 
In particular, a lower tensile strength is assigned depending on a given 
stress–strain constitutive law and the amount of opening (i.e. the posi-
tive jump of displacement) measured on each interface. The LP problem 
is therefore re-written and solved in the deformed configuration, 
providing a new value of the collapse multiplier and a new discontin-
uous velocity field u̇1. Another displacement field is obtained and a new 
iteration is performed. Ont the i-th iteration, the associated LP problem 
is the following (compare with Eq. (6)): 

min
{

λc,i =
ci− 1ṗi− 1 − q0u̇i− 1

qu̇i− 1

}

such that

⎧
⎪⎨

⎪⎩

Ai− 1u̇i− 1 = 0
Ri− 1Δu̇i− 1 − Bi− 1ṗi− 1= 0

qu̇i− 1 = 1
ṗi− 1 ⩾0

(a)
(b)
(c)
(d)

(7) 

A load–displacement diagram is obtained, where the displacement is 
referred to a selected representative control point. A schematization 
example is depicted in Fig. 3. The iterative procedure goes on until a 
maximum displacement is reached, or in other words until the overall 
load configuration cannot be sustained anymore and the load-bearing 

Fig. 2. Adaptive NURBS limit analysis: (a) NURBS surface representing a masonry skew arch, (b) NURBS model in MATLAB with adaptive mesh, (c) 3D limit stress 
domain at interfaces, and (d) result after the mesh adaptation. 
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capacity becomes null. 

3.3. Automatic mesh generation for discrete FE non-linear analysis 

The second step of the proposed method consists of a non-linear 
static analysis performed within the Abaqus FE software. The non- 
linear analysis here presented relies on an innovative discrete method 
already successfully validated for masonry plane elements (Scacco et al., 
2020) and curved ones (Scacco et al., 2020). In such an approach, the 
masonry structure is idealized as an assembly of three-dimensional (3D) 
elastic units joined by interfaces where the non-linear mechanical 
properties are lumped. The properties may come directly from a previ-
ous homogenization procedure that allows to reduce significantly the 
global number of variables involved. Furthermore, such step can be 
based on semi-analytical approaches (further details can be found in 
(Scacco et al., 2020) as well) to avoid the performing of advanced and 
time consuming micro-modeling FE analysis at the Representative Vol-
ume Element (RVE) level. 

At a structural level, which is the focus of the present work, the main 
innovation, which makes the method fast and attractive even from a 
practitioner point of view, is the way the non-linear interfaces are 
modeled. Indeed, flat 3D brick elements are used for this scope with a 
physical thickness that is considered negligible when compared to the 
overall dimension of the structure. The non-linear mechanical properties 
are addressed by means of the constitutive model Concrete Damage 
Plasticity (CDP) available in Abaqus. In particular, CDP is an isotropic 
elastic–plastic constitutive model with the possibility of damage (Lub-
liner et al., 1989). The shape of the yield surface follows the Drucker- 
Prager yield criterion, which can be modified to resemble smoothly a 
Mohr-Coulomb failure surface, more suitable when masonry-like mate-
rials are treated. Distinct behavior in tension and compression, with an 
exponential softening in tension and a hardening-parabolic softening in 
compression, are automatically provided within the CDP model. 

As shown in (Scacco et al., 2020), the discrete approach showed 
great potential in the field of non-linear analysis of curved masonry 
structures. First of all, the idealization as a discrete assembly allows to 
address differential mechanical properties according to the interface 
orientation, preserving the orthotropy peculiar to masonry. Then, the 
choice of modeling the interfaces with 3D brick elements resulted to be 
highly appropriate, as it enables to take automatically into account the 
influence of membrane loads (coming from the static gravity actions) on 

the out-of-plane behavior. Moreover, the mesh discretization is made of 
a global number of nodes that is small when compared to advanced 
heterogeneous approaches. In such a way it is possible to perform non- 
linear analyses and track the evolution of inelastic behavior without 
unacceptably large computational time. 

A possible drawback of the proposed approach may be found in the 
initial model preparation. Indeed, when curved elements are treated, the 
realization of a discrete mesh can result cumbersome and time- 
consuming when compared to other methods that take advantage of 
already implemented auto-mesh tools. Such possible difficulty is related 
to the choice, previously justified, of modeling interfaces with flat 3D 
brick elements. The physical thickness of these implies the necessity of 
ensuring gaps between the contiguous elastic discrete units. Aiming at a 
numerical tool easily employed even by less experienced users, a 
MATLAB script was implemented in (Scacco et al., 2020). The script is 
able to create automatically the final 3D discrete mesh starting from an 
initial definition of a rough mesh of the intrados of the curved structure 
considered. This step can be performed through a manually user-input 

Fig. 3. Example of a kinematic non-linear analysis with rigid-softening behavior in tension.  

