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We consider the problem of, given a landscape represented by a gridded network and a fire ignition lo-
cation, deciding where to locate the available fire suppression resources to minimise the burned area and
the number of deployed resources as a secondary objective. We assume an estimate of the fire propaga-
tion times between adjacent nodes and use the minimum travel time principle to model the fire propa-

Keywords: gation at a landscape-level. The effect of locating a resource in a node is that it becomes protected and
Metaheuristics the fire propagation to its unburned adjacent nodes is delayed. Therefore, the problem is to identify the
Wildfires most promising nodes to locate the resources, which is solved by a novel iterated local search (ILS) meta-

Fire suppression
Mixed integer programming
Iterated local search

heuristic. A mixed integer programming (MIP) model from the literature is used to validate the proposed
method in 32 grid networks with sizes 6x6, 10x10, 20x20 and 30x30, with two different number of fire
suppression resources (64 problems). Our ILS produced optimal solutions in 40 cases out of 41 known
optimal lower bounds. The proposed method'’s effectiveness is also due to its short computing times and
small coefficients of variation of the objective function values.

We also provide a categorised literature review on fire suppression deterministic optimisation models,
from which we conclude that approximate collaborative approaches seldom have been applied in the
past and, according to the results obtained, can successfully address the complexity of fire suppression,
reaching good quality solutions even for large scale instances.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction fires in order to attempt to mitigate their negative impacts. These

include, of course, the direct threat to human lives but also,

Wildfires have a major impact on human and environmental
life. In UNDRR (2019), it is reported that wildfires caused 71 deaths
and affected more than 19 thousand people, on average, per year,
between 2000 and 2017. Solely in 2018, wildfire caused 247 deaths
and affected more than 250 thousand people. Recent wildfires with
major impact include the 2020 California wildfires, with a size of
more than 1700 thousand ha, that provoked 32 direct deaths; the
2019-2020 Australia wildfires with a size of more than 1800 thou-
sand ha, that provoked 34 direct deaths and 445 deaths by smoke
inhalation; the 2019 Amazon wildfires with a size close to one
thousand ha; and the 2017 (June and October) Portugal wildfires
that caused 115 direct deaths!.

In the aforementioned countries and in many others, large
amounts of resources are allocated to prevent and suppress wild-
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through the emission of gas and particles, health effects and, at
a different scope, global temperature increase. Through the de-
struction of forest resources and wildlife habitats, economical and
environmental impacts are also major consequences that must be
considered.

Operational research and optimisation have been used in ad-
dressing forest fires since the 1960s. For example, as early as 1963,
a model for determining the fire-suppression force that minimises
the total cost of an initial attack was proposed (Jewell, 1963).

In Martell (1982), a review of operational research studies in
forest fire management is conducted. Although some of the re-
viewed areas had significant evolutions since the early 1980s,
e.g. fire detection, the core of other problems remains the same,
as well as the potential of operational research to contribute to
their mitigation. Examples are fire load management (prevention

2 https://www.public.wmo.int/en/media/news/widespread- fires-harm-global-
climateenvironment, accessed 2021-01-04.
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planning and fuel management, surveyed more recently in Chung
(2015)) and fire suppression, which activities, in the same refer-
ence, are divided in resource acquisition and strategic deployment,
resource mobilization, initial attack dispatching and extended at-
tack management.

A more recent overview of operational research methods and
applications in forest fire management are Minas, Hearne, & Hand-
mer (2012) and Martell (2015). In the latter, the author refers that
“many of the large fire management challenges that Shephard &
Jewell (1961) initiated research on the application of OR/MS to fire
management remain. That being said, it has not been for lack of
effort.”

The relevance of fire suppression resource management, in
which operational research and optimisation, we believe, play a
decisive role, is supported, for example, in Fernandes, Pacheco,
Almeida, & Claro (2016), where extremely large fires in Portugal
from 2003 to 2013 were analysed to conclude that more effective
identification and exploration of containment opportunities (i.e. re-
sources management) are preferable to higher fire-suppression re-
sourcing.

In Duff & Tolhurst (2015) fire suppression activities are di-
vided in two groups: one related to preparedness and the other
with response. Preparedness activities are further divided in four
levels: protection analysis, resource location-allocation, readiness
and detection. Similarly, response activities are further divided in
three levels: dispatch, travel and suppression works. The authors
mention that fire suppression fits in the preparedness and re-
sponse components of the management of emergencies. Prepared-
ness is related with the activities prior to an ignition and response
to the ones after. Overviews on the issues and approaches for
large-fire management can be found in Dunn, Thompson, & Calkin
(2017) and Thompson, Silva, Calkin, & Hand (2017).

In this paper, we focus on decisions related to the resources
available to fire suppression. Examples of these resources are fire
crews and their equipment, airtankers and fire trucks. We model
their effect in a given location as the delay in the fire spread
they provoke, which allows to model direct extinguishment of the
flames and fireline-based containment. The proposed approach in-
tegrates the spatial and time dimensions in fire spread and also
in the resources usage in order to minimise the burned area of
a landscape given an ignition point and fire travel times between
adjacent cells. The proposed approach is flexible enough to model
the use of resources in an initial attack or the protection of as-
sets in large fire management, meaning that other objectives than
minimising the burned area in a given time horizon may be con-
sidered.

This problem was previously addressed by Alvelos (2018), who
proposed several MIP models to solve different variants. The author
solved small landscapes (6x6), aiming to demonstrate the models’
applicability. In this work, we propose a novel iterated local search
(ILS) metaheuristic and demonstrate its effectiveness by solving a
set of 64 test cases for different landscapes, including real-sized in-
stances. For the 48 smaller problems, with up to 400 nodes, the so-
lutions provided by the ILS can be compared with the bounds pro-
vided by the MIP model, while for the larger instances, the model
from Alvelos (2018) can not be solved due to memory limitations.

The sequence of this paper includes a literature review in
Section 2, followed by the problem definition and a MIP model in
Section 3. The proposed metaheuristic is described in Section 4,
and dummyTXdummy- the computational results are presented
and commented in Section 5. Conclusions are drawn in Section 6.

2. Literature review

Several optimisation models, in particular mixed integer pro-
gramming (MIP) models, have been proposed to address fire sup-
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pression problems. We conduct a categorised literature review
based on the interaction of the fire representation and optimisa-
tion model. Three types of approaches are considered: sequential,
integrative and collaborative. We focus on deterministic models, in
concordance with our approach.

For stochastic models, we refer the interested reader to the
stochastic integer programming approaches of Haight & Fried
(2007) and Belval, Wei, & Bevers (2019) and references therein.

2.1. Sequential

We first review models derived from well-known MIP formula-
tions, such as location, allocation and routing, and, in some cases,
their integration. These models are adapted to the fire prepared-
ness and/or response through the use of parameters that represent
fire suppression requirements that must be met by the activity
of the resources. We first consider examples where fire suppres-
sion requirements are modelled as demands and then as a fireline
length that must be built to contain fire.

The fist step in addressing a fire suppression optimisation prob-
lem with one of the these approaches is to characterize fire
through the parameters of the model (of course also defining other
parameters, for example related to resources) and, in a second step
to obtain a solution by solving the model. Accordingly, we name
this type of approach as sequential.

2.1.1. Demand-based

In covering models (Dimopoulou & Giannikos (2001); Marianov
& ReVelle (1992)), decisions are related to where to locate re-
sources (e.g. vehicles, truck stations) to cover a set of demand
points (e.g. regions) representing potential fire events. In alloca-
tion models (MacLellan & Martell (1996); Mees & Strauss (1992);
Mees, Strauss, & Chase (1993)) decisions are related to which com-
bination of resources (e.g. airtankers) should be allocated to each
demand (e.g. fire segment, initial attack base). In vehicle routing
models (van der Merwe, Minas, Ozlen, & Hearne (2015); Roozbeh,
Ozlen, & Hearne (2018); Wu, Cheng, & Feng (2019)) decisions are
related to the definition of a sequence in which a set of vehicles
(e.g. tankers) should visit a set of assets, within given time win-
dows, in order to maximise the value protected. Both spatial and
time dimensions are considered for the resources but they do not
interact with fire spread which is modelled by parameters.

