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ABSTRACT
Breast interventions are common healthcare procedures that nor-
mally require experienced professionals, expensive setups, and high
execution times. With the evolution of robot-assisted technologies
and image analysis algorithms, new methodologies can be imple-
mented to facilitate the interventions in this area. To enable the
introduction of robot-assisted approaches for breast procedures,
strategies with real-time capacity and high precision for 3D breast
shape estimation are required. In this paper, it is proposed to fuse
the structured light (SL) and deep learning (DL) techniques to per-
form the depth estimation of the breast shape with high precision.
First, multiple synthetic datasets of breasts with different printed
patterns, resembling the SL technique, are created. Thus, it is possi-
ble to take advantage of the pattern’s deformation induced by the
breast surface in order to improve the quality of the depth infor-
mation and to study the most suitable design. Then, distinct DL
architectures, taken from the literature, were implemented to esti-
mate the breast shape from the created datasets and study the DL
architectures’ influence on depth estimation. The results obtained
with the introduction of a yellow grid pattern, composed of thin
stripes, fused with the DenseNet-161 architecture achieved the best
results. Overall, the current study demonstrated the potential of
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the proposed practice for breast depth estimation or other human
body parts in the future when we rely exclusively on 2D images.
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1 INTRODUCTION
Nowadays, there are several breast interventions performed with
different objectives [1]. Most of them are related to medical prob-
lems, such as breast cancer, which demands a breast biopsy in case
of cancer suspicion and, if confirmed and suitable, requires tumor
removal. This procedure demands experienced medical staff and
image-guided methodologies, being challenging to execute and
expensive [2]. Other interventions are therapeutic, such as cyst as-
piration and abscess drainage, or palliative, such as pleural effusion
drainage or nerve block. Meanwhile, there are also some interven-
tions related to aesthetic problems, such as breast reconstruction or
breast augmentation. From medical to aesthetic issues, all of them
can benefit from new advanced technologies, such as medical guid-
ance through medical image analysis or robot-guided procedures
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[3]. Still, to include such strategies in breast interventions, the 3D
shape estimation of the breast is required.

The structured light (SL) method is a well-validated computer
vision technique that facilitates the information gathering of an
object’s volume [4]. This method lies in the use of a pattern, pro-
jected onto the object, to extract its depth information through the
deformation it causes in the pattern. Traditionally, an image sensor
acquires a 2D image of the scene with an overlapping pattern and,
if the surface is nonplanar, the pattern will suffer variations, in com-
parison with the projected one, allowing to employ SL principles
and algorithms to obtain the 3D surface shape [5]. More recently,
with the expansion of Deep Learning (DL) methods in several areas
and techniques, some implementations employed this methodology
to extract the depth information about the captured scene. The
combination of DL and SL methods is an interesting approach to
achieving the 3D breast shape.

The traditional methods used for depth estimation are mainly
based on the reflected echo captured after hitting an object with
a controlled energy beam [6]. Although they offer an acceptable
accuracy, they require a high cost, given that, besides an imaging
device, its hardware involves a receiving and sensing device and
following processing is still needed [7]. Alternatively, a strategy
based on DL simply needs to acquire an image of the object, using
a sensor, and then analyze this data in order to obtain the desired
depth information. The obtained depth maps can then be used to
deploy a 3D model of the object. However, DL-based strategies are
highly dependent on their architecture [8] and rely on the coherence
and variability of the dataset used to train them.

In this work, we aim to study the advantage of fusing DL and
SL in breast shape estimation. Therefore, we initially created a
toolchain to develop synthetic datasets, based on patterns. Here, a
wide range of synthetic human models with different printed pat-
terns were created. Then, multiple DL architectures were employed
to solve the depth estimation problem. This strategy allows study-
ing the influence of patterns on this technique and their design
importance on depth estimation for 3D reconstruction problems.

The rest of the article is organized as follows: Section 2 describes
the related works, Section 3 introduces the adopted methodology,
Section 4 describes the experiments and provides the obtained
results, Section 5 discusses the results of our search and Section 6
concludes on the significance of our work and its impact.

2 RELATEDWORK
2.1 Deep learning on depth estimation
Depth estimation methods have recently reemerged, especially the
ones that employ DL. Liu et al. [9], presented a way to extract the
depth information from single images using deep convolutional
neural networks (CNN). Furthermore, He et al. [10] introduced the
concept of residuals into CNN and implemented the well-known
ResNet, allowing models to have higher depth without suffering
from an explosion of gradients, saturation, or a decrease in the
accuracy. This contribution opened the way for Laina et al. [11],
who created a network architecture built on top of the ResNet-50
to perform depth estimation from monocular images. Eventually,
ResneXt [12] was created when a new dimension, called cardinality,

was added. Besides the traditional dimensions of height and width,
cardinality corresponds to the size of the set of transformations.