Fig. 4. Automatic creation of interfaces and 3D discretization.  

Fig. 5. Orientation of the non-linear interfaces in the skew arch benchmark.  
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or by means of any auto-meshing module already at the disposal in FE 
commercial software. From Fig. 4, which describes the auto-meshing 
procedure flow, it is noticeable that each 4-noded shell element of the 
mesh corresponds to one elastic 3D cell in the final discrete mesh with 
brick elements. 

In fact, a shrinking operation (Fig. 4(b)) applied on each shell 
element allows to ensure the needed space for the subsequent creation of 
the interfaces. These are automatically generated as additional 4-noded 
thin elements, joining the contiguous elements (Fig. 4(c)). Then, each 
element is subdivided according to the desired discretization of the final 
3D discrete model (Fig. 4(d)), which is finally obtained by a direct 
extrusion of the discrete shell mesh (Fig. 4(e)). 

Furthermore, in presence of an orthotropic behavior, the script is 
able to assign automatically different mechanical properties to each 

interface according to its orientation in the space. If the available me-
chanical properties are referred to the vertical and horizontal directions, 
the program computes the tensile strength for any other direction I as 
follows: 

σI = sin2θ⋅σv + cos2θ⋅σh (8)  

where σI, σv and σh are respectively the tensile strength of the interface 
under consideration and of the strength along the orthogonal directions 
(vertical and horizontally, typically); θ is the angle between the interface 
projections and the x-axis (a representative scheme is provided in 
Fig. 5). 

3.4. Coupling 

In (Scacco et al., 2020) the capabilities of the discrete method were 
highlighted and discussed in detail. Two different structural examples 
were analyzed taking advantage of already existing experimental and 
numerical references: a hemispherical dome and a cloister vault made of 
standard Italian bricks. Among other items, the past work focused on the 
influence of the initial mesh input and of the discretization applied. 
However, in those specific cases, the applied load is a simple vertical 
load at the top of the structures until failure. Such setup led to a damage 
configuration that may be trivial and easily foreseen by experienced 
users (see for instance the damage spreading along the meridians in the 

Fig. 7. Auto-meshing procedure without (left) and with (right) a previous kinematic analysis providing the collapse mechanism.  

Fig. 6. Typical meridian cracks on masonry domes (Como, 2013).  
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case of the dome as shown in Fig. 6). On the contrary, when the load 
cases are not covered in the literature, the initial input of the mesh of the 
inner surface may cause an overestimation of the capacity load and an 
inaccurate simulation of the collapse mechanism. Indeed, as any discrete 
approach, the proposed method can be affected by mesh dependency 
(Scacco et al., 2020) due to the arrangement and the size of the discrete 
units initially imposed. 

In the present work, the main goal is the enhancement of the discrete 
approach by tackling the mesh dependency and finally providing a 
comprehensive method for the analysis of curved masonry structures. As 
non-linearities are concentrated only along the interfaces, there is the 
necessity to consider any possible important fracture lines during the 
initial mesh generation. In order to pursue this task, the adaptive NURBS 
kinematic limit analysis is adopted just before the flow-procedure of the 
automatic mesh generation to determine the exact shape of the collapse 
mechanism. The NURBS model and the derived optimized mesh are 
easily exported from MATLAB as an IGES file and then imported within 
Abaqus, where the discrete model is automatically generated. In such a 
way, the mesh of the inner surface is bounded not only by the geometry 
itself of the structure but also by the real fractures, detected through the 
adaptive NURBS limit analysis, along which the non-linear interfaces 
will be automatically created (Fig. 7). In the following analyses, the 
importance of adding such a step for extending the application field of 
the discrete approach to most complex structures and more varied load 
cases will be shown. 