2.1.2. Fireline-based

In fireline-based models, fire is represented by a pre-defined
perimeter at different time instants. A fire is extinguished when
the fireline built by the resources is greater than or equal to
the fire perimeter (perimeter condition). In Wiitala (1999) and
Donovan & Rideout (2003) dispatch decisions are addressed: which
resources send to a fire site to minimise the cost of fire contain-
ment. In Kirsch & Rideout (2005); Rideout, Wei, & Kirsch (2011);
Rodriguez-Veiga, Ginzo-Villamayor, & Casas-Méndez (2018) MIP
models are derived for deciding the allocation, and its duration,
of resources to fires. In Zambon, de Rezende, & de Souza (2018),
decisions are related to which barriers (from the ones enumerated
in a preprocess step) to built and in which sequence to maximise
the salvaged area defined by the faces that are protected.

2.2. Integrative

In integrative approaches, a single model includes optimisation
and fire spread: decisions on resources affect fire spread and vice-
versa. In scheduling models, the sequence in which fires (or fire
segments) are visited influence the time required for their sup-
pression and the time for suppression of fires influence the se-
quence. In models where adjacency relations determine the fire
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spread, the location of resources changes the adjacency relations
which changes the optimal location of resources. Lastly, in models
based on the minimum travel time principle, resource locations in-
fluence the fire travel times to adjacent nodes which influence the
optimal location of resources.

2.2.1. Scheduling

In Rachaniotis & Pappis (2006), Pappis & Rachaniotis (2010) and
Rachaniotis & Pappis (2011) fire suppression is modelled as a
scheduling problem where fires correspond to jobs to be processed
by a single resource. Setup times (sequence dependent) correspond
to the resource movements between fires. Fire spread is modelled
as the time needed for suppression and increases with the time
from ignition according to a Rothermel empirical model (based on
the wind speed, type of fuel and fuel loading).

2.2.2. Adjacency

In Belval, Wei, & Bevers (2015), the decisions, modelled in a
MIP model, are related to the positioning of resources in a net-
work representing the landscape. An ignited cell spreads fire to all
its neighbour cells that are flammable and do not have a resource.
A more theoretical problem that relies on modelling fire spread
through adjacency is the firefighter problem (Blum, Blesa, Garcia-
Martinez, Rodriguez, & Lozano (2014); Develin & Hartke (2007);
Finbow & MacGillivray (2009); Hu, Windbichler, & Raidl (2015);
Michalak (2014, 2017); Ramos, de Souza, & de Rezende (2020)).
This problem is defined on a graph where fire spread is simulated
by a sequence of time steps. An ignition occurs in one vertex at the
first step. In every step, vertices adjacent to a burned vertex also
burns, except for the ones where a resource was located. At the
beginning of each step a (fixed) number of resources is available.
The objective is to minimise the number of burned vertices.

In Wei et al. (2021); Wei, Thompson, Haas, Dillon, & O’Connor
(2018); Wei, Thompson, Scott, O’Connor, & Dunn (2019) models
based on the definition of potential wildfire operational delin-
eations (POD, polygons whose boundaries may facilitate fire con-
trol operations, such as roads and fuel transitions) is presented.
Fire spread is modelled through adjacency between POD. Decisions
include the definition of the boundaries and protection points
where the (limited) resources should work.

2.2.3. Minimum travel time

In integrative approaches based on the minimum travel time
(MTT) principle Finney (2002), the landscape is represented by
a network (with any topology and, theoretically, any resolution).
Nodes represent locations (e.g. stands or cells). Arcs represents ad-
jacency between locations. The minimum travel time (MTT) prin-
ciple states that the fire arrival time at a node is the shortest path
from the ignition node to that node with respect to the fire travel
times between all adjacent nodes. In a MIP integrating the MTT
and optimisation, the fire spread is modelled with decision vari-
ables related to fire arrival times (and to the shortest paths from
the ignition to the cells) and decision variables related to the lo-
cation of resources. Fire spread and resources interaction are mod-
elled by the increase of the fire travel times from a node where a
resource is located to adjacent nodes.

To our best knowledge, MTT fire spread and optimisation has
been first integrated in Hof, Omi, Bevers, & Laven (2000) through
a MIP for maximising the fire arrival times at cells that must be
protected. In the MIP model of Wei, Rideout, & Hall (2011), the ob-
jective is to minimise the value of the cells that burn within a time
horizon. In Alvelos (2018), besides these two objectives, objectives
related to fire containment (by perimeter and by fire inactivity),
are also considered. In this latter reference, two noticed issues of
the previous models were overcome.
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The first one is that, as noted in both works, with a straightfor-
ward model, arrival times in cells not belonging to the fire paths
may not comply with the shortest ones. In Wei et al. (2011) this
issue is addressed by a sequential procedure involving the solu-
tion of two MIP models. In Alvelos (2018), linear programming op-
timality conditions are used to derive a single MIP model which,
independently of the objective function, always provides the cor-
rect arrival times at every cell.

A second issue is related with the time availability of the re-
sources from the start. A possibility to incorporate that resources
are not immediately available is to forbid cells close to the igni-
tion to receive resources, but this imply that the fire arrival times
at those cells is known. In Wei et al. (2011), an approximate iter-
ative procedure, based on the MIP model, is presented to address
the multi-period problem, where a set of resources is made avail-
able at the beginning of each time period, overcoming that issue.
In Alvelos (2018), this issue is addressed by defining time instants
where the resources become available, treating time both as con-
tinuous (for fire arrival times at cells) and discrete (instants when
resources become available/are located).

2.3. Collaborative

In collaborative approaches, two modules (optimisation and fire
spread) exchange information. Typically, the optimisation module
provides solutions (e.g. location of resources) and receives their
evaluation (e.g. burned area). Collaborative approaches have a big
potential in fire suppression as they accommodate, virtually, any
fire spread model (from physical to empirical) and, virtually, any
search method (e.g. meta-heuristic).

In Chi et al. (2003) fire propagation is modelled by a cel-
lular automata (with deterministic rules for state transitions)
which evaluates different resources usage from the search space
of a genetic algorithm. A genetic algorithm is also proposed
in HomChaudhuri, Kumar, & Cohen (2013) where the fitness of
each individual is obtained by simulating the fire spread taking
into account the resources location and the fireline construction
rate.

2.4. Comparison and contributions

We now briefly compare the three different types of approaches
and describe what we think are the major contributions of this pa-
per.

Sequential approaches are very limited in terms of fire spread
modelling. Integrative approaches may incorporate more detailed
fire spread models but are difficult to solve given their complexity
and size (in case of MIP models even with state-of-the-art solvers).

Collaborative approaches allow, virtually, any fire spread model
to be used for evaluating solutions generated or modified by an
optimisation module. These approaches can be seen as particular
cases of the general scheme of simulation-optimisation, which has
been applied successfully in many areas (Figueira & Almada-Lobo,
2014).

A first main contribution of this paper is therefore to high-
light the advantages of addressing large scale wildfire optimisation
problems using collaborative approaches, paving the way for their
use with other optimisation methods | fire spread models in ad-
dressing wildfire problems.

The second main contribution is the design and computa-
tional validation of a collaborative approach that combines a meta-
heuristic with a MTT fire spread model solved by Dijkstra’s algo-
rithm and provides good quality solutions (proved to be optimal
ones in most cases) for large instances of a relevant wildfire sup-
pression problem.
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Fig. 1. Example of a network representing a landscape and fire travel times
(Alvelos, 2018).

3. Problem definition and modelling

Let (N,A) be a graph representing a rasterised landscape. The
set of nodes N contains cells of the landscape, while the set of
arcs A represents adjacency relations between them (i.e. direct fire
transmission is possible), as exemplified in Fig. 1. It is assumed
that the fire ignition takes place in a single node represented by
ign € N.