The DenseNet family of neural networks [13] is based on the
existence of dense connections between layers, i.e each layer is con-
nected to all the preceding and following layers, which increases
the number of shorter connections between the input and output
and enhances the feature maps propagation. In the end, it requires
fewer parameters, memory, and computation to achieve state-of-art
performances. Recent works using the DenseNet have been devel-
oped to perform depth estimation, namely DenseDepth [14], which
was used as inspiration to deploy our DL model. It follows a stan-
dard encoder-decoder architecture, where the encoder corresponds
to the DenseNet-169 network pre-trained on ImageNet. The loss
function is a combination of point-wise L1 loss, L1 loss defined over
the image gradient of the depth image, and structural similarity
(SSIM) loss.

2.2 The structured light technique and its
patterns

The SL technique has offered, over time, a suitable approach to
resolve 3D reconstruction and depth estimation problems. It can be
based on sequential projections, that acquire several shots of the
scene. The patterns can be based on a binary or grey code and, in
this case, the 3D coordinates are extracted based on triangulation
principles. Besides that, the patterns can consist of sinusoidal pro-
jections and, in this case, the phase shift is the aspect taken into
account [15]. Other variants were already implemented, such as
continuous varying patterns, that use colored patterns and only
require one shot of the scene. Stripe indexing methodology, which
only requires one shot of the scene, can be based on color-coded
stripes [16], segmented stripes, grayscale coded stripes, or De Bruijn
sequence patterns. This method is adopted especially when facing
occlusion problems and to mitigate the ambiguity that occurs when
using patterns based on phase-shift. This stripes methodology is
interesting when facing curvilinear surfaces [17], such as the breast,
so is one of the types of pattern design to be analyzed in this work.
Finally, instead of stripes, some works use patterns constituted
by grids. Some of them are based on pseudo-random binary dots,
mini-patterns as codewords, color-coded grids, or 2D color-coded
dot arrays [18]. This approach will also be studied later, because of
its ability to assign stripes in vertical and horizontal directions.

2.3 Deep learning on the structured light
technique

In the past, all these patterns were analyzed using algorithms and
mathematical formulas to extract the 3D coordinates. With the
growth of DL, this technology was applied to SL problems, to help
extract the 3D information present on the deformed patterns col-
lected. A recent work [19] uses a generative adversarial network to
fast and accurately estimate tissue oxygenation from single images
containing a projected pattern on the surface. A depth map is ob-
tained in [20], by combining SL and DL stereo matching techniques.
In this work, they employed phase-shift patterns and the usual
unwrapping step was improved by the DL network.
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Figure 1: 12 Generated datasets where A has no pattern, B has a pattern made of thick yellow stripes, C has a pattern made of a
thick yellow grid, D has a pattern made of a sequence of 3 colored stripes, E has a pattern made of a sequence of 5 colored
stripes, F has a pattern made of a sequence of 5 colored thin stripes, G has a pattern made of thin yellow stripes, H has a pattern
made of a thin yellow grid, I has a pattern made of thin red stripes, J has a pattern made of a thin red grid, K has a pattern
made of a thin black grid and L has a pattern made of a thin grey grid.

3 METHODOLOGY
Given the need to create multiple datasets with different patterns,
we developed a toolchain to generate human prototypes with dis-
tinct breast shapes. For each synthetic dataset, a different printed
pattern was created. The datasets include images from different
points of view that were fed to different DL architectures, imple-
mented with the goal of performing breast depth estimation.

3.1 Dataset
To create each dataset, firstly, we generated human models using
MakeHuman [21], an open-source tool for making 3D human mod-
els. This platform allows the creation of female prototypes with
different breast types.

For it, we defined the human as a female and some breast param-
eters were randomly manipulated, such as size, volume, firmness,
pointiness, the vertical and horizontal position of the breast, and the
nipple’s size and pointiness. However, the human’s physiognomy
is taken in account, so that the breasts do not appear disproportion-
ate in comparison with reality. To simulate the projected pattern,
characteristic of the SL technique, a pattern was printed on the
prototype’s skin by changing its skin texture. This approach is
similar to the one used in the SL method because our pattern will
be deformed by the breast volume as it would be if it was simply
projected on the human breast surface.

