Towards the integration of user interface
prototyping and model-based development

Catarina Machado
HASLab/INESC TEC & University of Minho
Braga, Portugal
a81047 @alunos.uminho.pt

Abstract—The main objective of this paper is to make a
contribution in the automation of web applications’ development,
starting from prototypes of their graphical user interfaces.

Due to the exponential increase in the use of internet-based
services and applications, there is an also increasing demand for
Web designers and developers. At the same time, the proliferation
of languages, frameworks and libraries illustrates the current
state of immaturity of web development technologies. This state
of affairs creates difficulties in the development and maintenance
of Web applications.

In this paper, we argue that integrating concepts of model-
based user interface development with the more traditional user-
centred design approach to development can provide an answer
to this situation. An approach is presented that allows designers
to use prototyping tools, in this case Adobe XD, to design
graphical interfaces, and then automatically converts them to
(Vue.js + Bootstrap) code, thus creating a first version of the
implementation for further development. This is done through
the interpretation of the SVG file that Adobe XD exports.

Index Terms—Web Development, Prototyping tools, Web
frameworks, Code generation.

I. INTRODUCTION

Web Development has become one of the main areas of
Software Development, covering the development of websites,
web services and web applications [1]. In the early 90’s,
most web pages were static HTML documents [2]. Websites
have since become complex web applications that perform
transactions, present real-time data, and provide interactive
experiences to users [3]. Due to this complexity, development
support has evolved through the availability of frameworks
that automate recurring implementation patterns, thus reducing
the need for boilerplate code [4]. More recently, low code (or
even, no code) development platforms aim to further automate
the programming of user interfaces [5]. Automation, however,
is usually achieved at the cost of reduced flexibility in the
development process.

The first web development frameworks were developed
in the late 1990’s, and since then over five thousand have
been released [1]. Although all of them target (multi-tiered)

This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundacdo para a Ciéncia e a Tecnologia, within project
UIDB/50014/2020.

978-1-6654-8343-8/21/$31.00 ©2021 IEEE

José Creissac Campos
HASLab/INESC TEC & University of Minho
Braga, Portugal
jose.campos @di.uminho.pt

web development, they vary in terms of the architectural
layers that are considered (from server-side to client-side,
or full stack vs. support for specific layers of the architec-
ture) and the programming languages used (from more or
less general purpose programming languages such as Java,
JavaScript or Ruby, to domain-specific languages such as
HTML or CSS). This proliferation of languages, frameworks
and libraries demonstrates the current state of immaturity of
web development technologies, which creates difficulties in
the development and maintenance of applications [6].

Model-based development aims to support software devel-
opment by increasing the level of abstraction of the devel-
opment process [7]. Models can be executed for simulation
or testing purposes at any stage of the development process,
which means that the behaviour of the system can be evaluated
from the requirements phase to the production phase, with
no need to change the system’s description [8]. Additionally,
the models can be used to (at least partially) automate the
generation of the source code. However, the adoption of
model-based approaches in user interface development has
been slow [9]. Prototyping-based approaches are favoured due
to the flexibility they afford during design and development.
Raising the level of abstraction of the development process,
however, seems a good solution to the current technological
immaturity of web development.

This paper thus arises with the general objective of studying
how user interface development can take advantage of model-
based approaches, with a particular focus on web applications
user interfaces, and on the role that user interface prototypes
might play. In summary, the main contribution is in the area
of web development by proposing an approach to automate
code generation from user interface prototypes.

The remainder of the paper is structured as follows. Sec-
tion II, presents background information, discussing model-
based user interface development and user-centred design, pro-
totyping tools and Web development frameworks. Section III
then presents the approach proposed to go from user interface
prototypes to source code. To this end, the structure of a
prototype and a meta-model of a web framework are presented
and the mapping between them discussed. In Section IV a
short example is used to illustrate how this approach is applied.
In the last two Sections, the discussion and conclusions of the
work are put forward.

Published as: C. Machado and J. C. Campos, "Towards the integration of user interface prototyping and model-based development,”
2021 International Conference on Graphics and Interaction (ICGI), Porto, Portugal, 2021, pp. 1-8, doi: 10.1109/ICG154032.2021.9655284.

II. BACKGROUND

A. Model-Based User Interface Development vs. User-Centred
Design

Model-Based User Interface Development (MBUID) [10]
aims to support the development of quality interactive com-
puting systems, while lowering costs through automation of
the development process. MBUID is particularly suited for
efficient development of multi-target applications.