The fire rate of spread between nodes depends on several is-
sues, such as the amount of fuel at each node (e.g. flammable veg-
etation), the wind direction and intensity, and the terrain slope.
It is a premise that each cell contains a homogeneous area with
respect to weather, topography, and fuel. The fire spread time be-
tween adjacent nodes i and j is given by ¢;;, which can be esti-
mated by fire propagation simulators such as Finney (1998).

We consider a set of K time instants, K = {by, by, ..., by}, with h
being the last instant of the time period under consideration, and
a set of fire fighting resources R. In the k"' instant, time by, a given
number resources, a;, becomes available and can be located in the
unburned nodes of the network at this instant or later. Locating a
resource in a node implies that the node will not burn and the fire
spread to adjacent unburned nodes is delayed by a known value
A.

For a fire ignited in instant 0, at node ign € N, the problem con-
sists of determining when and where to position the available re-
sources so that the total burned area is minimised. A secondary
objective is to minimise the total number of deployed resources.
This approach resorts to lexicographic optimisation where each so-
lution with a smaller burned area is better independently of the
number of resources; the number of resources is only used to
differentiate solutions with the same burned area. In a rasterised
landscape, all cells have the same area, and the minimisation of
the number of burned nodes thus produces the same effect. By
adopting € = 1/|R| in the objective function, a single model can
be used if such weight does not pose numerical difficulties to the
solver. If that is the case, two models can be solved sequentially,
the first for the burned area objective (or the number of burned
nodes) and the second, with an additional constraint fixing the op-
timal burned nodes, for the number of resources.

The mixed integer programming (MIP) model proposed by
Alvelos (2018) is presented to make this paper self-contained.
Moreover, it is intended to assess the maximum landscape size
that commercial solvers can solve and use to model to evaluate
the performance of the proposed heuristics. The model relies on
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the following sets and parameters: N - set of nodes (indices i, j); A
- set of arcs; R - set of resources (index r); K - set of time instants
(indices k, g); h - target instant, in which the solution (burned area
and number of deployed resources) are minimised (h € K); ign -
ignition node (ign € N); n - number of nodes (n = [N|); ¢; - fire
spread time between the (center of) node i and the (center of)
node j in that direction; ¢™® - maximum fire spread time between
any two nodes; a; - number of resources that become available at
instant k (b,); A - delay, expressed in time units, of the fire arrival
to an unburned adjacent node to the one that received a resource;
€ - weight of the total number of resources in the objective func-
tion (¢ = 1/|R|).

The decision variables present in the model are: x;; - the num-
ber of shortest paths (each one beginning in the root and ending
in a different node) that include arc ij; t; - length of a shortest
path between the root and each node i (a value that may vary ac-
cording to the resources that have been installed as they modify
the fire propagation paths); s;; - slack variable that is zero when-
ever arc ij belongs to a shortest path; g;; - a binary variable that
equal 1 if arc ij belongs to a shortest path, and 0 otherwise; yf.‘ -
a binary variable that equals 1 if node i is burned at instant k (by),
and O otherwise; o, - number of resources available but not used
at instant k and therefore available at instant k + 1; z!‘r - a binary
variable that equals 1 if node i receives resource r at instant k (by),
and 0 otherwise.

Minimise Zy? +€ Z Z Zzgcr )
ieN ieN keK reR
Subject to:
D Xignj=n-1, 2)
ign,jeA
*ZXU+ZXﬁ=1, Vie N\ {ign} (3)
ijeA JjieA
fin =0 (4)
Xijj = (n—l)q,-j, Vl]GA (5)
Y > ZT<1. VreR (6)
ieN keK
> > z"<1, VieN (7)
reR keK
> > A to=a. (8)
ieN reR
Y A to=a+0q, k=2, [K]| (9)
ieN reR
4T <1+ (G-b)/be. VieN.VkeK VreR (10)
ti—ti+sj=cj+A> Y 2z, VijeA (11)
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Fig. 2. Fire shortest paths and arrival instants at all nodes for ignition at node (1,1) (left); Fire shortest paths and arrival instants at all nodes after placing resources at (3,3),

(4,2) and (5,1) (right).
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In the this model, the objective function (1) minimises the to-
tal number of burned nodes at the target instant plus a weighted
number of assigned resources. Constraint (2) forces that n—1
paths departure the ignition node ign, while constraint (3) guar-
antees that one path reaches each node in the network. Constraint
(4) states that the fire arrival time of ignition node is zero. Con-
straint (5) activates the binary variable g;; if arc (i, j) belongs to a
shortest path. Constraint (6) states that a resource can be assigned
at most once to any node. Analogously, constraint (7) guarantees
that each node can receive at most one resource throughout the
planning period. Constraint (8) allows assigning resources at in-
stant 1, based on the number of resources that were released (ay).
Constraint (9) controls the number of available resources by bal-
ancing the number of unassigned resources at the end of each time
period. In constraint (10), it is checked whether node i is burned at
instant a;. This happens when the fire arrival time t; is less than
the evaluated instant. In such cases, node i cannot receive a re-
source. On the other hand, if the fire arrival instant is greater than
or equal to a, then node i can receive a resource at this instant.
Constraint (11) calculates the fire arrival instant at node j, having
node i as origin. In case a resource has been assigned to node i, a
delay in the fire arrival at node j is guaranteed by parameter A.
Constraint (12) forces a slack variable s;; to be zero whenever arc
(i, j) belongs to a shortest path (i.e., when g;; is one). Constraints
(13) and (14) define if node i is burned at instant k. These con-
straints, together with constraint (10), allow node i to receive a re-
source at the same instant of the fire arrival at the node. Finally,
constraints (15) to (19) define the variables’ domain.
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To illustrate the fire propagation model used, the left part of
Fig. 2 presents the fire shortest paths to all 35 nodes when the
ignition takes place at node (1,1), for the example shown in Fig. 1.
The values marked in red are the fire arrival instants at the nodes
calculated by Dijkstra’s shortest path algorithm when no action is
taken to protect them, i.e. no resources are used.

In right part of Fig. 2 we represent a solution where three re-
sources are located in nodes (3,3), (4,2) and (5,1). Note that for the
solution to be feasible, the fire arrival time at those nodes must be
greater than the instant they become available (i.e. the resources
must be available before 13, 11 and 13 time units, respectively).

Because of the delay (assuming A is large enough) provoked by
locating the resources, the fire paths of the previous successors of
(3,3), (4,2) and (5,1), do not include them any longer. For example,
node (3,4), whose fire arrival instant was 18, has a new shortest
path reaching it from node (2,4) with an increased fire arrival in-
stant equal to 20. It is interesting to note how the modified fire
arrival instants varies throughout the network. In node (5,2), for
example, the fire arrival increased from 14 to 41, as node (4,2) be-
came protected and a longer fire path is needed to reach it. By
considering the time horizon as 20, the number of burned nodes
is 22 with no resources and 13 with the three resources.

4. Solution method

An iterated local search (ILS) algorithm is proposed to minimise
the total number of burned nodes at the given target instant h plus
the weighted number of resources. The ILS metaheuristic, as de-
scribed in Lourenco, Martin, & Stiitzle (2003), follows the general
structure presented in Algorithm 1. In line 1, an initial solution sg

Algorithm 1: Iterated Local Search.

(S0, fo) < MULTISTARTCONSTRUCTIVEHEURISTIC()
(s*, f*) < LOCALSEARCH(Sg)
while STOPPING CRITERION IS NOT MET do

(s, f') < PERTURBATION(S*)

(s*', f*') < LOCALSEARCH(s)

§* < ACCEPTANCECRITERION(S*, s*/)

D U A W N =

7 return s* and f*.

is generated by a multi-start constructive heuristic with objective
function value fy. This solution is then submitted to a local search
procedure in line 2, returning solution s* with objective function
value is f*. ILS’ main loop takes place in lines 4 to 6, while the
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stopping criterion, defined as the maximum number of iterations
without improvement, is not met. In line 4, the s* solution is per-
turbed, resulting in solution s’ with objective function value f’.
This solution is submitted to a local search procedure in line 5,
returning solution s*' with objective function value f*’. Finally, the
acceptance criterion is applied in line 6, whereby only improved
solutions are admitted.