4. Numerical examples 

Selected numerical examples are now presented as a demonstration 
of the potential of the proposed tools. For each example, the first step is 
the application of the adaptive NURBS limit analysis (LA) to define the 
correct shape of the collapse mechanism, identified by means of the 
optimized mesh, and an upper bound of the peak load evaluated within 

the hypothesis of perfect plastic behavior. The optimized mesh is then 
exported from MATLAB to Abaqus where the discrete approach (DA) can 
be applied. A discrete model with non-linear interfaces defined on the 
pre-obtained fracture lines is automatically generated. At this stage, a 
static non-linear analysis, in which both material and geometric non- 
linearities are taken into account, is performed by assigning elastic–-
plastic behavior in compression and elastic-softening behavior in ten-
sion. A reliable force–displacement diagram is found in this way. For 
each case, the corresponding force–displacement curve with elastic–-
plastic behavior in tension is also derived to better observe the analogy 
with this mechanical behavior and the rigid-plastic limit analysis. In 
addition, the previously described SLP-approach is also applied to derive 
the decreasing rigid-softening force–displacement curve that represents 
the variations of the upper bound of the peak loads during the evolution 
of the mechanism. Numerical examples include two masonry arches, one 
skew arch, and a cloister vault. For the sake of simplicity, Table 1 reports 
mechanical parameter values adopted for all examples. 

4.1. Masonry arches 

The analysis of simple two-dimensional masonry arches is beneficial 
to achieve awareness on the proposed superimposition of the two ap-
proaches before moving attention to complex double-curvature masonry 
vaults. With the aim of providing a more detailed overview on how 
softening in tension affects the collapse behavior, four values of tensile 
strength (from 0.05 MPa to 0.20 MPa, with steps of 0.05 MPa) were 
adopted for the masonry arches, together with different corresponding 
values of fracture energy. The other parameter values have been chosen 
consistently with (Bertolesi et al., 2016; Alecci et al., 2016), and, when 
missing, with typical values from technical literature. 

Geometries and load conditions of the two examples are depicted in 
Fig. 8. The first masonry arch is a circular arch originally analyzed in 
(Bertolesi et al., 2016) through both experimental tests and numerical 

Table 1 
Masonry parameters adopted.   

Masonry arch #1 Masonry arch #2 Skew arch Cloister vault 

LA and SLP approach     
Specific weight γ 18 kN/m3 18 kN/m3 22 kN/m3 20 kN/m3 

Tensile strength ft 0.05 ÷ 0.20 MPa 0.05 ÷ 0.20 MPa 0.10 MPa (1) 0.05 MPa (2) 0.09 MPa (*) 
Ultimate displacement in tension du 0.2 mm 0.2 mm 0.2 mm 0.2 mm 
Compression strength fc 5 MPa 8 MPa 2.4 MPa 2.2 MPa 
Cohesion c 0.20 MPa 0.20 MPa 0.14 MPa 0.1 MPa 
Friction angle φ 0◦ 0◦ 30◦ 30◦

DA     
Density ρ 1800 kg/m3 1800 kg/m3 2200 kg/m3 2000 kg/m3 

Elastic modulus E 5000 MPa 5000 MPa 16000 MPa 1700 MPa 
Poisson modulus ν 0.2 0.2 0.2 0.2 
Tensile strength ft 0.05 ÷ 0.20 MPa 0.05–0.20 MPa 0.10 MPa (1) 0.05 MPa (2) 0.09 MPa (*) 
Fracture energy in tension Gf = ft⋅du/2 0.005 ÷ 0.02 N/mm 0.005 ÷ 0.02 N/mm 0.01 N/mm (1) 0.005 N/mm (2) 0.009 N/mm (*) 
Compression strength fc 5 MPa 8 MPa 2.4 MPa 2.2 MPa 
(*) in which values (1) and (2) are adopted respectively for the failure along bed joints and orthogonal to bed joints  

Fig. 8. Masonry arches (a) #1 (Bertolesi et al., 2016) and (b) #2 (Alecci et al., 2016): geometry and load condition.  
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analyses. This circular arch is characterized by an internal span of 1500 
m, thickness of 50 mm, and width of 450 mm. The second arch, which 
was taken from (Alecci et al., 2016), is characterized by a geometry with 
internal span of 1500 mm, rise 432.5 mm, thickness and width both 
equal to 95 mm (see Fig. 8(b)). In both cases, a pointed vertical load is 
applied at a quarter of the span. 