As captured by the Cameleon Reference Framework [11],
MBUID approaches are based on the development of mod-
els of both requirements and envisaged solutions, and their
gradual refinement until a running system is reached. Abstract
models of the user interface are progressively transformed, by
incorporating details about interaction modalities (first) and
the technological platforms (second), to generate concrete user
interface models (first) and final user interface models (sec-
ond), so that a running system can be achieved. Automating
this refinement process means that development can progress
efficiently once details of interaction modalities and target
platforms are known. Note, however, that full automation of
the process is typically considered unfeasible, with partial
automation being favoured [9].

MBUID can be seen as the User Interface (UI) counterpart
to Model Driven Engineering (MDE) [7]. However, while
MDE has seen considerable success, take up of MBUID in
industry has been slow. According to Meixener et al. [9], this
can be addressed by MBUID approaches that better integrate
with User-Centred Design (UCD) approaches [12], [13].

This paper addresses this need to better integrate MBUID
and UCD. Unlike approaches that strive to integrate models
into UCD [14], [15], thus changing the nature of the UCD
process, we take the view that the notion of what a model is
must be revisited. Indeed, as far back as [16], models were
seen as part of the problem, in the sense that they are costly
to develop. They are also not how an UCD practitioner is used
to think about the development process.

Where MBUID might be seen as a somewhat deterministic
process from abstract model to final code, UCD is about
iterativel refining and evaluating design solutions and ideas.
This iterative nature of the process is supported by prototypes.
These prototypes, consisting of mock-ups of the user inter-
face, plus some representation of dialogue control, capture
the intended design. Hence, instead of introducing MBUID
modelling notations into the UCD process, we want to use
UCD prototypes as the basis for the MBUID process.

Considering that prototypes already express a notion of the
user interface modalities to be used, we posit that prototypes
can be considered an expression of a concrete user interface
model in MBUID terms. Thus, if we are able to (partially)
automate the process of generating a final user interface from
a user interface mock-up, we will be able to get the best of both
approaches. We take advantage of UCD flexibility to explore
and evaluate design ideas using user interface prototypes, until
a good design is achieved. We then take advantage of MBUID
automation to generate the corresponding UI at lower cost.

Note that the goal is not to produce the final version of
the UL Instead, we aim to produce a first version of the code,
which can then be refined by the developer. This enables us to
place less requirements on the prototype, regarding the amount
of information that it must contain.

B. Prototyping tools

Although paper prototyping is proposed as the lower cost,
most flexible, approach to UI prototyping, Ul mock-up tools
have become popular, particularly for higher-fidelity prototyp-
ing. They are specially relevant in our case since they can
generate machine readable representations of the mock-ups.
Figma, Sketch and Adobe XD stand out as some of the most
popular tools [17]-[19].

1) Figma: Figma is characterized by being browser-based
and features a complete interface development suite, with in-
tegrated solutions ranging from wireframing to graphic design
itself, interaction prototyping, and UX presentation through
hyperlinks. One of the biggest advantages of this tool is the
automated version history support. It is very powerful when it
comes to collaborative work between teams, whether they are
designers or developers [20]. It is possible to integrate user
testing into the design workflow by creating tests right on the
artboard.

Figma supports exporting prototypes to JPG, PNG, SVG,
and PDF. Figma can also export to Hyper Text Markup
Language (HTML) and Cascading Style Sheets (CSS) code
through plugins. It supports both low fidelity and high fidelity
prototyping [21]. Because it is browser-based, it can be used
in all major operating systems.

2) Sketch: Sketch is another tool that features a complete
design suite, supporting the creation and prototyping of every
kind of graphical interface. The biggest advantage is that it
is a software that has been used for many years by many
professionals, thus ensuring that the tool has been improved
year after year. It is a simple tool to use with powerful
functionality for testing and collecting customer feedback. It
also has good features for teams to work collaboratively [20].

Sketch features a document’s full version history and ver-
sion management, and supports low fidelity and high fidelity
prototyping. This tool can export prototypes to both bitmap
(PNG, JPG, TIFF and WebP) and vector (SVG, PDE, EPS)
images, and it is possible to export to HTML and CSS through
plugins [22].

One limitation of Sketch is the fact that the tool is only
available for macOS.