As described, ILS relies on searching a solution space by itera-
tively exploring the neighborhood of a current solution and mov-
ing to a more distant solution when no improvement can be made.
ILS is one of the most well-known single-solution meta-heuristics
(Gendreau, Potvin et al., 2010). These are characterized by a com-
promise between fast computational running times (usually much
faster than population-based methods as, for example, genetic al-
gorithms) and faster high quality-solutions (usually much better
than constructive algorithms). The main routines are detailed in
the next subsections.

4.1. Constructive heuristic
The constructive heuristic is a multi-start probabilistic proce-

dure whose structure follows the concepts discussed in Marti, Re-
sende, & Ribeiro (2013). Each iteration of Algorithm 2 builds a ran-

Algorithm 2: MultiStartConstructiveHeuristic().

1 f* <~ o0
2 while MAXIMUM ITERATIONS HAS NOT BEEN REACHED do

3 s = CONSTRUCTRANDOMSOLUTION()
4 if f(s) < f* then

5 s «s

6 fr<f@

7 return s* and f*.

domised solution s according to the general procedure described in
Algorithm 3, which is kept as the best initial solution s* if the ob-

Algorithm 3: ConstructRandomSolution().

1 while there are unburned nodes with fire arrival instants less
than h and there are resources available do

2 Find the least release time of a resource.
Run Dijkstra’s algorithm to determine the fire arrival
instants.
Identify the set of burned nodes.
Sort nodes in ascending order by their fire arrival instants.
Build a restricted candidate list of unburned nodes.
Randomly select a node from the candidate list.
Assign a resource to the chosen node.
Update the fire travel time to its adjacent unburned

L nodes.

10 return solution and its objective function value.

w

© 0 NS U bs

jective function value f* improves.

In each iteration of the constructive heuristic, Dijkstra’s shortest
path tree algorithm is used to determine the fire propagation paths
and the corresponding fire arrival instant at each node. Based on
those times, one resource is located in one of the locations of a
restricted candidate list made of unburned locations. When a re-
source is placed on an unburned node, it becomes protected and
delays the fire propagation path that was meant to go through
it. Hence, the heuristic selects promising nodes to place the re-
sources, considering the resources’ release instants and the fire ar-
rival times at the nodes.
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As presented in Algorithm 3, the randomised construction of a
solution is an iterative procedure with two stopping rules (line 1):
the algorithm is interrupted if all unburned nodes have their fire
arrival instants greater than h (since the solution is evaluated at
instant h, there is no need to continue) or if no further resources
are available (there is nothing to be done). If the stopping criterion
is not met, the procedure will first find out the least release instant
of a resource (line 2). This is important as no action can be taken
before this instant. The fire arrival time to all nodes is then cal-
culated with Dijkstra’s shortest path algorithm (line 3). The nodes
whose fire arrival instants are inferior to the least release instant
of a resource cannot be protected and are set as burned (line 4).
The remaining unburned nodes are sorted in the ascending order
of their fire arrival instants (line 5), and a restricted candidate list
is built (line 6) containing the unburned nodes that will first burn
if no resources are deployed before the fire arrival. One node is
randomly selected from the restricted candidate list (line 7), and a
resource is assigned to it (line 8). As a consequence, the unburned
adjacent nodes have the fire propagation times delayed by param-
eter A (line 9).

4.2. Local search

The general structure of the local search is described in
Algorithm 4 and consists of removing the resource from each

Algorithm 4: LocalSearch().

1 repeat
2 for each nodey with a resource do
3 Remove the resource from nodeg.
4 Update the fire propagation time to the unburned
adjacent nodes of nodeg.

Run Dijkstra’s algorithm to determine the fire arrival
instants.

neighbourhood < GENERATENEIGHBOURHOOD(node)
for each node; in neighbourhood do
Place the available resource at node;.
Update the fire travel time to the adjacent
unburned nodes of node;.
Run Dijkstra’s algorithm to determine the fire
arrival instants.

Determine the solution feasibility.

if the solution is feasible and the best possible
improvement then

L Save movement as the bestMovement.

3]

© N e

10

1
12

13

14
15

Remove resource from node;.
Update the fire travel time to the adjacent
unburned nodes of node;.

Restore the resource to nodey.
Update the fire propagation time to the unburned
| adjacent nodes of nodeg.

if there is improvement then
L Execute the bestMovement.

16
17

18
19

20 until no improvement;
21 return solution and its objective function value.

node, one at a time, and evaluating the impact of placing the re-
source in the neighbouring nodes to those with resources. By this
we mean adjacent nodes as well as diagonal nodes (e.g. node (1,4)
is diagonal to (2,5)). This type of movement aims to form fire sup-
pression barriers by having fire suppression resources positioned
adjacently - later, on the perturbation phase, we also include nodes
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that not necessarily form a barrier. It is essential to highlight that
more than one barrier is admitted.

The complete list of the neighbouring nodes to those with re-
sources is called an extended neighbourhood. As the size of this
neighbourhood can be very large, a reduction scheme is applied.
The first nodes to eliminate are the burned nodes. The remaining
nodes are sorted in ascending order of their fire arrival instants,
and a reduced neighbourhood is built with the first elements of
this list (more details are given in the computational results sec-
tion).

The local search procedure starts by removing the resource
from one node (line 3). Then, the fire propagation time to the ad-
jacent unburned nodes is updated (line 4), which means that the
delay in propagating the fire (parameter A) is eliminated. In the
sequence, the fire arrival instants to all nodes are determined by
Dijkstra’s shortest path algorithm (line 5). The next step consists
of defining a reduced neighbourhood for placing the resource (line
6). Then, it is assessed the impact of placing the resource at each
node belonging to this neighbourhood (lines 7 to 17).

This evaluation begins by placing the resource at one node of
the neighbourhood (line 8) and modifying the corresponding fire
propagation time to its unburned adjacent nodes (line 9). In the
sequence, Dijkstra’s shortest path algorithm is called (line 10) to
determine the fire arrival instants to all the nodes. Before evalu-
ating the number of burned nodes, a feasibility check has to be
made (line 11). As the resource was removed from its original po-
sition (line 3) and reinserted in a different node (line 8), the fire
propagation paths to all the nodes are affected, and the fire arrival
instants at all nodes are likely to change. One has to be aware that
a node with a resource cannot have its new fire arrival time infe-
rior to the instant the resource was previously assigned to it. Such
a situation is inconsistent and characterizes an infeasible move. In
case the movement is feasible, and this modification turns out to
be the best possible improvement, it is saved (lines 12 and 13) for
future modification (line 18). In lines 15 and 16, the resource is re-
moved from node;, and the fire propagation time between its adja-
cent nodes is updated. When all nodes belonging to the neighbour-
hood have been examined, the resource is restored to nodey (line
18), and the fire propagation time to its unburned adjacent nodes
are updated (line 19). Finally, in line 21, after the whole neigh-
bourhood of all nodes with resources has been evaluated, and if
it is possible to improve the solution, the best movement is ex-
ecuted (line 22). Otherwise, the procedure is halted by the outer
cycle condition (line 24).

4.3. Perturbation scheme

The perturbation scheme is meant to generate solutions that
are not too close to the incumbent solution and neither too distant,
enabling to escape local optima, hopefully keeping good-quality
features of the solution. In this regard, three types of perturbations
were implemented and are described in Algorithm 5 . The first one
is called with probability prob; and aims to reduce the number
of assigned resources (lines 4 to 6). The second type of perturba-
tion is called with an accumulated probability of prob; + prob, and
adds a resource to the solution (lines 9 to 17). This perturbation is
only called when there is at least one available resource; other-
wise, prob, is set to O (line 1). The third perturbation forces that a
predetermined number of resources be moved from their current
positions to other nodes, provided that the solution remains feasi-
ble.

The first type of perturbation can improve the solution in sit-
uations where not all resources are needed to minimise the total
burned area at the target instant h. This may happen when too
many resources are available or the fire travel times are large with
respect to target time. In those cases it is important to minimise
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Algorithm 5: Perturbation().