After this, the human prototypes were imported to Blender [22]
and multiple camera views were computed to rotate half a sphere
around the body, maintaining a constant ray and focusing on the
breast. In total, 20 surrounding horizontal positions were defined,
and, for each of them, 10 positions were assigned in the vertical
direction, corresponding to the shape of a half ellipse. The described
mechanism permits the increase of the points of view and the
variety of poses in the dataset since each camera captures images

from its point of view. Simultaneously, depth maps were created.
Finally, for each human prototype, we captured 200 RGB images
and the respective 200 depth maps.

To compare the different patterns, 12 synthetic datasets were
created. Each dataset is constituted of 35 human prototypes, which
includes 7000 RGB images and 7000 respective depth maps. The
first 25 humans are used to train the model, which corresponds to
5000 RGB images and, the rest of the humans, 2000 RGB images,
are used for the validation stage. Since the prototype’s breasts are
randomly generated using the same seed, each human has the same
breast shape as the respective human from the remaining datasets,
which allows comparisons between datasets.

The first generated dataset does not include a pattern, since
we intend to confirm if the presence of a pattern improves the
results of depth estimation. The rest of the datasets have patterns
that differ from each other. The patterns are all based on stripes,
commonly used on the SL technique, and more simple than the
ones based on phase-shifting or m-arrays. Regarding these types
of designs, we studied the influence of distinct sequences of colors,
and stripe thickness and also analyzed the behavior of a pattern
made of vertical stripes when compared with a grid. An example
of the generated datasets and corresponding patterns is shown
in Figure 1. It is important to mention that the patterns that are
composed of thin grids, were built with the same stripe’s thickness.

3.2 Neural networks
The implemented network is based on the DenseDepth implemen-
tation. Our architecture is centered on the DenseNet-161, which, as
stated before, presents dense connections between layers, forming
Dense blocks, where each layer receives inputs from all preceding
layers and passes its own to the following layers. The loss function
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aggregates the point-wise L1 loss, L1 loss defined over the image
gradient of the depth image, and SSIM loss.

Other architectures were used to understand which one is more
suitable for this type of problem. They were chosen based on their
performance in image classification on ImageNet [23]. Although
this type of problem differs from ours, it is a way to compare some
models used in the literature.

Firstly, the DenseNet-201 model was chosen because it offered,
after DenseNet-161, the best results inside the DenseNet family.
This model utilizes fewer parameters and its architecture is similar
to the first implemented one. The only precaution was to modify
the number of features utilized since it only requires 1920.

After this, the ResNet-152was chosen to have onemodel from the
ResNet architecture, since the ResNet family is commonly employed
on depth estimation problems, especially ResNet-18 and ResNet-50.
ResNet-152 was preferred because it offered better results for the
image classification problem. The ResNet models learn residual
functions concerning the layer inputs and are formed of residual
blocks. This specific model combines 152 layers.

Finally, ResNeXt-101 was selected because it offered the best
accuracy in the image classification problem. It is an adaptation
of the ResNet network where a new dimension, cardinality, was
incorporated, in addition to the dimensions of depth and width.
ResNeXt architecture repeats a building block that aggregates a set
of transformations with the same topology. When compared with
other models, it demands a higher number of parameters.

After training, the models can receive an RGB image and output
an image with a single channel, since it is a depth map and the
distances are codified in the greyscale.

4 EXPERIMENTAL EVALUATION
We trained our networks, which integrates encoders pre-trained
on ImageNet, during 20 epochs. In this procedure, we used a batch
size of 2, a learning rate of 0.0001, and the Adam optimizer. The
encoders receive an image of size 640x480 that is divided by 100,
to normalize all the values to meters, since the maximum distance
present in the ground truth depth maps is 1 meter. The ground
truth is resized to 320x240. Some of the images used in the training
set suffer transformations, such as horizontal flip and channel swap,
with a probability of 50%.

After this, we resorted to the validation data to evaluate the
model, by comparing the ground truth and the predicted depthmaps.
The predicted data was exported and, using Matlab, we calculated
the mean error for each dataset. We also determined which images
exhibit the minimum and maximum error for each dataset, in order
to study which points of view are responsible for this error increase.

The DenseNet-201, ResNeXt-101, and Resnet-152 models were
only trained using the dataset composed of a thin yellow grid pat-
tern.

4.1 Evaluation metrics
To evaluate the model’s performance we used the average relative
error (rel), the root mean squared error (rms), the average error
calculated using the logarithmic of base 10 (log10), and 3 different
threshold accuracies, d1, d2 ,and d3, whose thresholds correspond
to 1.25, 1.252 and 1.253, as recurrently used in the literature. The

later thresholds are calculated as presented below, where gt denotes
the ground truth image and pred the predicted image:

𝛿1 =𝑚𝑎𝑥

(
𝑔𝑡

𝑝𝑟𝑒𝑑
,
𝑝𝑟𝑒𝑑

𝑔𝑡

)
As shown, these thresholds are dimensionless and the higher their
value is, the more dissimilar the compared images can be. The
result is presented in terms of the percentage of images from that
dataset that respect the defined threshold. For further analyses,
these thresholds can be modified.

