
PyAnaDroid: A fully-customizable execution
pipeline for benchmarking Android Applications

Rui Rua
HASLab/INESC TEC, Portugal
Universidade do Minho, Portugal

Braga, Portugal

rui.a.rua@inesctec.pt

João Saraiva
HASLab/INESC TEC, Portugal
Universidade do Minho, Portugal

Braga, Portugal

saraiva@di.uminho.pt

Abstract—This paper presents PyAnaDroid, an open-source,
fully-customizable execution pipeline designed to benchmark
the performance of Android native projects and applications,
with a special emphasis on benchmarking energy performance.
PyAnaDroid is currently being used for developing large-scale mo-
bile software empirical studies and for supporting an advanced
academic course on program testing and analysis. The presented
artifact is an expandable and reusable pipeline to automatically
build, test and analyze Android applications. This tool was
made openly available in order to become a reference tool
to transparently conduct, share and validate empirical studies
regarding Android applications. This document presents the
architecture of PyAnaDroid, several use cases, and the results
of a preliminary analysis that illustrates its potential.
Video demo: https://youtu.be/7AV3nrh4Qc8

Index Terms—Mobile Testing; Energy Consumption; Bench-
marking;

I. INTRODUCTION

Improving energy efficiency in mobile devices and apps is

a major concern for software developers, given the power lim-

itations of such devices [1]. Consequently, extensive research

in green software within the mobile ecosystem has focused

on analyzing energy consumption through various approaches,

including estimating app or code energy consumption [2]–

[5], detecting anomalous coding patterns [6]–[8], and defining

green/red APIs [5], [9], [10].

Although the scientific community has made significant

efforts to provide insights into mobile app efficiency and pro-

gramming practices, these studies typically rely on indepen-

dent and non-reusable procedures, tools, and knowledge [11],

[12]. Consequently, each new study often requires recreating

the entire process, resulting in time-consuming setup, verifi-

cation, and validation of data and results, which are seldom

reused in subsequent studies.

To address these issues, we introduce PyAnaDroid, an open-

source framework designed to optimize, enhance transparency,

and improve replicability in empirical studies evaluating An-

droid software artifacts’ performance. Following the recent

interest and necessity of evaluating mobile software energy

performance, our tool is specially focused on energy perfor-

mance, aiming to be used by both researchers and developers

to analyze Android source code performance. PyAnaDroid
offers a configurable workflow that analyzes source code,

extracts metrics, and provides instrumentation capabilities.

It also supports various testing frameworks, instrumentation

techniques, profilers, and other application analysis tools,

facilitating empirical studies by developers and researchers.

The framework validates test results and conditions, ensuring

result consistency and adherence to specified test conditions.

PyAnaDroid should not be considered a test framework or

an energy profiler per se, but rather a versatile tool integrat-

ing state-of-the-art test frameworks and energy profilers for

dynamic analysis of Android applications. Users can easily

configure PyAnaDroid to process a set of applications, specify

testing frameworks, test conditions, device parameters, and

assert results validation.

To demonstrate PyAnaDroid’s capabilities, this paper

presents preliminary results obtained through its execution. We

utilized PyAnaDroid to analyze an initial set of 245 Android

projects extracted from open-source repositories. All collected

data, metrics, and execution procedures are openly available.

This analysis aims to evaluate PyAnaDroid’s effectiveness in

tasks such as building and analyzing Android projects and

comparing the performance of different testing frameworks to

achieve various test objectives.

II. RELATED WORK

The Android ecosystem offers a wide range of alternatives

for testing applications. Automating application execution us-

ing automated execution procedures, such as the ones provided

by testing frameworks, is the most common method followed

by the scientific community to evaluate the dynamic execution

of Android [12], [13] apps: Correctness [14], security [15],

or performance [16], [17] are among the main requirements

evaluated by the community in their studies.

Using testing frameworks to exercise applications in order

to evaluate source code performance is a common approach

in the literature. When it comes to running a large number of

tests on a set of variable-size apps, collecting or replicating

app-specific real user inputs is impractical. Consequently,

developers and researchers use testing frameworks to emulate

user interaction. One of the most commonly used frameworks

is UI/Application Exerciser Monkey (Monkey for short) [18],

which has been used in many previous works [3], [4], [10],

[14], [19] to help detect energy/performance-related issues.