3) Adobe XD: Adobe XD is another tool to create mock-
ups, whether for websites, wire-frames, prototypes or art-
boards. Adobe XD offers support for building high-fidelity
prototypes. However, it also allows designers to create low-
fidelity versions for the early stages of the design process. It
has the option of collaborative work, both for teams and also
for presentation to clients [20].

Adobe XD has document history for cloud documents,
which enables the review of previous saved versions of docu-
ments, and labelling and preserving those versions. It supports

Fig. 1. Adobe XD working environment.

TABLE I
TOOLS COMPARISON

Figma Sketch Adobe XD
User testing yes yes yes
Collaborative development yes yes yes
Version management yes yes yes
Platforms web macOS Windows/macOS
Level of fidelity low/high low/high low/high
Export formats RVW RVW RVW

Export formats: Raster graphics; Vector graphics: Web (HTML+CSS)

exporting the prototypes to JPG, PNG, SVG and PDF [23].
The tool also allows users to export prototypes to HTML and
CSS code through plugins and it’s possible to share prototypes
with customers.

This tool belongs to a well-known and well-established
company, Adobe, and is available on both Windows and
macOS systems [24].

4) Discussion: Table I presents a summary of the analysis
above. As can be seen, the tools have similar characteris-
tics. All aspects considered, Adobe XD was chosen as the
prototyping tool to adopt. Being natively supported by both
the Windows and macOS operating systems means that the
approach will have a broader reach.

One aspect, in particular, deserves some discussion. All
tools have the functionality to convert Ul mock-ups to HTML
and CSS code. However, this feature has several shortcom-
ings, since the generated code is geared towards creating a
visualization for users, not towards the implementation of the
UL This means the code is not appropriately structured from
an implementation perspective, making it difficult to use and
even more to maintain. In summary, from an Ul development
perspective these tools have poor Ul code generation support.

Alternatively, we note that exporting to SVG is also com-
mon to all of these prototyping tools. SVG (Scalable Vector
Graphics) is an open, XML-based, format to define vector-
based graphics for the Web. Converting a mock-up to SVG
ensures great reliability and robustness, and because it is cre-
ated in XML, it gives us access to the XML code of the design.
With this XML file, the goal is to interpret the components and
their respective positions in order to automatically generate the
code for the web page.

However, exporting to SVG is also not a perfect solution
as it was not designed for prototypes representation. While it
gives us an open format to work with, the trade-off is that
information is lost in the export. SVG is a graphics format
and (some) information about the structure of the prototype
is lost during the export process. A simple example is that a
button is no longer a button, but a drawing of a rectangle.

C. Web development frameworks

Since the dawn of the digital age, more than five thousand
web development frameworks have been developed [1]. All
these frameworks have different characteristics and are recog-
nized by different particularities.

Frameworks can be classified into two different categories:
client-side and server-side. Client-side frameworks are re-
sponsible for implementing and enhancing user interfaces
with animated features and responsive layouts that adapt to
different display sizes. By doing so, they enable a style of user
interaction similar to that of native applications. Additionally,
because web applications can be accessed through so many
different devices, Ul responsiveness is an important factor to
take into consideration when designing the user experience
of a web application. This is a feature that allows the web
application UI to automatically adapt to any type of device,
from a cell phone with a small screen to a computer with
a large monitor [25]. These frameworks are an asset in this
sense, since they incorporate libraries and guidelines that
facilitate this work.

Server-side frameworks also have well-defined rules and ar-
chitectures and support creating different types of pages. These
frameworks can also provide security factors for web pages.
In this way, client-side frameworks allow a user experience
that is closer to that of a native application, while server-side
frameworks are more tied to the web navigation model.

Several studies try to rank web frameworks, based on
different factors such as the size of the frameworks’ com-
munities, their popularity, or even the amount of successful
usage (cf. [26]). Herein we focus on online rankings, as they
are better able to keep up with the constant evolution of web
development frameworks.

The HotFrameworks ranking' is based on two different
popularity metrics: the GitHub score and the Stack Over-
flow score. The former is based on the number of stars the
repository has on GitHub. These stars represent the number
of users who have favorited that particular repository. The
latter is based on the number of questions asked on Stack
Overflow that contain the framework’s tag. At the time of
writing, the most popular framework, according to this ranking
is React, followed closely by ASPNET MVC and a group
of five frameworks in third place (Angular, Ruby on Rails,
Angular.js, Vue.js and Django). If we focus on client-side
frameworks for programming the interfaces in the browser we
are left with: React, Angular, Angular.js and Vue.js.