4.2 Results
The obtained results for the 12 patterns, when using the DenseNet-
161 encoder to perform the depth estimation, are shown in Table 1
and Figure 2 a).Table 2 and Figure 2 b) illustrate the results obtained
for the dataset with the thin yellow grid pattern, the one with better
results as shown in Figure 3 a), when estimated by the different
architectures.

The colormaps created to analyze the images with the minimum
and maximum error of the same dataset when predicted by the
DenseNet-161 are presented in Figure 3. Two images with a medium
error are also shown, to analyze different points of view. For further
comparisons between the top 3 architectures, the thresholds d1, d2,
and d3 were decreased to 1.05, 1.052, and 1.053, respectively. The
results are presented in Table 3.

5 DISCUSSION
This work aimed to study the impact of the incorporation of pat-
terns, based on the SL technique, to improve the results of the depth
estimation models. In fact, the dataset with no pattern presents the
worst results, when compared with the others, as shown in Table 1,
demonstrating the added-value of the described pattern-based tech-
nique. It is also visible that the dataset that presents better results,
in terms of mean error, is the dataset composed of a thinner yellow
grid pattern. The mean error present in this dataset corresponds to
4.9 millimeters in the virtual scene we created in Blender, which is
lower than the initial value of 10 millimeters for the dataset with
no pattern.

These results indicate that a pattern based on a grid, with thin
stripes, facilitates the depth estimation of a surface. This could be
explained by the fact that the presence of horizontal and vertical
stripes, increases the volume of information that is interpreted
by the DL model. When compared with the dataset with a pattern
made of thin yellow stripes, that was designedwith the same stripe’s
thickness, according to Table 1, we can see that the presence of
vertical stripes exclusively does not offer the same good results.
Nevertheless, other datasets are worth mentioning, such as the
dataset composed of a red grid pattern, which showed great results
too. It is possible to understand, by analyzing Figure 2 a), that this
dataset also presented low outliers, which indicates good results.

The only thing distinguishing the aforementioned dataset from
the others made of thin yellow, black, or grey grids is their color.
Regarding the influence of colors, it is visible that the datasets
made of a sequence of colored stripes offered better results than
the yellow or red stripes superimposed on the white texture of the
prototype, which might indicate that the DL model finds it easier

85



Augmented Synthetic Dataset with Structured Light to Develop Ai-Based Methods for Breast Depth Estimation ICBRA 2022, September 18–20, 2022, Berlin, Germany

Table 1: The obtained results for the 12 patterns, when using the DenseNet-161 model. The datasets are named after the legend
used in Figure 1.

Datasets d 1 d 2 d 3 rel Rms log_10 Mean error Min error Max error

A 0.9046 0.9353 0.9529 0.0779 0.1004 0.0433 2.7164 0.419 16.4
B 0.9897 0.9967 0.9993 0.0216 0.0174 0.0084 1.5131 0.342 10.1
C 0.992 0.9982 0.9994 0.0235 0.0192 0.0096 2.7797 0.744 8.76
D 0.9895 0.9988 0.9999 0.0155 0.0152 0.0064 1.49 0.32 10.1
E 0.9868 0.9947 0.9994 0.0217 0.0161 0.0087 1.4349 0.270 15.6
F 0.9927 0.9995 0.9999 0.0183 0.0166 0.0076 1.4099 0.439 7.56
G 0.992 0.9996 0.9999 0.0173 0.0178 0.0074 1.6472 0.342 10.1
H 0.9905 0.9965 0.9999 0.0168 0.015 0.0068 1.2717 0.375 13.4
I 0.9942 0.9997 0.9999 0.0136 0.0154 0.0057 1.8356 0.37 6.6
J 0.9925 0.9996 0.9999 0.0241 0.0189 0.0101 1.3537 0.351 8.27
K 0.9894 0.9968 0.9999 0.0193 0.0162 0.0079 1.6936 0.526 11.8
L 0.9939 0.9997 0.9999 0.0147 0.0158 0.0062 1.9082 0.386 8.07

Figure 2: Boxplot (a) showing the mean error for the 12 patterns, measured in pixel’s intensity, the datasets are named after the
legend used in Figure 1, and (b) showing the mean error for the 4 architectures, measured in pixel’s intensity.