586

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00077

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
9-

8-
35

03
-2

78
3-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

88
46

.2
02

3.
00

07
7

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

Unit testing frameworks such as JUnit or Robotium are used

in scenarios where the source code is available [2], [14] or for

developing app-specific scenarios.

In the literature, there are a few attempts to standardize

procedures for benchmarking performance (more concretely,

energy consumption) of Android apps. GreenDroid [2] was

one of the first tools to automate the process of building and

running Android projects to obtain estimates of their energy

consumption. PETRA [3] was also included in a pipeline that

performed source code instrumentation and was used along-

side Monkey to exercise applications while monitoring energy

consumption. Malavolta et al. [20] also presented a profiler-

independent tool for the automation of measurement-based

experiments on Android devices. This tool was conceived to

be profiler-independent and used to replicate the performance-

based study of Android apps using a black-box approach,

being able to process native and web-based apps. However, all

these tools have limited applicability. None of these tools is

able to automatically instrument and build modern applications

with state-of-the-art tools. GreenDroid is only able to exercise

Java apps using unit tests and profile applications with Power

Tutor [21] (a deprecated profiler). PETRA was only able to

exercise apps with Monkey and is not suitable for conducting

large-scale empirical studies, since it relies on an GUI to

conduct the testing and profiling process. The tool presented

in Malavolta et al. is not able to automatically build Android

projects or execute apps with different testing frameworks.

III. THE PyAnaDroid FRAMEWORK

This section provides a overview of the PyAnaDroid frame-

work, presenting its main components and features and demon-

strating how it can assist practitioners in analyzing and bench-

marking Android applications. Motivated by the open-source

movement, this tool is openly available for the community to

use and contribute, aiming to standardize and make transparent

the empirical experimental process of analyzing applications’

energy consumption. PyAnaDroid itself is inspired by an open-

source tool, GreenDroid [2], which was the first execution

flow that involved instrumenting, building, and running apps

on physical device using JUnit tests, while also estimating

energy consumption.

PyAnaDroid is a highly configurable pipeline designed for

empirical studies involving dynamic analysis of software. It

consists of multiple blocks or modules, each representing a

common static/dynamic analysis task in such studies. These

modules are implementations of state-of-the-art tools or pro-

cedures widely used in the literature. The tool can be easily

extended in order to support new workflows or modules, by

extending or implementing the modules or workflow interface.

PyAnaDroid allows generating and replicating workload over

a set of applications, being able to monitor the execution of

this workload and produce reports regarding the application’s

performance. In addition to providing several implementations

of each of its blocks, the framework can easily support other

relevant blocks for app analysis, such as refactoring or code

repairing blocks. Furthermore, PyAnaDroid includes essential

features for dynamic analysis studies, including test condition

enforcement to ensure tests are conducted under specific

device conditions and test validation to detect anomalies by

enforcing a set of post-execution checks.

The PyAnaDroid architecture follows recent state-of-the-art

guidelines [22], being able to perform both white-box and

black-box testing, depending on the selected testing procedure.

It is also able to automatically instrument Android projects in

order to include tracing calls to obtain dynamic metrics and

integrate performance profiling tools. It can also automatically

build Android projects and install the resulting APK(s) on a

given device. The installed apps can be automatically executed

by the supported testing frameworks while their execution is

being monitored by an energy profiler. Finally, it can analyze

and validate the execution of each test, and present the final

results and metrics to the user.

PyAnaDroid was developed to be easily integrated with the

typical Android development environment and can be used to

interact with any Android device or emulator. Furthermore,

it was designed to be easily installable and configurable,

resulting in a plug-and-play experience on any machine with

Android SDK configured. Furthermore, it is available as a Pypi

package in order to be easily installed with a single command

in any Python development environment, relying solely on

Android SDK tools and open-source libraries.

Fig. 1. PyAnaDroid default workflow

The framework offers several implementations of each block

in the execution pipeline, allowing users to replace software

components with minimal effort or develop new parts to

integrate into the pipeline. Fig. 1 contains the default workflow

of the pipeline when an Android project is provided as

input. Each stage of PyAnaDroid is represented by a square,

while the inputs/outputs of each block are represented by the

rounded blocks. These blocks can be interchanged so as to

define different execution pipelines. The framework supports

different types of input, which we will present in Section III-A

and originate different execution pipelines.