Since 2011, Stack Overflow has been doing a yearly
study where they ask programmers about their preferred

Ihttps://hotframeworks.com. Retrieved January 25, 2021.

jQuery

React.js

Angular

ASP.NET

Express

ASP.NET Core

Vue js

Spring

Angularjs

Django

Flask

Laravel

Ruby on Rails

Symfony

Gatsby

Fig. 2. Ranking of frameworks according to Stack Overflow. Retrieved
from [28].

technologies, their programming habits and their work pref-
erences [27]. In the latest study, from 2020, about 65,000
programmers were surveyed and one of the questions was to
select the web frameworks they use in their day-to-day work.
The fifteen most used web frameworks in 2020 can be seen
at Figure 2. If we only consider client-side we are left with
React, Angular, Vue.js and Angular.js.

Web frameworks are widely used today, however they are
better or worse depending on the project to be developed.
A web application is typically divided into three layers: user
interface, business logic and data layers. In this specific case,
our goal is the generation of source code for native-like user
interfaces. We are thus interested on client-side frameworks
for user interface development.

Thus, we can single out four web development frameworks
based on the before mentioned rankings. They are: React,
Angular, Vue.js and Angular.js. Angular.js can be discarded
since it has been superseded by Angular. This leaves us with
three web frameworks to consider.

1) Angular: Angular is a web framework based on Type-
Script, which follows the Model-View-Viewmodel (MVVM)
pattern [29], and is based on a hierarchy of components.
Components are the main building blocks and can display
information, render models, and perform actions on data.
Angular has several types of data bindings within a compo-
nent, such as property binding, event binding and two-way
binding [30].

2) Vue.js: Vue.js is a JavaScript web framework, focused
on the development of graphical interfaces. As with Angular,
the architecture of Vue.js is usually described as MVVM.
Vue.js stands out for its high degree of scalability and is
characterized by being component-based and using directives
in templates, such as for data binding and event handling [30].

3) React: React is a JavaScript web framework that aims
to develop graphical interfaces. React is characterized by be-

ing component-oriented and composition-oriented. The overall
goal is to transform the current state of the application into
a view that can be presented to the user (via the DOM).
Components can be written using two different approaches:
components as functions (most recommended) and compo-
nents as ES6 classes [30].

4) Discussion: From these brief descriptions we can see
that the three frameworks have similar characteristics. All are
very suitable for UI layer development and either one is a
good choice. Vue.js, however, is known for its easy learning
curve. Thus, it was decided to choose Vue.js as the framework
to use. To complement the use of Vue.js and to facilitate the
layout process and responsiveness we can use CSS libraries.
In this case, we chose to use Bootstrapz.

III. FROM PROTOTYPES TO IMPLEMENTATIONS

We can look at frameworks as having a meta-model. This
allows us to break down the framework into different pieces
and schematize how a web page is developed through the
framework. To design user interfaces, we resort to prototypes.
Analyzing these prototypes, we can realize that they can
be mapped to the meta-model of the web framework. This
mapping is possible since, both in how the web framework is
used and in how the graphical interfaces are designed, we have
components. Components are small pieces that when added
together give rise to the web pages we are used to browsing.
These can be buttons, images, text forms, tables, and so on.

A. Structure of a prototype

Figure 3 presents an example of a high fidelity mock-up
developed with Adobe XD, where we can already identify
some web page characteristics. As we can see, on a web
page we can identify different components and navigation. It
is common for a page to have a navbar, which usually has
a logo (image) and buttons. The body of the page can have
other images, forms, text and buttons or hyperlinks, which can
redirect the user to other pages, such as the create account or
password recovery pages. Other elements can be considered
such as a footer.

Figure 4 shows the general structure of a prototype. A
prototype consists of several artboards, i.e., several prototype
pages. Each of these pages contains components, which can
be simple components such as an image, a text box, a button
or text, or they can be a set of components which we call
being inside a container, such as a navbar, a footer, a form or
a table. Each of these components has properties such as size
and color, and an identifier (ID).

