P4.78 - CHARACTERIZATION OF MOLECULAR FEATURES AND VIRULENCE PROFILE OF *KLEBSIELLA PNEUMONIAE* AND *KLEBSIELLA OXYTOCA* ISOLATES FROM COMPANION ANIMALS IN PORTUGAL

Daniela Araújo ^{1(*)}, Joana Castro ^{1,2}, Ricardo Oliveira ^{1,3,4}, Hugo Oliveira ^{2,5}, Liliana Fernandes ^{2,5}, Isabel Carvalho ^{2,5}, Gyu-Sung Cho ⁶, Charles Franz ⁶, Carina Almeida ^{1,2,3,4}, Sónia Silva ^{1,2,5}

¹ INIAV, IP - National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Portugal

² Centre of Biological Engineering, University of Minho, Braga, Portugal

³ LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal

⁴ ALICE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

⁵ LABBELS – Associate Laboratory, Braga/Guimarães, Portugal

⁶ Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany

(*) e-mail: <u>daniela.araujo@iniav.pt</u>

Keywords: *Klebsiella spp.*; companion animals; K-locus; genome characterization; virulence; *Galleria mellonella*

ABSTRACT

Klebsiella spp. are important pathogens that affect both humans and animals and can cause serious life-threatening diseases. The increasing incidence of *Klebsiella* infections in companion animals (*e.g.*, cats and dogs) can result in the death of animals and become a serious public health concern. The study of strains isolated from animal infections can be a means of assessing the risk of transmission to humans, including zoonotic potential.

The aim of this study was to characterize the genetic and phenotypic features of *Klebsiella pneumoniae* and *Klebsiella oxytoca* previously isolated from ill companion animals by whole genome sequencing, followed by *in vitro* evaluation of biofilm formation. The *Galleria mellonella* model was also used to evaluate the *in vivo* pathogenicity of *Klebsiella* isolates.

K. pneumoniae isolates tested exhibited two LPS O-types (O3B and O1/O2v2) and only one LPS O-types was detected for *K. oxytoca* isolates (OL104). Among the STs, ST11 and ST266 were the most frequently found. In turn, *K. pneumoniae* showed a high diversity of K-locus types (KL102; KL105; KL31, and KL13). Among *K. pneumoniae*, a specific pattern (*i.e.,* KL105-ST11-O1/O2v2) raises concern due to its high resistance and virulence towards human hosts. Furthermore, this pattern was associated with a high inflammatory response observed in *G. mellonella* larvae, with approximately 80% of the larvae dead at 72 h post-infection, which is not directly related to the ability of *Klebsiella spp.* to form a biofilm.

The present study highlights a noteworthy level of pathogenicity associated with *Klebsiella* spp. isolated from companion animals. Consequently, it underscores the potential for dogs and cats to serve as reservoirs of resistant *Klebsiella* spp. that could pose a risk of transmission to humans.

Acknowledgements:

This work was financially supported by: LA/P/0045/2020 (ALiCE), UIDB/00511/2020 and UIDP/00511/2020 (LEPABE), funded by national funds through FCT/MCTES (PIDDAC). In addition, this study was also funded by FCT (Portuguese Foundation for Science and Technology), under the scope of the strategic funding of UIDB/04469/2020 unit, LABELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems—LA/P/0029/2020 (CEB). J.C. also thanks FCT for the CEEC Individual (2022.06886.CEECIND).