In the default workflow, when an Android project is pro-

vided, the project enters the Instrumentation stage, which

clones the project and transforms the project’s sources (Sec-

tion III-B). Afterward, the cloned project is built using the

building block (Section III-C). The expected output of such

block is one or more APKs, consumed by a process illustrated

in Figure 1 as Execution, which is detailed in Section III-D.

This process can have several iterations, which can be vali-

dated by the Analysis block described in Section III-E.

587

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

A. Input

This section describes the first block of the execution

pipeline. PyAnaDroid supports 3 different types of inputs to

consume, whose type is inferred by the arguments passed to

the CLI interface or the class constructor: packages name(s)
(name of the packages of the apps to be tested), APK(s) (path

of the APKs to test), and projects’ directory (the directory with

Android projects to be processed). In addition to these three

types of inputs that are processed by the execution pipeline,

the framework also supports several input options that allow

configuring aspects related to pipeline blocks, test framework

configuration parameters, type of building to be performed,

etc.

B. Instrumentation

Currently, PyAnaDroid is able to perform source code in-

strumentation, both at pre-processing and compile-time. Such

instrumentation is performed before the building stage.

PyAnaDroid is able to perform two different types of Java

and Kotlin source code instrumentation, available through 2

different instrumentation blocks, such as applications’ meth-

ods. The first implementation consists of instrumenting meth-

ods with calls to TrepnLib [23] in order to estimate the power

and resources consumption of such instrumented blocks, as

well as log other relevant events. The latter, Annotation-

Oriented, aims to perform method tracing and temporal local-

ization of the execution of methods in the device’s system logs.

The latter is automatically performed by injecting annotations

on the application’s methods using a compile-time plugin.

C. Building Tools

This module performs a function that is often a major

obstacle to perform empirical studies from source code with

a large number of applications: building third-party Android

apps from source. Many studies in the literature involving

automated testing in Android rely on open-source repositories

to obtain its corpus of applications [24]. However, when

one intends to obtain and analyze a significant corpus of

applications, a procedure to automate their building is es-

sential. Unfortunately, many of these applications are con-

figured to be built only on specific environments or devices,

requiring a tedious manual setup to be built and executed.

PyAnaDroid offers a building block that allows not only

to automate the build process of several Android projects

but also to solve problems of build or integration with the

current development environment, instrumentation libraries

or profilers. Furthermore, the framework contains a single

implementation of the building block, that provides support for

the Gradle [25] building tool: the default building system for

building native Android apps. This block tries to build Android

projects in an iterative procedure, where it parses the output

of the building commands and repair errors based on a set of

pre-defined heuristics. Among the building errors solved by the

current implemented block are missing build tools, deprecated

configurations, invalid local or NDK properties, dependencies’

incompatibilities, among others. Besides being able to solve

these building errors, the block is also able to inject custom

configurations in the building scripts, such as, for instance, lint
or dex options.

D. Dynamic Execution

This PyAnaDroid stage is composed of one or more pro-

cedures that involve the interaction and management of the

test device with two block implementations: the testing frame-
works block and the profiler block. The typical test workflow

consists of unlocking the device screen (if locked), clearing

device logs, and then starting the profiler and the monitoring

process. Afterward, the app is opened and the test is executed.

At the end of the execution, the app is closed and the profiler

is turned off. The device logs are cleared and the monitoring

results are exported and extracted from the device, right before

the application cache being cleared too. Finally, the results

are validated using an Analysis block, repeating the test if

this block rejects its results, optionally until a maximum of

pre-defined times is reached.

1) Testing frameworks: PyAnaDroid takes advantage of

testing frameworks to exercise the Android applications and

respective code. Our tool currently supports several of the most

common frameworks that allow to easily interact and execute

applications on Android devices. These frameworks can be

used in the form of interchangeable blocks whose configu-

rations and test parameters can be configured with minimal

effort through configuration files. Currently, the tool supports

9 testing frameworks, of several testing types. Beside of the

supported testing frameworks, PyAnaDroid also supports the

execution of custom tests whose invoking command(s) can be

passed via command-line. The test suites to be executed can be

configured via configuration files, as well as other testing pa-

rameters (number of executions, timeouts, etc). Table I shows

the testing frameworks currently supported by PyAnaDroid.