1 Set prob, to O if there are no available resources.
2 Rnd = random()
3 if Rnd < prob; then
4 Remove a resource from the node with the largest
deployment instant.
5 Update the resource availability.
6 Update the fire travel time to its adjacent nodes.
7 else
8 if Rnd < prob, + prob, then
9 Find the least release time of an available resource.
Run Dijkstra’s algorithm to determine the fire arrival
instants.
Identify the set of candidate nodes to receive the
resource.
Sort candidate nodes in ascending order by their fire
arrival instants.
Build a candidate list for receiving the resource.
Randomly select a node from the candidate list.
Assign a resource to the chosen node.
Update the resource availability.
Update the fire travel time to its adjacent nodes.
else
mod =0
failure =0
while mod < maxModidications and
failure < maxFailures do
Randomly select a node with resource.
Remove the resource.
Update the fire propagation time to its adjacent
nodes.
Run Dijkstra’s algorithm to determine the fire
arrival instants.
Generate the neighbourhood.
Randomly select a node from the neighbourhood.
Place the resource at the selected node.
Update the fire propagation time to its adjacent
nodes.
Run Dijkstra’s algorithm to determine the fire
arrival instants.
Assess the solution feasibility.
if the solution is feasible then
mod = mod + 1.
failure = 0.
else

L Undo the proposed movement.

failure = failure + 1.
8 Run Dijkstra’s algorithm to determine the fire arrival instants.
39 return solution and its objective function value.

1

12

13
14
15
16
17
18
19
20
21

22
23
24

25

26
27
28
29

30

31
32
33
34

35
36
37

w

the number of resources used, keeping the burned area at the min-
imum.

It must be observed that the constructive heuristic initially de-
fines the number of resources, and the subsequent local search
does not modify this quantity. In cases where the initial solution
was built using more resources than what is actually needed, this
type of perturbation allows adjusting the solution, keeping the
burned area unchanged. The idea is simple and consists of find-
ing the node whose resource deployment instant is the largest
(algorithm 5, line 4) and remove the resource. Lines 5 and 6 are
necessary to update the resource availability and update the fire
travel time to the adjacent nodes.
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The second type of perturbation consists of adding a resource
to the solution, if available. This perturbation, however, is called
less frequently, as it is not expected that a solution will demand
more resources than it was defined in the constructive phase.

The process is very similar to the steps described in
algorithm 3 and consists of finding the least release time of an
available resource (algorithm 5, line 9) and call Dijkstra’s shortest
path algorithm to determine the fire arrival instants in the whole
network (line 10). A list of candidate nodes is elaborated, includ-
ing all nodes whose fire arrival instants are greater than or equal
to the instant that the resource is released and do not have a re-
source (line 11). This list of candidate nodes is sorted in ascending
order by their fire arrival instants (line 12), and a restricted candi-
date list is built (line 13). A node is randomly selected from this list
(line 14) to receive a resource (line 15). The resource availability is
updated (line 16), and the fire travel time to its adjacent nodes is
updated (line 17).

The third type of perturbation is most frequently called (with
a probability of 1 - prob; — prob,) and consists of modifying a
predefined number of resources from their positions (lines 22 to
39). While the maximum number of modifications has not been
reached and the number of failures has not reached its maximum
value, a resource is moved from its current node. First, a node with
a resource is randomly selected (line 22), and the corresponding
resource is removed (line 23). Consequently, the fire propagation
time to its adjacent nodes must be updated (line 24), and Dijk-
stra’s shortest path algorithm is called (line 25) to determine the
fire arrival time at all nodes after the resource was removed. The
neighbourhood for placing the resource is generated (line 26) in
the same way as in the local search procedure, but without con-
sidering that a node must be adjacent or diagonal to a node with
a resource. This means that any unburned node can be part of the
neighbourhood, thus generating a broader list of candidate nodes.
However, as the neighbourhood has a maximum allowed size (fur-
ther defined), the candidate nodes are sorted in ascending order
by their fire arrival instants, and only the nodes with the smaller
instants are considered. One node from this neighbourhood is se-
lected (line 27) to receive a resource (line 28).

Dijkstra’s shortest path algorithm is called (line 30) to deter-
mine the fire arrival instants to assess the solution feasibility (line
31). This verification is needed to check if the new fire arrival in-
stants at the nodes with resources are inferior to the instants that
the resources were released. If this is the case, we have an infea-
sible solution. Otherwise, the counter mod is incremented, and the
failure counter is set to zero (lines 33 and 34). If the solution is
infeasible, the movement made in lines 23 and 28 must be un-
done (line 36), and the failure counter is incremented (line 37).
Before returning the solution (line 43), the objective function has
to be updated, and this is done by first calling Dijkstra’s shortest
path algorithm for determining the fire arrival instants at all nodes,
which allows assessing the resulting number of burned nodes.

5. Computational results
5.1. Instances and ILS calibration

Computational tests were made with the mixed integer pro-
gramming model and the iterated local search metaheuristic. In-
stances were created with four different grid sizes: 6x6, 10x10,
20x20 and 30x30, as in Hof et al. (2000), Minas, Hearne, & Martell
(2014) and Belval et al. (2015). In all cases the ignition takes place
in a quasi-central node, i.e. nodes (3,3), (5,5), (10,10) and (15,15) for
grid sizes 6x6, 10x10, 20x20 and 30x30, respectively, thus allowing
the fire to propagate in all directions. Besides the grid size and the
ignition node, one needs to know the estimated fire spread time
between any pair of adjacent nodes. Several aspects influence the
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fire propagation spreading rate and define the propagation time
more precisely (Finney, 1998). The estimate of the fire propagation
times, however, is beyond this paper’s scope.

To generate the test instances, uniform distributions are used to
define the spreading times (in minutes) between adjacent nodes
in the directions indicated in Table 1, considering the wind as the
main influence. For example, in instance one, the fire propagation
times southward and eastward are drawn from the uniform dis-
tributions U(2,4) and U(4,6), respectively. These distributions have
the least minimum and maximum values among the four direc-
tions, indicating that the resulting wind direction is southeast. For
each grid size, eight variations are proposed with different time
propagation distributions (32 problems); instance 1 was extracted
from Alvelos (2018) and is represented in Fig. 1.

The instances are evaluated for two different number of re-
sources. The first set considers that two resources become avail-
able at instant 10 and three resources become available at instant
15. The second set considers that three resources become available
at instants 10 and 15. In Table 1, two additional pieces of infor-
mation on the instances are given in the last two columns. First,
in the ‘burned nodes’ column, one will find the number of nodes
whose fire arrival times are inferior to when resources are first
released (instant 10) and will inevitably burn. Second, the ‘candi-
dates first resources’ column indicates the number of nodes that
are candidates to receive the resources released at instant 10, in-
cluding all nodes whose fire arrival instants are between 10 and
14. Intuitively, the greater the number of candidate nodes relative
to the number of resources, the more difficult the instance is. The
fire delay implied by locating a resource, A, is assumed to be 50.
For all cases, the objective function is evaluated at instant h = 28
minutes, when the number of burned nodes is assessed, and deci-
sions on other actions can be taken, such as requesting additional
resources or planning an extended attack (Martell, 2015).

The proposed heuristic requires the calibration of general pa-
rameters (ILS) and others relative to the constructive heuristic
(CH), local search (LS) and the perturbation scheme (Pert). The
adopted values are presented and if not otherwise indicated are
common to all grid sizes - maximum number of perturbations (ILS):
75 (6x6), 100 (10x10), 200 (20x20), 250 (30x30); maximum num-
ber of iterations without improvement (ILS): 50; number of repetitions
(CH): 500 (6x6,10x10), and 1000 (20x20,30x30); restricted candi-
date list size: 5 (6x6,10x10), and 6 (20x20,30x30); maximum neigh-
bourhood size (LS and Pert): 6 (6x6), 10 (10x10), 20 (20x20) and 30
(30x30); probability of removing a resource (Pert): 7.5%; probability
of adding a resource (Pert): 2.5%; maximum number of modifications
(Pert): U(3,5); maximum number of failures (Pert): 100.