Since when exporting to SVG we loose information, we will
use the component’s ID to establish a correspondence between
the SVG elements (e.g. a rectangle) and the prototype’s
components (e.g. a button or simply text). Containers are used
to be able to realize whether a set of components, for example
a set of text and text boxes, are a form and not simply these
randomly elements. In this way, you can directly infer the
Bootstrap component itself.

Zhttps://getbootstrap.com/. Retrieved July 15, 2021.

Email | |

Password |]

This is a big title example

1

- 1
Login 1
1

1

Forget password

Fig. 3. Prototype example in Adobe XD. The blue interrupted rectangle in Adobe XD is not part of the design. It is used to outline the container.

Prototype

1

¥ consists of

* 4has 1
Property <contains
» contains Comp N T Artboard
N 0..1
P links to

Fig. 4. Structure of a prototype.

A prototype can have many more components, such as all
the components provided by Bootstrap, but at this stage we
decided to focus on just a few to simplify the diagrams and
the explanation.

B. The framework meta-model

One first goal is to define an architecture to implement the
UL In the UI layer of a web application there are architectures
at several levels, namely a components architecture, which
corresponds to the program structure that implements the
interface that the user sees (components), and the application’s
source architecture, which corresponds to the folder structure/-
source code. Thus, when developing a new project in Vue.js
it is important to use a proper folder structure, component
architecture and naming convention (coding style) [31].

So the next step is to schematize, through a meta-model,
how an application in Vue.js is structured. Based on the Vue.js

| Navbar }—~| Image
Button
= H

Table ‘

Text

Visa
< contains -
i | —composed of |
Component |— View composed °§ Route
N «
B * x N
>
has N o has A refers to
Asset ¥ consumes
I App
IA isa *
| is | | css | video | | image Data

Fig. 5. Vue.js component architecture meta-model.

documentation [32], and on the analysis of well-regarded
Vue.js projects®, such as the VUEMMERCE* and COPILOT’
projects, the meta-model presented in Figure 5 was defined.

As can be seen in the figure, when creating a project in
Vue.js, one can start by creating components (which can
be headers, footers, menus, modals, search bars, lists, charts,
cards, forms, among other items) that are later aggregated
into views, the graphical interface pages that will be made
available to users. Thus, a view is composed of one or more
components and may also have other presentation code. In
addition, it also consumes data, for example, through APIs, in
order to present the final result to the user.

3https://www.bacancytechnology.com/blog/top-21-amazing-vuejs-projects.
Retrieved March 25, 2021.

“https://github.com/ivanlori/Vuemmerce. Retrieved April 4, 2021.

Shttps://github.com/misterGF/CoPilot. Retrieved May 7, 2021.

As a way to enrich the application, there are assets, which
can be images, videos, CSS or JavaScript code, among other
elements, used by the components and the views.

The application’s routing corresponds to the workflow of
the pages and respective URLs, i.e., it is through the route that
the URL that will allow viewing a respective view is specified.

C. Mapping between prototypes and the meta-model

In order to map a prototype into a Vue.js implementation,
we have to map the structure of the prototype (see Figure 4)
into the Vue.js meta-model (Figure 5). Once a designer has
designed a prototype of a GUI, such prototype will have to
be exported via Adobe XD to SVG. The SVG format can be
read as an XML file. The information in the SVG is then used
to create the skeleton of the project (Vue.js + Bootstrap).

To solve the loss of information problem, created when
mock-ups are exported to SVG, some assumptions must be
made about the input. The components used in the prototype
(which will have to be mapped to the implementation) must be
identifiable by their ID. Hence, the designer must use a set of
predefined values in the components’ ID field, each identifying
a specific type of component.

The list of the components present in the Figure 4 and
Figure 5 and the annotation (ID) to use for each of them in
the prototype is the following:

o Text - “Text”;

o Image - “Img”;

« Button - “Btn”;

e Navbar - “Navbar”;

o Footer - “Footer”;

e Form - “Form”;

o Text Box - “TextBox™;

o Table - “Table”.

Using these ID, it is then possible to determine which
component is to be used in Vue.js, to represent each partic-
ular element of the prototype. Otherwise, it would be more
complicated to understand if a rectangle is after all a button
or simply a text box. For simple components such as buttons,
the mapping is direct; for more complex components (which
aggregate several components into one), we can deduce which
one to use through the ID of the container that aggregates them
in the prototype. It is important to note that to consider more
components, we simply give the designers the component and
its annotation (ID) and add this mapping between the ID and
the code to be generated to our algorithm.

