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Abstract. Additive manufacturing of metals has attracted much attention over the last years, 
promoting the development of several computational models for numerical simulation of the laser 
powder bed fusion (LPBF) process. Nevertheless, the finite element analysis of the LPBF process 
requires a large computational time. Thus, adaptive mesh refinement strategies are commonly 
adopted to reduce computational cost, which require some remapping procedure to transfer the state 
variables from the old mesh to the new one. The present study analyses two different remapping 
algorithms, namely the Inverse Isoparametric Mapping (IIM) and the Dual Kriging (DK) method. 
The IIM method uses the shape functions of the finite elements, while the DK method provides an 
explicit parametric interpolation. The case study adopted covers both coarsening and refinement 
procedures, using a mathematical function to define the mapped state variable. The accuracy of the 
remapping methods was lower in the refinement in comparison with the coarsening procedure. The 
error in the approximation is lower using the DK method in comparison with the IIM method. 
However, the IIM method does not suffer from error propagation in successive stages of either 
refinement/derefinement or coarsening/decoarsening. 

Introduction 
Additive manufacturing of metals has attracted much attention over the last few years [1], 

promoting the development of several computational models for numerical simulation of the laser 
powder bed fusion (LPBF) process. Nevertheless, the finite element analysis of the LPBF process 
requires a large computational time due to the multiphysics phenomena across multiple scales [2]. 
Furthermore, the accuracy of the numerical solution and the computational time strongly depends on 
the finite element mesh adopted in the numerical analysis [3]. Thus, remeshing procedures are 
commonly adopted to reduce the computational cost by refining only the regions where a fine mesh 
is required [4]. These strategies are employed in intermediate phases during computation, where the 
distribution and/or quantity of nodes/elements of the finite element mesh is modified. Remeshing can 
be further classified into refinement or coarsening procedures, depending on whether the number of 
nodes/elements is increased or decreased, respectively, locally or across the entire mesh domain. 

Variable Remapping 
During remeshing, nodes/elements are removed, added or have their spatial position changed. 

Therefore, a variable remapping procedure must be performed to transfer the nodal and state variables 
from the original mesh to the required locations in order to preserve the evolution of the historical-
dependent variables [5]. Several types of variable remapping methods are available in the literature. 
Jiao and Heath [6] define five categories: pointwise interpolation and extrapolation, area-weighted 
averaging, mortar elements methods, and specialised methods. This study is focused only on 
pointwise interpolation and extrapolation, namely the inverse isoparametric mapping (IIM) and the 
Dual Kriging (DK) method. 
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When mapping nodal-based data (e.g. displacements), a simple and consistent approach is to use 
the element shape functions. However, the transfer of integration point-based variables (state 
variables) often requires extrapolation techniques associated with the introduction of artificial 
numerical errors. Additionally, since the true distribution of the field variables is unknown, the risk 
of the violation of constitutive relations on the new mesh is present and, in such cases, may require 
additional equilibrium iterations [5]. 
Inverse isoparametric mapping. Inverse isoparametric mapping is a widespread method for 
interpolating using the inverted element shape functions [7,8]. For an isoparametric hexahedral 
element, the shape functions are given by 
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where iN  is the shape function associated with the node i and ( ), ,ξ η ζ  denotes the element’s 
canonical coordinate system. 

When remapping state variables, this approach contains 3 stages, while the third step is skipped in 
the case of remapping nodal variables. In the first stage, the state variables present in the Gauss points 
of the donor mesh are extrapolated to the nodes of the donor mesh. Considering a scalar state variable 
α, the transfer operation for a generic node i is given by  
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where D
igα  is the state variable at the ig Gauss point of the donor mesh (D), Dng

n  is the number of 
Gauss points of the finite element De of the donor mesh, and 

De
iN  is the shape function associated 

with the node i , calculated on the ig Gauss point of the De finite element. Since a single node can be 
shared by several finite elements, the process is repeated for each element and the final nodal value 
is obtained by arithmetic average. 