TABLE I
TESTING FRAMEWORKS SUPPORTED BY PyAnaDroid

Framework Requires source Description

Monkey [18] No generates pseudo-random system events
JUnit [26] Yes Unit testing

UI Automator [27] No functional UI testing
Robotium [28] No UI testing via component abstraction
Espresso [29] Yes UI testing of view components
RERAN [30] No Record and Replay framework
DroidBot [31] No Model-based UI framework

App Crawler [32] No GUI and system events
MonkeyRunner [33] No functional and regression testing

In addition to these frameworks, others that have not yet

been tested based on JUnit might also be supported, such

as dexmaker [34]. Other frameworks can easily be added by

implementing the interface defined for the testing block.

2) Profilers: To monitor apps’ execution, PyAnaDroid pro-

vides a block that aims to define an interface for com-

munication and management of monitoring tools. Currently,

3 different implementations of such interface are provided,

that integrate 3 different energy profilers, namely: Trepn

Profiler [35], E-Manafa [36] and GreenScaler [4]. By default,

PyAnaDroid uses E-Manafa, since it it the most suitable

588

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

device-independent solution to be used with state-of-the-art

devices. This open-source profiler that allows obtaining per-

formance measurements on Android devices, such as energy

consumption, runtime, CPU frequency, or resource usage.

Furthermore, it can be used on any device that has these

services (all devices running version 9.0 or later of the Android

platform).

E-Manafa is an open-source profiler that allows obtaining

performance measurements on Android devices, such as en-

ergy consumption, runtime, CPU frequency, or resource usage.

To obtain these metrics, it uses as a data source, the power

profile file present on each device, the batterystats service (to

obtain data on resource usage) and perfetto [37] (to sample the

CPU frequency). Furthermore, it can be used on any device

that has these services (all devices running version 9.0 or later

of the Android platform).

E. Analysis Tools

Currently, there are already several implementations of this

block in the pipeline, which are executed consecutively or

concurrently to obtain results from the analysis of several

elements, such as source code, logs, devices, and services.

The metrics and results provided by each one of the analyzers

are compiled in results files and reports in JSON format.

Some of the most relevant analyzers are analyzers to analyze

logs collected from the device during application execution to

detect errors that occurred during app executions, analyzers for

validate results and produce reports of the monitoring process

with the energy profilers or source code and APK analyzers to

derive static metrics from the project source code. For instance,

PyAnaDroid provides an implementation of the SCC Analyzer,

that uses scc [38] to extract metrics such as the languages used,

Lines Of Code, Cyclomatic Complexity [39], among others.

IV. EXAMPLES AND RESULTS

In this section, we briefly describe the procedure and

results of a preliminary dynamic analysis performed over a

large set of 245 Android projects using PyAnaDroid, whose

execution did not involved any human interaction. With this

preliminary study, we intend to demonstrate some use cases

of our framework, as well as to evaluate the advantages

of using this tool to carry out large-scale studies. Among

the presented use cases are operational acceptance testing

and comparing the effectiveness of testing approaches and

frameworks to detect run-time errors, explore energy hot-spots

or maximize code coverage. The entire analytical process was

made openly available 1, with the respective instructions for

its replication. Most of the collected results and respective

analysis are provided in an online appendix 2.

The conducted empirical process carried out to process the

Android projects and respective applications involved trans-

forming and building each of these projects 3 times, which

means that it took approximately the same time to build 3

times the number of applications when executed sequentially.

1Execution process used in this work: https://shorturl.at/qrHSX
2Online appendix: https://shorturl.at/ekyIU

The test process consisted of executing the tool over Android

Projects via 4 different commands.

To demonstrate the advantages of using PyAnaDroid to

automate the project building process, our framework was

executed with 3 different building approaches:

• naive approach: Sets up Gradle wrapper and properties

file to automate the building process. Intends to simulate

a limited workflow that could be included in an Android

project building automation process (as designed in [2])

and . It aims to perform a workload equivalent to the

manual of work of performing a minimal setup effort

and invoke the Gradle building commands.