Another big challenge is not to use absolute positions in the
location of the UI components. To do this, the Bootstrap grid
system can be used. Through the absolute positions described
in the XML file it is possible to deduce in how many columns
(12 maximum) and sections the page is divided into and, after
that, in which section/column the component is located.

In summary, the algorithm that the approach follows is
explained in two parts: positioning and components. Starting
with positioning, the steps are as follows:

1) Break the prototype into sections (lines);

2) Break the prototype into columns;

3) Make the skeleton of sections and columns in Vue.js.

After having the skeleton complete, it remains to place the
different components in their respective positions. So, with
regard to the components, the algorithm is as follows:

1) Match the component ID and the component code (al-
ready previously established);

2) Make the necessary changes to the size and color of the
component.

Thus far, we looked at the Components part. Usually, a web
application has more than one page and navigation between
them. Using Adobe XD, multiple pages and their navigation
can be prototyped. However, when exported to SVG this
information is lost and we only get to know which pages exist,
but not the information on navigation between them. To solve
this problem, it will be necessary to express the navigation
in a separate model. SCXML [33] seems a viable solution,
considering that Statecharts have already used to express user
interface navigation [34].

IV. AN EXAMPLE

The goal of this section is to illustrate how the steps
presented in the previous section can be applied to the example
in Figure 3. With the proposed approach we were able to
conclude that this prototype page is divided into 4 sections
(rows), due to the components’ positions. The first, which is
the navbar (container with “Navbar” ID), is composed of three
columns, the first of which represents half the width of the
page (i.e., it will correspond to half of the Bootstrap grid). We
use the coordinates of the components within the artboard to
calculate their position on a 12-column grid, and consequently
position them in Bootstrap.

The second section consists only of one image that occupies
the entire row, so it has only 1 column. Along with this, the
third section also has only 1 column with a title (text). Finally,
the last row consists of 2 columns. The first column has a form
(container with ID “Form”, which has two “Text”, two “Text
Box” and a “Button”), and the second column has two buttons.

To design the components, we have to read the IDs (match-
ing them with the corresponding Vue.js + Bootstrap code) and
analyze the respective tags to see if their color or size have
been set.

As an example, let’s take the login form present on the
page. On the SVG file, we have a container with “ID=Form”.
We use the coordinates of the components to determine which
components are inside the “Form” container. Each of these
components also has an ID, identifying the component. Note
that to avoid having repeated IDs (when we have multiple
components of the same type) indices are added to the repeated
IDs, and the original ID is preserved in the “data-name” tag.
The relevant SVG elements are:
<g id="Form"

transform="translate (178 665)">

<rect width="704" height="297"/>
</g>

<text id="Text"

‘A

Email

Password

This is a big title example

Sign up] ‘ Login

Create account

Forget password

Fig. 6. Prototype example in Vue.js.

transform="translate (257 807)">
Password</text>

<text id="Text-2" data-name="Text"
transform="translate (286 753)">
Email</text>

<g id="TextBox"
transform="translate (345 778) ">

</g>

<g 1id="TextBox-2" data-name="TextBox"
transform="translate (345 724)">

</g>

<g id="Btn" transform="translate (420 856)">
<g id="Rectangle"></g>
<text id="Text"
transform="translate (83 42)">
Submit</text>
</g>

To map these components to Vue.js, we already know that
we will have to use the “Form” component. This way, the
“Text” will correspond to a “Label” in Vue.js; the “Textbox”
will correspond to an “Input” and, finally, the “Btn” to a
“Button”. Then, on Vue.js + Bootstrap we have the following
code.

<form>
<label>Email</label>
<input type="email">

<label>Password</label>
<input type="password">

<button>Submit</button>

</form>

In this way, from the user interface mock-up presented in
Figure 3 we obtain the user interface programmed in Vue.js +
Bootstrap presented in Figure 6.

V. DISCUSSION

As previously mentioned, several Ul mockup and prototyp-
ing tools include the functionality to convert Ul mock-ups to
HTML and CSS code. In many cases this is accomplished by
embedding a raster or vector graphics image of the design in
the HTML code. While we will typically get a result that
is almost identical to the one designed. this approach has
several shortcomings, and it is particularly poor from a UI
code generation perspective.