For both cases, the adaptive NURBS limit analysis has been used to 
find the exact position of the 3 internal hinges required for the definition 
of a mechanism (one hinge was supposed to occur in correspondence to 
one extremity of the arch). For the 3 hinge location parameters to be 
determined, a population of 20 individuals and a maximum of 100 
generations have been used within the GA. Then, the optimized mesh 

Fig. 9. Masonry arch #1: (a) optimized collapse mechanism, (b) deformed structure through the discrete approach, (c) force–displacement diagrams with different 
values of tensile strength and fracture energy. 
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has been imported within Abaqus as an IGES file to obtain the discrete 
model and perform static non-linear analyses through the presented 
discrete approach. Results are shown in Fig. 9 and Fig. 10 respectively 
for arch #1 and arch #2. It can be observed that a perfect agreement 
between the collapse shapes was found between the two models. In 
particular, Fig. 9(c) and Fig. 10(c) show the force–displacement 

diagrams corresponding to each value of tensile strength. As it can be 
observed, the discrete approach is the only tool able to correctly esti-
mate the peak load especially in presence of a relatively high value of 
tensile strength, where the difference between the rigid-plastic and the 
elastic-softening peak load is clearly visible. 

Fig. 10. Masonry arch #2: (a) optimized collapse mechanism, (b) deformed structure through the discrete approach, (c) force–displacement diagrams with different 
values of tensile strength and fracture energy. 
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4.2. Skew arch 

The transition from plane arches to skew arches is a fundamental step 
towards more complex cases. Indeed, even if the collapse mechanism 
generally involves the occurrence of four hinges (in the case of flexural 
behavior), the development of the fracture lines along the width can be 
difficult to predict without the support of a kinematic limit analysis. 
Therefore, a masonry skew arch first tested in (Wang and Melbourne, 
1996) and analyzed in (Zhang et al., 2016) is considered next. The ge-
ometry is depicted in Fig. 11. This skew arch was studied also in (Chiozzi 
et al., 2017) and (Grillanda et al., 2020), where two circular hinges were 
applied at the extreme boundaries of the arch and a tensile strength 
equal to 0.2 MPa was used. In this work, to better reproduce the result 
obtained in (Zhang et al., 2016), the arch is fixed at the extreme 
boundaries and a tensile strength equal to 0.10 MPa is assigned (the 
same value used in (Zhang et al., 2016). Two different load cases have 
been here investigated, one already analyzed in (Chiozzi et al., 2017; 
Grillanda et al., 2020; Zhang et al., 2016), see Fig. 11. 

Within the adaptive NURBS approach, the skew arch has been sub-
divided into 5 elements for both load cases. The four internal interfaces 
can move longitudinally and rotate around the vertical direction, 
resulting in a total of 8 parameters governing the mesh adaptation, to 
better represent the torsional effects due to the skew geometry. 40 in-
dividuals and 100 max generations have been used in the GA. 

With reference to load case 1, the obtained result is presented in 
detail in Fig. 12. It can be observed that, starting from a load-bearing 
capacity of 26.65 kN obtained through limit analysis, the maximum 

peak load decreases to 18.47 kN after 1 mm of deflection. This is in good 
agreement with the numerical results presented in (Zhang et al., 2016). 
On this load case, the discrete approach has been applied by using also a 
non-optimized mesh to show the mesh-dependency of the method and 
thus to demonstrate the need to know the correct position of fracture 
lines. By using a regular non-optimized mesh, the maximum peak load is 
overestimated, see Fig. 13. 

Finally, the analysis of skew arch under load case 2 is presented in 
Fig. 14. In this case, the load-bearing capacity is less affected by the 
softening in tension than the previous examples. Indeed, here the 
crushing of masonry assumes a fundamental role on each inclined hinge. 
As a consequence, the elastic-softening curve remains almost horizontal 
without decrease after a few millimeters of deflection. 

4.3. Cloister vault 

The last structural example considered treats the numerical simula-
tion of a cloister vault. Like the previous cases, the geometry configu-
ration (side 2 m, thickness 12 cm, Fig. 15) is taken from an existing 
experimental reference (Faccio et al., 1999), whereas the load case is 
specifically varied to accomplish the task of the paper. The discrete 
approach was already validated and the results were highly satisfactory 
for the case of the cloister vault subjected to a vertical load on the top 
(Scacco et al., 2020) (the experimental procedure in (Faccio et al., 
1999). With the aim of inducing a more complex and hardly predictable 
damage pattern, the load case has been changed into a horizontal 
concentrated load applied at the top as depicted in Fig. 15. In this case, 

Fig. 11. Skew arch (Wang and Melbourne, 1996): geometry and load case (a) 1 and (b) 2.  
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an orthotropic behavior is assumed taking advantage of the already 
homogenized steps performed in (Scacco et al., 2020): in both the 
NURBS and the discrete model, two different values of tensile strength 
have been assigned along the vertical direction, i.e. failure on bed joints, 
and the horizontal one, i.e. orthogonal to bed joints. Isotropic behavior 
has been assumed in compression and shear. 