• default approach: capabilities of the previous approach

plus the ability to automatically solve several building

errors (missing build tools, deprecated configurations,

invalid local/NDK properties, etc).

• default+I approach: Equivalent to the previous approach,

but with source code instrumentation to evaluate the

instrumentation process’ intrusiveness.

The results obtained by applying the 3 building approaches

aim to perform 2 evaluations corresponding to 2 potential

use cases: a) if open-source Android applications have their

code ready to be built and executed outside the development

environment; b) The accuracy of black-box testing frameworks

in detecting runtime errors on Android apps. Consequently,

the last option presented (default+I) was also combined with

the execution of tests with Monkey and Droidbot frameworks.

Since these two frameworks allow black-box testing of ap-

plications using various test loads and parameters, running

applications with 2 different frameworks allows the possibility

of detecting errors in applications as well as to establish

comparisons between the effectiveness of test frameworks for

automating the execution of Android applications.

In short, the empirical process can be summarized by the

execution of 4 commands of the framework:

$ pyanadroid -d <apps_dir> -nv -i None -p None -bo
$ pyanadroid -d <apps_dir> -i None -p None -bo
$ pyanadroid -d <apps_dir> -t Monkey -p EManafa
$ pyanadroid -d <apps_dir> -t Droidbot -p EManafa

All the options used are described in the PyAnaDroid docu-

mentation and in the online appendix. The -d option precedes

the location of the projects under analysis. The -nv option of

the first command runs the process with the naive builder,

while the -i and -p options specify the instrumentation and

profiler. Using the -bo (build only) option present in the first

2 commands, the processing workflow of each project ends

after the building phase. The -t option specifies the testing

framework for the execution process. The tool rebuilt the

projects in the second and third commands since they were

built with different configurations. In the last command, the

projects are not rebuilt, since the instrumentation and build

process is the same.

This study considered an initial diverse set of randomly

selected 250 apps with release packages present on GitHub. In

order to gather our dataset, we used the information present

in AndroZoOpen [40], by using a custom crawler [41] that

589

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

is able to download and filter the projects of the dataset.

The data selection and filtering process are described in

the online appendix. Static metrics collected regarding the

projects’ sources are also available in tabular format.

TABLE II
BUILDING APPROACHES ABILITY

Approach #Projects %

naive 113 46,12%
default 129 52,66%

default+i 102 41,63%

TABLE III
DYNAMIC EXECUTION METRICS

Metric Scope Monkey Droidbot Unit

Energy Test 17.91 204.67 J
Power Test 1.91 1.85 W
Energy Method 0.0023 0.12 J

Run-time Test 9.36 110.79 s
Method coverage Test 5.06 11.42 %

Errors Test 79.5 156 #
Java Exceptions Test 1 7 #

Table II shows the results of applying the 3 building strate-

gies to our initial set of Android projects. All numerical values

presented in this table, independently of the corresponding

unit, are presented in terms of median. Our results show

that PyAnaDroid improves building ability by approximately

14% over the naive alternative. Building with instrumenta-

tion(default+i) proved to be more intrusive for the building

applications (since it requires build files instrumentation to

include a compile-time plugin for the instrumentation process),

having only managed to build 102 applications. By observing

the significant failure rate of the naive approach and by

comparing with default and default+i, it is possible to observe

that the usage of PyAnaDroid does not significantly increases

the failure rate. This evidence also reveals that building open-

source Android projects typically raises configuration and

replication issues, with this problems being caused by either

missing or erroneous environment and project configurations,

such as incompatibility issues, missing dependencies, etc.

Table III presents a set metrics extracted by the analysis

block of the framework after dynamically executing the apps.