With the proposed approach, it is not possible to obtain
such an identical result, but the result obtained is still quite
satisfactory, particularly taking into account other trade-offs,
especially the evolvability of the code itself. The biggest
advantage is the flexibility of the generated code. The degree
of responsiveness is clearly superior, while embedded images
are rigid.

The Fireblade® plugin for Adobe XD has similar goals to our
proposal. However we do not require a plugin to be installed,
replying instead on conventions on how the IDs are used. This
means that our approach is more easily portable to other tools.

The proposed approach, allows us to save time while giving
designers flexibility, as obtain code for a widely used web
framework, that is easier to maintain and can be use as the
starting point for the final implementation.

6https://docs.ﬁreblade.io/. Retrieved October 11, 2021.

VI. CONCLUSION

Throughout the article, it was possible to address the topics
of model-based user interface development, user-centred de-
sign, prototyping tools and web development frameworks. A
contribution has been made to the area of web development
by proposing an approach to automate code generation from
user interface mock-ups.

Going into detail on the Vue.js web framework, it was
possible to develop a component architecture meta-model of
the framework, which allowed us to schematize the pieces
to develop a web page in this language. Was also made a
prototype structure in order to schematize the components and
navigation within a prototype. Using a prototyping tool and
taking advantage of the option to export the mock-up to SVG
(XML), it was possible to define an approach that maps the
prototype to Vue.js code.

In this mapping, the main challenges are the positioning of
the components and the design of the components themselves.
These challenges were met by dividing the mock-up into rows,
and then into columns. For the components design, as they
are previously identified by an ID, it is possible to match the
component code with the designed component, with only the
possibility of customizing the color and size.

In this way it is possible to get more out of the designers’
work, which saves a lot of time. The generated code is simple
to maintain and evolve, flexible and responsive.

As future work, it remains to implement the algorithm in
the Python language.

REFERENCES

[1] Z. Mehrab, R. B. Yousuf, I. A. Tahmid, and R. Shahriyar, “Mining
developer questions about major web frameworks,” in Proc. of the 14th
International Conference on Web Information Systems and Technologies
(WEBIST 2018), INSTICC. SciTePress, 2018, pp. 191-198.

[2] I. P. Vuksanovic and B. Sudarevic, “Use of web application frameworks
in the development of small applications,” in Proc. 34th International
Convention MIPRO, 2011, pp. 458-462.

[3] J. Plekhanova, “Evaluating web development frameworks: Django, ruby
on rails and cakephp,” Fox School of Business, Temple University, The
IBIT Report, 2009.

[4] S.Liawatimena, H. L. H. Spits Warnars, A. Trisetyarso, E. Abdurahman,
B. Soewito, A. Wibowo, F. Gaol, and B. Abbas, “Django web framework
software metrics measurement using Radon and Pylint,” in Indonesian
Association for Pattern Recognition International Conference (INAPR),
September 2018, pp. 218-222.

[5] R. Marvin, “The best low-code development platforms,”
Aug 2018, (Retrieved January 25, 2021). [Online].
Available: https://www.pcmag.com/roundup/353252/the-best-low-code-
development-platforms

[6] J. 1. Fernandez-Villamor, L. Diaz-Casillas, and C. A. Iglesias, “A

comparison model for agile web frameworks,” in Proc. Euro American

Conf. on Telematics and Information Systems (EATIS 08). ACM, 2008.

S. Kent, “Model Driven Engineering,” in Integrated Formal Methods.

1FM 2002, ser. Lecture Notes in Computer Science, vol. 2335. Springer,

2002, pp. 286-298.

[8] A. Bergmann, “Benefits and drawbacks of model-based design,”
KMUTNB International Journal of Applied Science and Technology,
vol. 7, pp. 15-19, September 2014.

[9] G. Meixner, F. Paterno, and J. Vanderdonckt, “Past, present, and future

of model-based user interface development,” i-com, vol. 10, no. 3, pp.

2-11, 2011.

P. Pinheiro da Silva, “User interface declarative models and development

environments: A survey,” in Interactive Systems Design, Specification,

and Verification. Springer, 2001, pp. 207-226.

[7

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt, “A unifying reference framework for multi-target user
interfaces,” Interacting with Computers, vol. 15, no. 3, pp. 289-308,
2003.

A. Monk, “User-centred design,” in Home Informatics and Telematics:
Information, Technology and Society. Springer, 2000, pp. 181-190.
ISO, “ISO 9241-210:2019 Ergonomics of human-system interaction —
part 210: Human-centred design for interactive systems,” International
Organization for Standardization, 2019.