Within the NURBS model, each sail has been subdivided into 7 
curved macro-elements. The mesh adjustment of the single sail is gov-
erned by 10 parameters, each one representing a displacement of one 
internal knot (remember that knots located on a sail edge must move 
along the current edge) and thus resulting in a total amount of 32 pa-
rameters for the whole cloister vault. The symmetry of the problem in 

Fig. 12. Skew arch (Wang and Melbourne, 1996), load case 1: (a) optimized collapse mechanism, (b) deformed structure through the discrete approach, and (c) 
force–displacement diagrams. 
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terms of both geometry and load conditions allows us to reduce the 
number of parameters of the overall mesh adjustments to 16. A popu-
lation size of 60 and a maximum generation number of 100 have been 
used within the GA. The collapse mechanism is depicted in Fig. 16(a). 
Fig. 16(b) shows the related discrete model. It has to be stated that, 
before exporting the IGES file from MATLAB to Abaqus, interfaces not 
involved in the mechanism (i.e. those characterized by null velocities 
jumps) have been removed to reduce the number of unknowns and the 
complexity of the discrete model. Even in this case, the deformed 
structure obtained through the DA is in good agreement with the 
mechanism previously found. This result is even more emphasized from 

the force–displacement diagrams presented in Fig. 16(c), where it can be 
seen that the DA elastic-softening merges perfectly the SLP rigid- 
softening after a horizontal displacement equal to 1 mm. In this last 
example is even more clear the effectiveness of the proposed coupled 
procedure, since LA is not able to properly identify the real peak load 
without further investigations. 

5. Conclusions 

In this paper, an innovative coupled procedure for the non-linear 
analysis of curved masonry structures has been presented. First, the 

Fig. 13. Skew arch, load case 1, mesh-dependency of the discrete approach: result with (a) non-optimized and (b) optimized mesh, and (c) comparison between the 
two curves obtained. 
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Fig. 14. Skew arch (Wang and Melbourne, 1996), load case 2: (a) optimized collapse mechanism, (b) deformed structure through the discrete approach, and (c) 
force–displacement diagrams. 

Fig. 15. Cloister vault (Faccio et al., 1999): geometry and load conditions.  
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collapse mechanism has been defined through a consolidated adaptive 
NURBS limit analysis approach, which allows to find the real position of 
fracture lines with a low computational cost. With the obtained result, a 
discrete FE mesh has been automatically created through totally inte-
grated kernel subroutines and non-linear analyses have been performed 
directly interfacing with limit analysis and mechanical properties com-
ing from homogenization or other suitable approaches. The automatic 
conversion of the rigid curved NURBS macro-blocks into 3D elastic el-
ements with non-linear interfaces allows to carry out fast pushdown or 
pushover analyses, avoiding any overestimation due to wrong initial 
inputs on the initial mesh. In such a way, the proposed coupled pro-
cedure is able to balance the well know intrinsic disadvantages of both 
methods when independently applied. Along with the main two steps 
(limit analysis and elastic-softening analysis), kinematic rigid-softening 
and elastic–plastic analyses have been used to enforce the reliability of 
the results obtained, providing a further validation and presenting in 
parallel comparison of the structural response under the assumption of 

different mechanical behaviors. Several numerical examples have been 
investigated, such as simple masonry arches, skew arches, and a hori-
zontally loaded cloister vault. In all cases considered, the proposed 
method allowed to correctly derive the expected global load–displace-
ment non-linear behavior, according to the existing literature used as 
benchmark. Moreover, the mesh dependency of the discrete approach 
(step 2) has been investigated using as main benchmark the skew arch 
case; the results obtained have shown how the adaptive limit analysis 
(step 1) appears crucial for the determination of the actual position of 
the cracks spreading during the loading process. In conclusion, coupling 
adaptive limit analysis with a discrete approach may result to be an 
effective numerical strategy for obtaining a fast and comprehensive 
understanding of the non-linear behavior up to collapse behavior of 
curved masonry structures modeled with a material exhibiting softening 
and orthotropy. 

Fig. 16. Cloister vault under horizontal load: (a) optimized collapse mechanism, (b) deformed structure through the discrete approach, and (c) force–displace-
ment diagrams. 
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