The measurements presented in this Table represent the median

values obtained during the testing procedure, accounting for

the energy consumption of the applications during the testing

procedure and the performance overhead of the testing frame-

work being executed alongside the application. The results

allow us to draw comparisons regarding the accuracy and

effectiveness of the selected testing frameworks to meet certain

testing objectives. For instance, for the selected configurations

for each framework, we can observe that Monkey consumes

more energy per second (Power, Watts), but less energy over-

all, since generated its inputs more quickly. However, since

the testing sessions with Droidbot were longer (caused mostly

by its startup time), Droidbot significantly consumed more

energy overall. Nevertheless, Droidbot was able to detect more

Java Exceptions and Errors, while also providing more method

coverage. This evidence suggests that this framework might

be more suitable for performing functional testing and more

effective to explore applications’ code. Nevertheless, to obtain

meaningful and representative results for the supported testing

frameworks, a more elaborated study must be conducted to

demonstrate the potential use case for the PyAnaDroid frame-

work. For instance, our tool is suitable to conduct studies

aiming to estimate and compare the performance overhead of

testing frameworks [42].

V. CONCLUSIONS

This work presents PyAnaDroid, a tool to automatically

build, analyze and run Android applications, using different

testing strategies. As far as the authors acknowledge, there

is no other capable of performing native source code instru-

mentation and performing automatic building and execution of

the code with different profilers and testing frameworks. The

tool is completely open-source and its operation and results

can be easily validated and extended by the community. Py-
AnaDroid is under continuous development and supporting an

advanced course in software testing and analysis. In addition to

the development by the authors, it is expected that the scientific

community and Android programmers can also contribute to

its development.
The results presented in this work demonstrate that it is

possible to use a generic pipeline that can transform and

analyze source code, build applications and execute them

automatically, with a high degree of customizability. PyAna-
Droid can be used by practitioners and researchers for several

purposes, such as detection of bottlenecks or inefficient coding

practices, calibration of energy monitoring tools, comparison

of testing frameworks and energy profilers, mutation and

regression testing, among others. Furthermore, the perfor-

mance benchmarking step is optional, being also suitable for

automating the dynamic execution of non-performance-related

tasks over sets of applications, such as accessibility checking,

UI testing, among others.

VI. ACKNOWLEDGMENTS

This work is financed by National Funds through the

Portuguese funding agency, FCT - Fundação para a Ciência e a

Tecnologia, within project UIDP/50014/2020. The first author

is also financed by FCT grant SFRH/BD/146624/2019.

REFERENCES

[1] G. Pinto and F. Castor, “Energy efficiency: a new concern for application
software developers,” Communications of the ACM, vol. 60, no. 12, pp.
68–75, 2017.

[2] M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Greendroid: A tool for analysing power consumption in the android
ecosystem,” in 2015 IEEE 13th International Scientific Conference on
Informatics, Nov 2015, pp. 73–78.

[3] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. D. Lucia, “Petra: A software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), May 2017,
pp. 3–6.

590

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

[4] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
Training software energy models with automatic test generation,” Em-
pirical Softw. Engg., vol. 24, no. 4, p. 1649–1692, Aug. 2019.

[5] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,” in
Proceedings of the Sixth Conference on Computer Systems, ser. EuroSys
’11. New York, NY, USA: ACM, 2011, pp. 153–168.

[6] L. Cruz and R. Abreu, “Performance-based guidelines for energy effi-
cient mobile applications,” in 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft),
May 2017, pp. 46–57.

[7] R. Pereira, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva,
“The influence of the java collection framework on overall energy
consumption,” in 2016 IEEE/ACM 5th International Workshop on Green
and Sustainable Software (GREENS). IEEE, 2016, pp. 15–21.

[8] R. Rua, M. Couto, A. Pinto, J. Cunha, and J. Saraiva, “Towards using
memoization for saving energy in android,” in Proceedings of the XXII
Iberoamerican Conference on Software Engineering, CIbSE 2019, La
Habana, Cuba, April 22-26, 2019, 2019, pp. 279–292.

[9] L. Zhang, C. Stover, A. Lins, C. Buckley, and P. Mohapatra, “Character-
izing mobile open apis in smartphone apps,” in 2014 IFIP Networking
Conference, June 2014, pp. 1–9.

[10] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of the
11th Working Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: ACM, 2014, pp. 2–11.

[11] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 429–440.

[12] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of android apps: A systematic literature review,” IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45–66, 2019.

[13] J. W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2020, pp. 1078–1089.

[14] X. Li, Y. Yang, Y. Liu, J. P. Gallagher, and K. Wu, “Detecting and
diagnosing energy issues for mobile applications,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 115–127.