The MIP model (1)-(19) was solved by Gurobi 9.02 for instances
1 to 24 (6x6, 10x10 and 20x20) with five and six resources; in-
stances with 900 nodes could not be solved due to out-of-memory
errors. In all cases, the Gurobi time limit was set as 7200 seconds.
The ILS metaheuristic was coded in Python 3.8 with the support
of NetworkX library (NetworkX, 2021) for the network representa-
tion and manipulation; our code also relied on Dijkstra’s shortest
path algorithm from NetworkX (2021). The ILS was run five times
for all instances. All results were obtained by a personal computer
with an i7-9750H processor, 2.60GHz and 8.0GB of RAM.

5.2. Mixed integer programming

The results obtained by Gurobi when solving the MIP model
(1)-(19) are shown in Tables 2 and 3, for five and six resources,
respectively. These tables contain, for each instance, the objective
function value (OFV), the lower bound (LB), the lower bound value
at the root node (LBO), the total burned area, the number of nodes
explored in the branch-and-bound tree, the number of integer so-
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Table 1

Instances’ parameters and information.
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Ins- tance  Size Wind Direction  Propagation Time [min] North South East West  Ignition Node  Burned Nodes  Candidates First Res.
1 6x6 Southeast U(7,9) U(2,4) U(4,6) U(6,8) (3.3) 1 6
2 6x6 Southeast U(7,9) U(1,3) U(4,6) U(6,8) (33) 11 9
3 66 Southeast U(7,9) U(2,4) U(3,5) U(6,8) (3,3) 9 10
4 6x6 Southeast U(7,9) U(1,3) U(3,5) U(6,8) (3.3) 1 12
5 6x6 South U(7,9) U(2,4) U(4,6) U(4,6) (3.3) 9 1
6 6x6 South U(7,9) U(1,3) U(4,6) U(4,6) (3.3) 12 11
7 6x6 South U(7,9) U(2,4) U(3,5) U(3,5) (3.3) 10 14
8 6x6 South U(7,9) U(1,3) U(3,5) U(3,5) (3.3) 12 16
9 10x10  Southeast U(7,9) U(2,4) U(4,6) U(6,8) (5,5) 10 8
10 10x10  Southeast U(7,9) U(1,3) U(4,6) U(6,8) (5,5) 11 12
11 10x10  Southeast U(7,9) U(2,4) U(3,5) U(6,8) (5,5) 1 9
12 10x10  Southeast U(7,9) U(1,3) U(3,5) U(6,8) (5,5) 14 12
13 10x10  South U(7,9) U(2,4) U(4,6) U(4,6) (5,5) 10 13
14 10x10  South U(7,9) U(1,3) U(4,6) U(4,6) (5,5) 12 17
15 10x10  South U(7,9) U(2,4) U(3,5) U(3,5) (5,5) 13 14
16 10x10  South U(7,9) U(1,3) U(3,5) U(3,5) (5,5) 17 18
17 20x20  Southeast U(7,9) U(2,4) U(4,6) U(6,8) (10,10) 8 8
18 20x20  Southeast U(7,9) U(1,3) U(4,6) U(6,8) (10,10) 10 13
19 20x20  Southeast U(7,9) U(2,4) U(3,5) U(6,8) (10,10) 8 12
20 20x20  Southeast U(7,9) U(1,3) U(3,5) U(6,8) (10,10) 11 16
21 20x20  South U(7,9) U(2,4) U(4,6) U(4,6) (10,10) 9 10
22 20x20  South U(7,9) U(1,3) U(4,6) U(4,6) (10,10) 12 18
23 20x20  South U(7,9) U(2,4) U(3,5) U(3,5) (10,10) 9 16
24 20x20  South U(7,9) U(1,3) U(3,5) U(3,5) (10,10) 14 22
25 30x30  Southeast U(7,9) U(2,4) U(4,6) U(6,8) (15,15) 9 13
26 30x30  Southeast U(7,9) U(1,3) U(4,6) U(6,8) (15,15) 13 15
27 30x30  Southeast U(7,9) U(2,4) U(3,5) U(6,8) (15,15) 11 12
28 30x30  Southeast U(7,9) U(1,3) U(3,5) U(6,8) (15,15) 14 19
29 30x30  South U(7,9) U(2,4) U(4,6) U(4,6) (15,15) 11 15
30 30x30  South U(7,9) U(1,3) U(4,6) U(4,6) (15,15) 16 18
31 30x30  South U(7,9) U(2,4) U(3,5) U(3,5) (15,15) 14 16
32 30x30  South U(7,9) U(1,3) U(3,5) U(3,5) (15,15) 19 24
Table 2
Results obtained for the MIP model solved with Gurobi - five resources.

Ins- tance OFV LB LBO Burned Nodes Node Count  Solution Count  Time Best[s]  Total Time][s]

1 26 26 13.8 25 1 7 1.6 1.9

2 26 26 14.7 25 1 7 1.3 14

3 27 27 12.9 26 1 7 1.7 19

4 27 27 151 26 1 9 13 14

5 26 26 13.8 25 1 7 2.5 2.6

6 27 27 171 26 1 6 1.2 1.4

7 28 28 15.7 27 35 7 1.6 3.5

8 28 28 17.9 27 1 7 1.4 1.8

9 42 42 14.2 41 1 8 129 13.1

10 47 47 17.3 46 284 4 8.4 10.1

11 48 48 15.6 47 191 8 143 145

12 55 55 20.5 54 207 8 17.6 18.4

13 52 52 15.6 51 1251 9 20.2 20.4

14 56 56 19.7 55 1 6 135 13.8

15 59 59 194 58 221 7 13.8 14.2

16 64 64 253 63 220 7 16.0 16.4

17 - 375 121 - 441 0 - 93.6

18 - 48.7 15.6 - 7 0 - 64.6

19 - 41.2 12.7 - 13 0 - 62.7

20 - 55.3 171 - 13 0 - 77.5

21 - 46.3 13.8 - 7 0 - 96.5

22 - 63.3 19.1 - 3 0 - 91.3

23 - 15.2 15.2 - 0 0 - 11.8

24 - 219 219 - 0 0 - 111

lutions generated, the time for obtaining the best solution and the
total runtime from Gurobi.

Problems with 36 nodes (instances 1 to 8) were promptly
solved, not taking more than 3.8 seconds to achieve optimality.
Problems with 100 nodes are still easy to be solved, not tak-
ing more than 30 seconds. In instances 20x20 with 5 resources
(Table 2), an out-of-memory error halted the model execution be-
fore the imposed time limit in all cases. Particularly, in instances
23 and 24, the processing was interrupted at the root node. In in-
stances 20x20 with 6 resources (Table 3), there were four cases
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that no integer solutions were generated at all, but only lower
bounds. Concerning grids of size 30x30, no problem could be
solved by Gurobi due to memory limitations from the very begin-
ning of the model execution.

One may note that all cases where integer solutions are gener-
ated, the solutions are optimal. Regarding instances 17 to 24 with
five resources, additional tests were made by running the mathe-
matical model with the best ILS solutions as initial solutions. As a
result, the optimal lower bound for instance 17 was achieved (LB =
40.0), and the lower bounds for instances 23 and 24 were signifi-
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Table 3
Results obtained for the MIP model solved with Gurobi - six resources.
Ins- tance  OFV LB LBO Burned Nodes  Node Count  Solution Count  Time Best[s]  Total Time[s]
1 23 23 13.0 22 1 7 1.7 1.8
2 24 24 142 23 6 1.9 2.0
3 24 24 123 23 16 6 2.6 3.5
4 24 24 144 23 5 1.4 1.6
5 24 24 131 23 12 7 2.7 3.8
6 25 25 164 24 6 13 1.6
7 24 24 150 23 1 7 2.0 2.0
8 25 25 172 24 1 7 2.0 2.1
9 38 38  13.0 37 440 4 17.6 17.9
10 43 43 154 42 1499 6 17.1 17.2
11 43 43 142 42 36 4 10.6 15.2
12 50 50 185 49 158 7 14.8 15.0
13 48 48 146 47 2250 10 25.0 25.2
14 52 52 186 51 1088 6 171 17.7
15 55 55 183 54 222 4 18.5 18.8
16 59 59 237 58 54 6 19.3 19.5
17 - 33 114 - 226,918 0 - 7,200.2
18 - 49 148 - 333,866 0 - 7,200.2
19 - 39 120 - 192,853 0 - 7,200.3
20 - 57 160 - 217,700 0 - 7,200.4
21 44 44 129 43 2400 1 273.8 274.4
22 63 63 18.1 62 6303 1 425.9 426.3
23 61 61 143 60 22,149 3 640.5 640.9
24 99 99 206 98 16,707 9 1,646.5 1,647.0
Table 4
ILS results for problems with five resources.
Best solution (OFV)  Average values (5 replications) Total (ILS)