Table 2: The obtained results for the dataset, composed of a thin yellow grid pattern, when using the 4 architectures.

Architectures d 1 d 2 d 3 rel rms log_10 Mean error Min error Max error

DenseNet-161 0.9905 0.9965 0.9999 0.0168 0.015 0.0068 1.2717 0.375 13.4
DenseNet-201 0.9943 0.9997 0.9999 0.013 0.0149 0.0055 2.308 0.523 7
ReNeXt-101 0.9902 0.9975 0.9998 0.0147 0.0175 0.0061 1.409 0.488 9.83
ResNet-152 0.9908 0.9989 0.9999 0.025 0.02317 0.0107 3.6398 0.686 9.34

Table 3: The results obtained for eachmodel when the thresh-
olds d1, d2, and d3 were decreased to 1.05, 1.052, and 1.053,
respectively.

Architectures d 1 d 2 d 3

DenseNet-161 0.963 0.9779 0.9852
DenseNet-201 0.9607 0.9853 0.9893
ReNeXt-101 0.9653 0.9801 0.9854

to understand volumes where different colors create boundaries
over the object.

Besides that, we can conclude that the stripe’s thickness also
influences the results. Regarding the dataset made of a thick yellow
grid pattern and the one constituted by a thin yellow grid pattern,
it is possible to comprehend, by analyzing Table 1, that the thinner
one offered better results, The same happened with the datasets
made of a pattern with a sequence of 5 colors, where the one with
thinner stripes gets better results. However, there is an exception to
this coincidence, the dataset with thicker yellow stripes has better
results than the dataset constituted by thinner yellow stripes.

Concerning the results of the different architectures presented
in Table 2, it is possible to determine that the DenseNet-161 is the
most suitable for this task because the mean error is lower than the
others. However, from this model’s outliers illustrated in Figure 2
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Figure 3: Colormaps showing the images with the minimum,
maximum and medium error, for the dataset with the thin
yellow grid pattern, when predicted by the DenseNet-161.

b), we can verify that when it fails, this model originates predictions
with higher error. The dataset toolchain was conceived to include
some occlusions, such as the prototype’s arms or hands, similar to
the problems that a robot-guided intervention could face in real
life. The point of view that offers more complication is precisely
one where the human’s hand is in front of the camera, as shown
in Figure 3, which demonstrates that the model might not be so
versatile and able to adapt to occlusions like this, especially the
ones that are rare in the training data. The colormap of the depth
map with the minimum error is also illustrated and shows that
the model can deal with the entire body easily. Relatively to other
points of view, where the error is medium, we can observe that
some of the errors are prevalent in the borders of the human body,
the nipple zone, the abdomen, and the arms. Some zones of the
breast show reduced error and it is visible that, depending on the
point of view, the DL model has more difficulty to estimate the
depth of the furthest or nearest breast.

When we decreased the d1, d2, and d3 thresholds, our results,
shown in Table 3, demonstrated which models can predict more
images with low error. In this case, the ResNeXt-101 and DenseNet-
161 showed the best results, contrary to the DenseNet-201, which
had the best results for a higher value of the three thresholds. It
means that the DenseNet-201 model has difficulty to predict depth
maps with low error, but is excellent to make predictions with
medium error and maintain this consistency. The DenseNet-161
model is able to predict depth maps with low error, as suggested by
its percentage achieved for the d1 threshold, but has some problems
in some points of view, as stated before, which decreases the per-
centage obtained in the d2 and d3 metrics. The ResNeXt-101 does
not show the best result for the mean error but proved to be a good
model for depth estimation, being the one capable of performing
more predictions with lower error.

In the future, there are some improvements that we intent to
incorporate into our strategy. For example, to reduce the problems

faced from some points of view, as shown in Figure 3, a solution
would be adding a Long short-term memory segment to our net-
work to introduce some temporal information and integrate the
camera’s trajectory to improve the spatial information. In order to
promote a better application of our dataset and model to real prob-
lems, we can combine a real dataset and introduce other domain
adaptation techniques.

6 CONCLUSION
In this work, we proved that it is possible and beneficial to fuse
DL and SL techniques, in order to improve the results of the breast
shape depth estimation. Taking advantage of the toolchain that
we developed to produce synthetic datasets, we demonstrated that,
not only do the employed patterns matter but also their color and
stripe’s thickness. We determined that the dataset composed of a
thin yellow grid pattern is the most suitable to improve the depth
information of a surface. Furthermore, we evaluated the capacity
of four different models to perform this task and determined that
the one based on the DenseNet-161 achieved better results. The
architecture based on ResNeXt-101 and DenseNet-201 proved to be
promising alternatives for depth estimation.
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