In the second stage, the state variables are transferred from the donor mesh nodes to the target 
mesh nodes by interpolation, using the donor element’s shape functions. This transfer operation is 
defined by 
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where T
jα is the state variable calculated at the j node of the target mesh (T ), Dne

n is the number of 
nodes of the finite element De , and 

De
iN  is the shape function associated with the node i of the donor 

finite element De , calculated at the j node of the target mesh. 
The third stage comprises the variable transfer from the nodes to the Gauss points of the target 

mesh, applying the shape functions of the target finite elements, given by 
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where T
igα  is the state variable calculated at the ig Gauss point of the target mesh, Tne

n is the number 
of nodes of the finite element Te , and 

Te
jN  is the shape function associated with the node J, calculated 

on the ig Gauss point of the Te finite element. 
Dual Kriging. Dual Kriging (DK) is an unbiased linear estimator, capable of giving back the known 
values at the seed points [9]. The DK interpolator has the following form 
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where ( ), ,o o oF X Y Z  is the interpolated value associated with the point ( ), ,o o oX Y Z  in space, N is the 
number of seed points, 0C , 1C , 2C , 3C and Jλ  are interpolation parameters and ( )0JK h  is the 
covariance function value associated with the Euclidean norm between point 0 and point J. 

The covariance function can assume different forms [9]. However, only two forms were explored 
in the present study, a linear spline 
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( ) ( )1 /K H H L= − ,  (6) 
and a cubic spline 

( ) ( )2 3( ) 1 3 / 2 /K H H L H L= − + ,  (7) 
where H is the Euclidean norm between point M and point J ( 2

MJH h= ) and L is the maximum value 
of H. 

In order to obtain the values of 0C , 1C , 2C , 3C and Jλ , the following system of linear equations 
must be solved 
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where [ ]MJK  is a square submatrix fully populated containing the values of the covariance between 
all pairs of seed points and 4,40  is a 4 by 4 null matrix. 

Numerical Example 
The accuracy of the presented remapping methods is assessed using a simple example. The 

discretisation domain is a cube of edge size equal to 2, centred at the origin of the Cartesian referential 
and edges parallel to the axis. The values of the state variable are defined according to the 
trigonometric function 

( ) ( ) ( )( , , ) cos cos cosf x y z x y zπ π π= × × ,  (9) 
where x, y and z range between -1 and 1. Thus, state variable given by Eq. (1) is always in the range 
[-1, 1]. A 3D representation of the function over the mesh domain is present in Fig. 1 (a), which 
highlights the strong gradient of the function value in all directions. 
 

   
(a) (b) 

Fig. 1 – Definition of the numerical example: (a) distribution of the state variable; (b) finite element meshes 
used in the remapping procedure. 

 
Fig. 1 (b) presents the initial mesh composed of 64 hexahedral elements arranged in a 4×4×4 setup. 

A coarsening procedure has been applied on an eighth of the geometry, converting 8 finite elements 
into a single one (blue), as shown in Fig. 1 (b). On the other hand, a refinement procedure has been 

Coarsening

Decoarsening

Derefinement

Refinement

Coarsened mesh initial mesh Refined mesh
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applied on the same region, converting 8 finite elements into 64 finite elements (red), as shown in 
Fig. 1 (b). The procedure carried out to return from the coarsened mesh to the initial mesh is called 
decoarsening while the return to the initial mesh from the refined mesh is called derefinement. 

Results and Discussion 
In order to assess the accuracy of the previously described remapping methods, the absolute error 

is evaluated in each Gauss point. The error is defined as the difference between the approximated and 
the analytical value of the of the state variable given by Eq. (1). Both coarsening and refinement 
procedures are analysed.  
Coarsening procedure. The error in each Gauss point of the coarsened mesh (blue element in Fig. 1 
(b)) is presented in Fig. 2 (a), comparing the IIM and the DK methods. The error obtained from the 
application of the DK method with a cubic spline covariance function is negligible. However, when 
a linear spline covariance function is adopted, the error increases significatively to about 0.02. On the 
other hand, the IIM method provides the worse solution, presenting an error about ten times larger 
than in the DK with a linear spline covariance function. 

Fig. 2 (b) presents the error distribution obtained with the IIM method. The error is evaluated only 
at the Gauss points and then extrapolated to the nodes using the element’s shape functions. Therefore, 
the error is significantly increased from the Gauss points to the nodes. The minimum remapping error 
(negative) occur in places where the state variable is positive (maximum), while the maximum error 
(positive) occurs in zones where the state variable is negative (minimum). The distribution obtained 
with the DK method is identical. 