Instance  CH LS ILS CH LS ILS Time[s] Best  Time[s]

1 27 27 26 27.0 26.8 26.0 1.2 5 6.1

2 27 26 26 27.0 26.2 26.0 1.2 5 5.9

3 28 27 27 28.2 27.2 27.0 1.0 5 5.2

4 28 27 27 28.0 27.0 27.0 1.0 5 5.0

5 27 27 26 27.0 27.0 26.0 1.1 5 5.7

6 27 27 27 27.0 27.0 27.0 1.0 5 4.8

7 28 28 28 28.0 28.0 28.0 1.0 5 4.8

8 28 28 28 28.0 28.0 28.0 1.0 5 5.1

9 44 42 42 44.6 42.0 42, 4.7 5 23.5

10 52 47 47 51.2 47.8 47.0 5.1 5 25.4

11 52 48 48 51.2 48.0 48.0 5.1 5 25.7

12 58 55 55 57.6 55.0 55.0 5.0 5 25.2

13 55 55 52 54.6 53.2 52.0 53 5 26.3

14 61 59 56 61.4 58.8 56.0 5.7 5 28.6

15 64 59 59 64.0 59.0 59. 4.7 5 23.7

16 69 65 64 69.0 65.0 64.2 5.8 4 29.1

17 42 40 40 42.0 40.0 40.0 325 5 162.7

18 61 59 56 61.4 59.4 56.0 39.5 5 197.7

19 52 51 49 52.0 50.4 49.0 37.5 5 187.4

20 80 80 73 80.6 77.2 73.0 34.7 5 173.5

21 59 51 51 58.8 51.0 51.0 33.8 5 168.9

22 83 75 75 79.4 75.0 75.0 32.8 5 163.8

23 75 75 73 75.8 73.4 73.0 35.7 5 178.6

24 117 116 113 1190 1160 1128 412 3 206.1

25 48 48 46 47.6 46.8 46.0 82.1 5 4104

26 72 65 64 70.4 64.2 64.0 75.6 5 378.1

27 57 57 56 58.0 57.0 56.0 83.3 5 416.7

28 94 88 79 94.2 88.0 79.0 79.4 5 396.8

29 66 66 61 64.4 62.0 61.0 72.8 5 364.2

30 90 88 84 90.0 85.6 84.0 78.8 5 394.2

31 90 90 86 89.0 88.6 86.2 86.9 4 434.5

32 143 132 124 1434 1336 1272 9838 3 494.2

cantly improved to 56.4 and 77.3, respectively. However, no signifi-
cant lower bound improvements were observed for instances 18 to
22.

5.3. ILS Results

The ILS results are shown in Tables 4 and 5, for problems with
five and six resources, respectively. In these tables, the first col-
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umn indicates the instance number, followed by objective function
value of the best solution produced by the constructive heuristic,
by the local search procedure and by ILS. In the following three
columns, the average objective function values over five runs are
reported for the same three approaches. Afterwards, the average
running time is reported, followed by the total number of times
that the best solution was achieved (out of five), and the total run-
ning time, considering the five replications.
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Table 5
ILS results for problems with six resources.
Best solution (OFV)  Average values (5 replications) Total (ILS)

Instance  CH LS ILS CH LS ILS Time[s]  Best  Time[s]

1 25 25 23 246 244 236 1.2 2 6.2

2 26 25 24 254 244 240 1.2 5 5.9

3 25 24 24 248 240 240 1.2 5 6.1

4 27 24 24 268 244 240 1.7 5 8.6

5 25 24 24 244 242 240 1.2 5 5.9

6 25 25 25 250 250 250 1.1 5 5.7

7 26 25 24 260 250 240 15 5 7.7

8 27 25 25 262 250 250 1.2 5 6.0

9 41 38 38 404 380 380 5.1 5 25.4

10 47 45 43 46.6 43.8 43.0 53 5 26.4

11 45 43 43 448 430 430 47 5 23.7

12 56 53 50 558 518 504 6.0 3 29.8

13 50 49 48 502 490 480 5.2 5 26.0

14 57 53 52 564 536 526 60 2 30.0

15 58 55 55 574 550 550 57 5 28.6

16 66 62 59 670 614 590 78 5 39.2

17 36 35 33 366 346 330 399 5 199.5

18 58 54 49 574 522 498 385 3 1926

19 49 47 39 478 438 398 393 4 196.4

20 74 67 57 74.8 67.4 57.0 39.8 5 198.9

21 49 44 44 496 444 440 367 5 1834

22 74 64 63 748 644 630 411 5 205.4

23 68 61 61 678 618 610  37. 5 185.1

24 111 101 100 1092 103.0 1014 41,1 4 205.4

25 38 38 38 392 392 388 942 3 4711

26 67 57 56 662 570 560 117.4 5 587.0

27 53 51 49 532 516 498 1129 3 564.7

28 8 80 70 840 810 706 151.9 2 759.7

29 57 53 53 574 536 534 934 4 467.2

30 85 81 75 85.2 80.0 75.2 123.0 4 615.0

31 79 79 74 784 780 740 106.8 5 534.2

32 135 121 114 1362 1214 1140 133.0 5 665.2

A comparison is made between the ILS objective function value ~ Table 6 o
and the lower bounds obtained from Gurobi for instances 1 to 24 ILS performance by grid size.
(with five and six resources) to assess the ILS effectiveness. This set ILS relative ILS relative Coef. Var.  Coef. Var.  Average
of 48 problems comprises 36 optimal solutions, five optimal lower Grid improvement  improvement  OFV Runtime  Runtime
bounds (instance 17 from Table 2 and instances 17 to 20 from over CH over LS All Repl{s]
Table 3), seven non-optimal lower bounds (instances 18 to 24 from 6X6 3.5% 1.2% 0.1% 9.4% 5.9
Table 2). As previously noted, the lower bounds were improved in 1010 6.7% 1.4% 0.1% 10.6% 273
three cases after running the MIP model having as an initial solu- 20x20 - 10.2% 3.5% 0.6% 9.8% 187.8
30x30  8.6% 3.8% 0.8% 13.8% 497.1

tion the ILS solution. In summary, optimality was reached for 40
out of 41 cases, and the only non-optimal solution had a 1.0% gap.
By considering the other seven cases (instances 18 to 24 with five
resources), the overall average gap is 2.8%. Instances 30x30 cannot
be compared to exact lower bounds.

A comparison between Gurobi and ILS regarding the processing
time has to consider that Gurobi was processed aiming to achieve
optimality. However, this was done by balancing between finding
new feasible solutions and proving that the current solution is op-
timal. Moreover, a time limit of 7200 seconds was imposed for
solving the MIP models, and, as a result, their processing times
can be high. In fact, the average Gurobi runtime for instances 1-
24 with five and six resources, excluding the out-of-memory cases,
was 802.3 seconds. On the other hand, the ILS average processing
time for the same instances, considering all replications, was 52.5
seconds.

In Tables 4 and 5 the objective function values are always in-
tegral, meaning that all resources were utilised. This was expected
as the problem set proposed in this work was tested under a lim-
ited number of resources (five and six). If more resources were
available, there could exist fractional optimal solutions. For exam-
ple, if four resources were made available at instant 10 and four
resources were made available at instant 15, the optimal solution
for instance 1 would be 7.625, indicating seven burned nodes and
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five out of eight resources utilised (5/8 = 0.625). This example also
considered that the ignition takes place at node (1,1).