[15] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer Communications
Security, ser. CCS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 73–84.

[16] R. Rua, T. Fraga, M. Couto, and J. a. Saraiva, “Greenspecting android
virtual keyboards,” in Proceedings of the IEEE/ACM 7th International
Conference on Mobile Software Engineering and Systems, ser. MOBILE-
Soft ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 98–108.

[17] C. Wilke, C. Piechnick, S. Richly, G. Püschel, S. Götz, and U. Aun-
definedmann, “Comparing mobile applications’ energy consumption,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
ser. SAC ’13. New York, NY, USA: Association for Computing
Machinery, 2013, p. 1177–1179.

[18] Google. (2021) Ui/application exerciser monkey. Last visit: 2023-02-03.
[Online]. Available: https://developer.android.com/studio/test/monkey

[19] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,” Science
of Computer Programming, vol. 162, 05 2017.

[20] I. Malavolta, E. M. Grua, C.-Y. Lam, R. de Vries, F. Tan, E. Zielinski,
M. Peters, and L. Kaandorp, “A framework for the automatic execution
of measurement-based experiments on android devices,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshops (ASEW), 2020, pp. 61–66.

[21] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), 2010, pp. 105–114.

[22] A. Schuler and G. Anderst-Kotsis, “Towards a framework for detecting
energy drain in mobile applications: An architecture overview,” in
Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ser.
ISSTA ’18. New York, NY, USA: ACM, 2018, pp. 144–149. [Online].
Available: http://doi.acm.org/10.1145/3236454.3236504

[23] R. Rua, M. Couto, and J. Saraiva, “Greensource: A large-scale collection
of android code, tests and energy metrics,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), May
2019, pp. 176–180.

[24] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of android apps: A systematic literature review,” IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45–66, 2019.

[25] Gradle. (2023) Gradle. [Online]. Available: https://gradle.org
[26] JUnit. (2022) Junit. [Online]. Available: https://junit.org/junit5/
[27] Google. (2022) Write automated tests with ui automator. [Online].

Available: https://shorturl.at/AEKN2
[28] RobotiumTech. (2022) Robotium: User scenario testing for android.

[Online]. Available: https://github.com/RobotiumTech/robotium
[29] Google. (2022) Espresso. [Online]. Available: https://developer.android.

com/training/testing/espresso
[30] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing- and

touch-sensitive record and replay for android,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE), 2013, pp. 72–81.

[31] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
23–26.

[32] Google. (2021) App crawler. Last visit: 2023-02-03. [Online]. Available:
https://developer.android.com/training/testing/crawler?hl=en

[33] ——. (2022) Monkeyrunner. [Online]. Available: {https://developer.
android.com/studio/test/monkeyrunner}

[34] Linkedin. (2018) Dexmaker. [Online]. Available: https://github.com/
linkedin/dexmaker

[35] Google. (2016) Trepn profiler android app. Last visit: 2023-02-03.
[Online]. Available: https://play.google.com/store/apps/details?id=com.
quicinc.trepn

[36] R. Rua and J. a. Saraiva, “E-manafa: Energy monitoring and
analysis tool for android,” ser. ASE22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3551349.3561342

[37] Google. (2022) Perfetto: System profiling, app tracing and trace
analysis. [Online]. Available: https://perfetto.dev

[38] (2022) Sloc cloc and code (scc). [Online]. Available: https://github.
com/boyter/scc#sloc-cloc-and-code-scc

[39] T. J. McCabe, “A complexity measure,” in Proceedings of the 2Nd
International Conference on Software Engineering, ser. ICSE ’76. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1976, pp. 407–.

[40] P. Liu, L. Li, Y. Zhao, X. Sun, and J. Grundy, “Androzooopen:
Collecting large-scale open source android apps for the research
community,” ser. MSR ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 548–552. [Online]. Available:
https://doi.org/10.1145/3379597.3387503

[41] (2022) Androzooopencrawler. [Online]. Available: https://github.com/
greensoftwarelab/androzoopen-crawler

[42] L. Cruz and R. Abreu, “Measuring the energy footprint of mobile testing
frameworks,” in Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 400–401. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3195027

591

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 10:07:20 UTC from IEEE Xplore. Restrictions apply.