 

     
(a) (b) 

Fig. 2 – Coarsening procedure: (a) error evaluated in the Gauss points; (b) error distribution obtained with 
the IIM method. 

Refinement procedure. Fig. 3 presents the average error of each element subjected to refinement 
(highlighted in red in Fig. 1 (b)). The DK method with linear spline covariance function provides the 
worse estimative, i.e. the highest and lowest error values. The error obtained using the IIM method is 
identical to the one obtained with the DK with cubic spline covariance function. Adopting the IIM 
method, most of the Gauss points (87.5%) have error values close to zero (<0.003). However, the 
average absolute error values were more significant. 
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Fig. 3 – Average error in each 
element after the refinement 

procedure. 

Fig. 4 presents both the maximum and the minimum error values observed in each finite element 
after the refinement procedure. The IIM method presents the maximum value of absolute error, which 
is about 0.23 in 4 different finite elements. The DK with linear spline covariance function presents a 
maximum value of absolute error equal to 0.20 in 12 different finite elements, while the DK with 
cubic spline covariance function presents a maximum value of absolute error equal to 0.13 in 16 
different elements. The minimum values of the error are symmetric in value to the maximum values 
but located at different elements. This is consequence of the symmetry observed in the adopted 
distribution of the state variable (see Fig. 1 (a)). 

 

 

Fig. 4 – Maximum and 
minimum error value in each 
element after the refinement 

procedure. 

Fig. 5 (a), (b) and (c) present the error distribution obtained after refinement procedure with the 
IIM method, DK with linear spline covariance function and DK with cubic spline covariance function 
method, respectively. The maximum and minimum error values generated by the IIM method are 
located towards the most outer nodes of the refined region. The DK with linear spline covariance 
function provides a cross pattern over each face of the refined volume. The maximum error values 
are adjacent to the minimum error values. The DK with cubic spline covariance function gives the 
global lower error values, which is in accordance with the results presented in Fig. 4. 
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 (a) (b) (c) 

Fig. 5 – Error distribution obtained after refinement procedure: (a) IIM method, (b) DK with linear spline 
covariance function and (c) DK with cubic spline covariance function. 

 
Error propagation. The error propagation was evaluated by performing the coarsening and 
decoarsening several times consecutively with the intent of alternating between the initial mesh and 
the coarsened mesh. An identical procedure was carried out for the refinement/derefinement 
procedure. 

Fig. 6 (a) presents the maximum absolute error observed in each stage of 10 cycles of 
refinement/derefinement procedure applied to the initial mesh (see Fig. 1). The accuracy of the IIM 
method was independent of the analysed cycle, presenting a maximum absolute error after each 
refinement procedure of 0.23 and negligible error after derefinement procedure. On the other hand, 
both the DK with linear and cubic spline covariance functions displayed error propagation. The 
maximum absolute error increased significantly during the four first cycles and then stabilised for 
DK with linear spline covariance function, while with cubic spline covariance function, the absolute 
error increases approximately linearly with the number of stages. However, the DK with cubic spline 
covariance function presents the lowest maximum error value. 

Fig. 6 (b) presents the maximum absolute error observed in each stage of 10 cycles of 
coarsening/decoarsening applied to the initial mesh (see Fig. 1). The IIM method is insensitive to the 
coarsening/decoarsening cycles, presenting an absolute error value of 0.18 after coarsening and 0.08 
after decoarsening. The DK with linear and cubic covariance function displayed similar behaviour to 
the one observed in Fig. 6 (a). However, globally the increase of the error is significantly higher. 

 

  
(a) (b) 

Fig. 6 – Maximum error observed for each stage: (a) 10 cycles of refinement/derefinement; (b) 10 cycles of 
coarsening/decoarsening. 
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Conclusions 
The accuracy of each remapping method was evaluated both in the refinement and coarsening 

stages, obtaining distinct values due to the resolution of the final mesh. The accuracy of the remapping 
methods was lower in the refinement in comparison with the coarsening. In addition, the effect of the 
covariance function on the DK method has a significant impact on the accuracy. In all results, 
performance of the DK with cubic spline covariance function is better than the DK with linear spline 
covariance function. Overall, the error in the approximation of the state variable is lower using the 
DK method compared with the IIM method. However, the IIM method, unlike the DK method, does 
not suffer from error propagation. 
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