An important figure is the overall average number of best so-
lutions produced by ILS: 4.57 (out of five replications). This value
varied according to the grid size in the following way: 4.81 (6x6),
4.63 (10x10, 20x20), 4.25 (30x30). Even for the cases where the
best solution was not achieved, the variation is low. We further
comment on the coefficient of variation of the objective function
values below.

The summary of the average ILS performance is shown in
Table 6. The first column indicates the grid size. The other columns
display the average values of the relative improvement of the
objective function values of ILS with respect to the constructive
heuristic (i.e, (zcy — zj15)/2zcy) and to the local search (i.e., (z;5—
Zi1s)/z1s) approaches (columns 2 and 3, respectively), followed by
the coefficient of variation of the objective function values and of
the ILS runtime. One may note that the ILS relative improvement
increases with the grid size. The coefficient of variation of the ob-
jective function values are very low, which is a significant achieve-
ment, while an admissible variation is observed in the ILS runtime.
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A=15: OFV=26.0

30[21[16]19]29 30| [30 29]16]29 34 30| [30 34[16[19 24 29
21[11] 7 12[18]22| 2111 7 12 18] 22| |21[11] 7 12 18 22
[12] 6 4 9 13|12 sl 4 o 1312 sl 4 9 13
13 7 3 8 131513 7 3 8 13[15]|13 7 3 8 13[1s5
16 10 6 11 15 18[[16 10 6 11 15 20| |16 10 6 11]15[33
19 14 10 14 18 20{[19 14 10 14 18 22| [19 14 10]14]33 35

Fig. 3. Effect of different A values on instance 5.

5.4. Analysis of the fire suppression delay parameter

A foundational premise on which this research relies is that
when suppression resources are deployed along a rasterised land-
scape, the nodes with resources become protected and hinder the
fire propagation through them. The mathematical model addresses
this issue by adding a delay to the fire propagation time from the
protected node to its adjacent nodes. By properly adjusting the de-
lay parameter (A) regarding the instant that the objective func-
tion is evaluated, one can guarantee that the suppression resources
will act as fire blockers throughout the considered time horizon. In
this case, the smallest value that the A parameter can assume is
given by the difference between the instant the objective function
is evaluated and the instant that resources are first released and
plus one.

If A assumes values inferior to the above-indicated, the sup-
pression resources will act as fire retardants rather than blockers.
Such a situation occurs, for instance, when fire intensity is suffi-
ciently high to prevent a fire crew from protecting the whole node
area. Consequently, the fire path through the node may not be
blocked but rather retarded. By adopting small A values (which
can be node-specific), the modelling can thus address situations in
which suppression resources are likely to fail to block an intense
fire. Hence, optimisation approaches can indicate how to deploy
suppression resources effectively.

In this regard, additional tests were made both with the math-
ematical model and the ILS metaheuristic. We considered the case
with five resources and tested three different values for A (5, 10,
15), besides the value of 50, as in the previous section. Note that
forcing A to be 20 (or larger) produces the same effect as 50, for
reasons already given. To assess the ILS performance, we limited
our experiments to landscapes 6x6, 10x10 and 20x20, which are
solvable by Gurobi. As in the previous experiments, Gurobi was
processed with a time limit of 7200 seconds, ILS was processed
five times, and the minimum value for each instance was consid-
ered. The results are displayed in Table 7. In all cases, ILS reached
the optimal solution. Therefore, we will concentrate our discus-
sion on the effects of different A values rather than the heuris-
tic performance (processing times and the number of best solu-
tions). Note that in Table 7, the objective function values that ap-
pear in the last column come from the previous computational ex-
periments, either from Table 2 (instances 1 to 16) or Table 4 (in-
stances 17 to 24), as Gurobi failed to generate integer solutions
with five resources for larger instances. All other values are op-
timal objective function values obtained both by Gurobi and ILS.

In Table 7, the average reduction in the number of burned
nodes when A increases from five to ten is 10.3%, and the max-
imum reduction is 17.1%. Then, by increasing A from ten to fifteen,
the average reduction in the number of burned nodes is 3.7%, and
the maximum reduction is 11.1%. In both cases, the maximum re-
duction was observed for instance 18. The reduction in the aver-
age number of burned nodes is expected, as the larger the delay
parameter, the more effective the protection provided by the sup-
pression resources is.
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Table 7

Objective function values for different A values and five resources.
Instance OFV (A =5) OFV(A=10) OFV(A=15) OFV (A =50)
1 29 26 26 26
2 29 26 26 26
3 30 27 27 27
4 30 27 27 27
5 29 27 26 26
6 29 27 27 27
7 31 28 28 28
8 31 28 28 28
9 49 44 42 42
10 55 49 47 47
11 57 51 49 48
12 61 56 55 55
13 58 54 52 52
14 63 58 56 56
15 68 62 60 59
16 71 66 64 64
17 51 43 40 40
18 77 64 57 56
19 61 52 49 49
20 90 82 74 73
21 65 55 51 51
22 93 84 77 75
23 86 76 73 73
24 120 115 113 113

Fig. 3 shows the influence of different A values on instance 5.
For the three cases, the numbers indicate the fire arrival instants
at each cell (node). The red cells are the ignition nodes; the orange
cells are burned by the time the objective function is evaluated
(instant 28). The grey cells are those where the resources were de-
ployed, and the light green cells are protected. Interestingly, the
retardant effect is observed for A = 5, for the cell (2;1) (second
line, first column), with fire arrival instant 21. The fire first arrived
at node (2;2) at instant 11. Considering that the fire spread time
between nodes (2;2) and (2;1) equals to five (a value that only ap-
pears in the problem data set) and by adding the delay of five time
units, the fire reaches node (2;1) at instant 21, despite suppression
resources being placed in the surrounding nodes (2;2) and (3;1).
For A =5 and A = 10, the resources are mostly deployed in the
upper parts of the landscape. As the fire propagates more rapidly
in the southeast direction, it is advantageous to position resources
in the upper nodes when A is small. However, for A = 15, one can
observe that the lower part of the landscape becomes protected,
and the retardant effect is sufficient for protection until the instant
the objective function is evaluated. The objective function values
29, 27, and 26, indicate 28, 26, and 25 burned nodes, respectively.
In all cases, all resources were utilised (which forces the second
term of the objective function to be 1.0).

6. Conclusions

Combating wildfires is a major concern throughout the world.
With the ever-increasing occurrence and intensity of forest fires,
it is paramount to extinguish them as quickly as possible before
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they become uncontrollable. A particular concern relates to forest
fire occurrences in wildlands surrounding areas with human set-
tlements, posing a greater risk to human lives.

In an attempt to effectively respond to fire occurrences, fire
management teams have mapped fire-prone areas concerning their
spatial data, raster data from geographic information systems, fu-
els and typical weather conditions (Landfire, 2022). These data al-
low determining the fire spread rates between adjacent nodes of a
rasterised landscape, which in turn allows applying optimisation-
based fire suppression planning tools.

In this regard, we addressed a fire suppression problem aiming
to determine where to position the suppression resources that be-
come available in different time instants, with the objective of the
minimising the number of burned nodes by a target instant and
the total number of resources as a secondary objective.

We proposed an iterated local search metaheuristic that can
solve large instances of the problem in short computing times. The
approach was validated by comparing the objective function values
with those from a mixed-integer programming model from the lit-
erature. ILS found provably optimal solutions for grid sizes ranging
from 36 to 400 nodes, with very small coefficients of variation, at-
testing that the method is robust. Problems with 900 nodes were
also solved with reasonable computing times. An important feature
of the proposed approach is the optimisation of resource position-
ing, taking into account its influence on the spatial and temporal
propagation of fire. This collaborative approach allows assessing
the effect of positioning suppression resources in the fire spread
behaviour, thus supporting fire management decisions during the
initial attack.

The proposed approach can be directly extended to address
variants such as the existence of different resource types or the
objective of asset protection. A relevant extension is to model the
movement of resources (taking into account that fire blocks paths),
or even test a fire spread simulator other than MTT solved with
Dijkstra’s algorithm. The inclusion of uncertainty in the fire spread
simulator is a natural follow-up to this work.
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