F. Paterno, C. Santoro, and L. D. Spano, “Maria: A universal, declarative,
multiple abstraction-level language for service-oriented applications
in ubiquitous environments,” ACM Transactions on Computer-Human
Interaction, vol. 16, no. 4, pp. 19:1-19:30, November 2009.

Q. Limbourg and J. Vanderdonckt, “Multipath transformational de-
velopment of user interfaces with graph transformations,” in Human-
Centered Software Engineering: Software Engineering Models, Patterns
and Architectures for HCI. Springer, 2009, pp. 107-138.

A. R. Puerta and P. Szkeley, “Model-based interface development,” in
Conference Companion on Human Factors in Computing Systems (CHI
'94). ACM, 1994, pp. 389-390.

K. Baker, “15 best wire-frame tools for your website design
[2021 guide],” 2021, (Retrieved May 23, 2021). [Online]. Available:
https://blog.hubspot.com/website/wireframe-tools/

M. Myre, “The 8 best wireframe tools in 2021,” 2021, (Retrieved May
23, 2021). [Online]. Available: https://zapier.com/blog/best-wireframe-
tools/

T. May and C. Cahill, “53 web design tools to help you work
smarter in 2021,” 2021, (Retrieved May 23, 2021). [Online]. Available:
https://www.creativeblog.com/features/best-web-design-tools/

G. Pimenta, “Tire suas ddvidas: Adobe XD, Figma ou Sketch, qual
ferramenta de design escolher e por qué?” 2020, (Retrieved May 23,
2021). [Online]. Available: https://comunidade.rockcontent.com/adobe-
xd-figma-ou-sketch/

Figma, “Figma documentation,” (Retrieved July 20, 2021). [Online].
Available: https://help.figma.com/

Sketch, “Sketch documentation,” (Retrieved July 20, 2021). [Online].
Available: https://www.sketch.com/docs/

Adobe, “Adobe XD documentation,” (Retrieved July 20, 2021).
[Online]. Available: https://helpx.adobe.com/xd/user-guide.html

A. Ivanovs, “Figma vs Sketch vs Adobe XD: Whichis the better
design tool?” 2020, (Retrieved May 23, 2021). [Online]. Available:
https://www.codeinwp.com/blog/figma-vs-sketch-vs-adobe-xd/

J.-P. Voutilainen, J. Salonen, and T. Mikkonen, “On the design of a
responsive user interface for a multi-device web service,” in 2nd ACM
International Conference on Mobile Software Engineering and Systems,
2015, pp. 60-63.

M. Salas Zarate, G. Alor-Herndndez, R. Valencia-Garcia, L. Rodriguez,
A. Gonzilez, and J. Cuadrado, “Analyzing best practices on web
development frameworks: The lift approach,” Science of Computer
Programming, vol. 102, May 2015.

Stack Overflow, “Developer survey
(Retrieved January 12, 2021).
https://insights.stackoverflow.com/survey/2017
3 “2020 developer survey,” 2020,
trieved January 12, 2021). [Online].
https://insights.stackoverflow.com/survey/2020#technology-
programming-scripting-and-markup-languages

J. Smith, “Patterns - WPF apps with the Model-View-ViewModel design
pattern,” MSDN Magazine, vol. 24, no. 2, February 2009.

E. Wohlgethan, “Supporting web development decisions by comparing
three major JavaScript frameworks: Angular, React and Vue.js,” Bache-
lor Thesis, Hochschule fiir angewandte Wissenschaften Hamburg, 2018.
S. Adittane, “How to structure a Vue.js project,” 2018, (Retrieved April
30, 2021). [Online]. Available: https:/itnext.io/how-to-structure-a-vue-
js-project-29e4ddclaeeb

Vue.js, “Vue.js documentation,” (Retrieved April 5, 2021). [Online].
Available: https://vuejs.org/v2/guide/index.html/

W3C, “State Chart XML (SCXML): State Machine Notation
for Control Abstraction,” W3C, W3C Recommendation 1,
September 2015, (Retrieved October 11, 2021). [Online]. Available:
http://www.w3.org/TR/scxml/

1. Horrocks, Constructing the User Interface with Statecharts. Addison-
Wesley, 1999.

results 2017,”
[Online].

2017,
Available:

(Re-
Available:

