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A B S T R A C T   

This study investigates the influence of the uncertainty in material properties on the in-plane lateral behavior and 
capacity of stone masonry walls via a stochastic discontinuum analysis framework. The framework is demon
strated via the 3D numerical assessment of an unreinforced masonry (URM) wall using a stochastic analysis in the 
form of Monte Carlo simulations. The random parameters considered in this study are the prism compressive 
strength of masonry, the tensile strength of the masonry units and joints, and the friction angle for joints and 
units. Novel research is conducted using a fast and accurate DEM model to determine whether the spatial 
variability of the material properties should be taken into account. In addition, the effects of joint-to-joint cor
relation of modeling parameters are examined to identify if such a correlation exists. A total of 1200 stochastic 
discontinuum analyses for 12 different cases are carried out. The results call attention to considering the spatial 
variability of the modeling parameters in the stochastic analysis, as they significantly reduce the variation in the 
wall’s strength and displacement capacity. Results also demonstrate the influence of the correlation between bed- 
joint parameters on the strength and failure mode of the walls. Ultimately, propagation of the uncertainty in the 
joint friction angle into the strength and displacement capacity of the walls is quantified.   

1. Introduction 

Unreinforced masonry (URM) structures constitute a remarkable 
portion of the existing building stock worldwide. As evidenced by past 
earthquakes, often, these structures are vulnerable to seismic actions 
due to their high mass and low tensile strength [1–3]. As a result, ac
curate prediction of their seismic behavior becomes essential to prevent 
severe structural failures and expensive repair costs. However, the 
composite and complex nature of masonry, inherent variability of its 
mechanical properties, and the unavailability of performance criteria for 
specific masonry typologies and failure mechanisms, are some of the 
factors that make this task challenging. To address inevitable uncer
tainty in the mechanical properties, probabilistic analysis of masonry 
structures has been studied in the last decades [4–10]. 

The capacity and behavior of URM walls, with respect to both in- 
plane and out-of-plane directions, are significantly influenced by the 
intrinsic features of masonry construction. For instance, the 

workmanship (i.e., bond patterns, construction quality, etc.), aging, and 
past interventions have a considerable effect on the structural behavior 
of URM walls, as discussed in [11–14]. Similarly, the mortar type and its 
mechanical properties can noticeably influence joint behavior, hence, 
overall masonry strength [15,16]. In URM elements and systems, unit 
properties also inherently vary. While the variation in the units’ prop
erties is smaller in clay or concrete masonry manufactured through 
standardized methods, it is potentially a major variant in traditional 
hand-made brick or adobe, stone, and other forms of natural masonry. 
Nevertheless, these small and large variations in each of the components 
of masonry construction (both at the time of construction and 
throughout its lifetime) result in a structural system subject to high 
spatial variation in joint and unit parameters. This, in turn, alters the 
macro mechanical properties of the system, such as the overall force
–displacement behavior and ultimate load resistance capacity. In this 
regard, important research questions for the seismic assessment of URM 
walls are, i) Should we consider the spatial variation of material and 
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joint properties in computational modeling of masonry walls? ii) If we 
consider spatial variation in properties, to what extent does it affect the 
results? 

So far, few studies have addressed these questions partially, and none 
has systematically covered them using a stochastic DEM that forms the 
focus of this paper. Li et al. [17] used stochastic Finite Element (FE) 
analysis with 3D nonlinear elements to predict the strength of unrein
forced masonry walls in vertical bending. They found considerable dif
ferences in results between the spatial and non-spatial analyses. Later, 
they extended their work [18] to URM walls under two-way bending. 
Comparison of the numerical and experimental results revealed that the 
spatial stochastic analysis captured the wall failure progression better. 
Müller et al. [19] investigated the effect of spatial variability of 
compressive strength and elasticity modulus on the reliability estima
tion of URM walls under compression. Recently, Gooch et al. [20] per
formed spatial and non-spatial stochastic FE analysis to estimate the 
variability of the capacity and failure modes of arched pier-spandrel 
systems subjected to in-plane shear loading. The FE micro-modeling 
technique is used in all these studies, which requires high computa
tion demand. Alternatively, only a few studies used the discrete element 
method (DEM) and spatial/nonspatial stochastic discontinuum analysis 
(S-DA) to analyze load-bearing masonry systems and combined experi
mental and analytical investigations [21–23]. 

Another under-explored subject is the testing and simulations of 
spatial correlation of the strength parameters at the units and joints. 
Relatively minimal effort has been directed towards investigating unit- 
to-unit or joint-to-joint spatial correlation of properties and their 
impact on the wall strength and displacement capacity. Intuitively, one 
may assume a certain degree of correlation due to the construction 
process of masonry walls for example, use of the same batch of mortar or 
similar environmental deterioration in areas of proximity; however, it is 
not easy to quantify such correlations. To this end, this study also seeks 
answers to the following questions: i) If there exists a unit-to-unit or 
joint-to-joint correlation, how does it affect the overall force
–deformation behavior of URM walls? ii) Does the unit-to-unit or joint- 
to-joint correlation significantly change the ultimate strength or damage 
progression? iii) Ultimately, should we consider any correlation in 
spatial stochastic modeling? 

In the pioneering work of Heffler et al. [24], the authors assessed the 
spatial correlation of unit flexural bond strengths within and between 
the courses, using six full-sized clay brick URM walls and bond-wrench 
testing on masonry units. They concluded that the flexural bond 
strengths of joints are statistically independent. However, their research 
was limited to the particular type of material, size and aspect ratio of the 
units, and the specific geometry of masonry walls. Outside of Heffler’s 
study, experimental studies investigating the questions posed are scarce 
because a statistically significant experimental study on the variability 
of properties requires infeasibly large sample sizes. In this context, 
advanced numerical models can provide the necessary means to over
come the limitations posed by experiments, as they enable the simula
tion of various configurations. Still, very few studies of this nature exist: 
Li et al. [25] conducted stochastic 3D FE analyses to examine how 
correlation and spatial variability of modeling parameters affect the 
strength and damage of clay brick URM beams. Tabbakhha and Deodatis 
[26] analyzed the behavior of URM walls for the different spatially 
correlated tensile strengths of mortar joints as the only random 
parameter considered in that study. Their results showed that the close 
correlation of bed joint properties along a course of the wall reduced the 
lateral strength of the investigated wall. Isfeld et al. [27] carried out a 
stochastic assessment of clay brick URM walls in one-way bending to 
study the effect of wall length on the ultimate load. It was observed that 
the analysis results converged to the experimental ones the most when 
the spatial correlation of parameters was included. 

Another critical aspect of stochastic modeling of URM walls is un
certainty propagation, i.e., how the outcome reflects the uncertainty 
associated with the input. Existing studies in masonry buildings 

[4,28,29] mostly incorporate simplified and homogeneous approaches 
using the Finite Element Method; however, there is scarcity in terms of 
the more advanced micro-modeling approach and the impact of the 
modeling parameters. As shown in earlier studies of stochastic micro- 
modeling of masonry walls [6,21,22,30], masonry strength is highly 
correlated with the friction angle value of its joints (especially for dry- 
joint and low-bond strength URM masonry walls). However, the prob
ability distribution and its parameters for the random variables are often 
not available. Therefore, several assumptions must be made, such as the 
coefficient of variation of friction angle, and their effects on the results 
mostly remain unnoticed. In this context, this study investigates how the 
variations in joint friction angle affect the force–displacement behavior 
and in-plane strength of the URM walls through stochastic discontinuum 
analysis (S-DA) based on the DEM. 

It can be seen that there is enough evidence from prior experimental 
and numerical studies that hint at the fact that a more systematic 
approach to stochastic analysis can lead to more accurate predictions of 
the seismic behavior of URM walls; however, further research is needed 
to quantify these benefits with respect to the cost of performing more 
complex analyses. 

This study examines several research questions raised above using 
stochastic discontinuum analyses and contributes to the state-of-the-art 
stochastic discontinuum analysis of masonry structures. The proposed 
DEM-based modeling approach offers a more accurate representation of 
URM walls by comparing a large set of stochastic numerical analyses 
with a previously published experimental data set. The modeling 
approach considers all possible damage scenarios observed in the ex
periments, including sliding failure, tensile cracking, and crushing. A 
total of 1200 S-DA are performed, considering the spatial variation of 
the joint properties as statistically uncorrelated variables (ρ = 0) as well 
as correlated with different factors (ρ = 0.65, ρ = 0.85 and ρ = 1.00). 
Note that when the spatial correlation ρ goes to unity, it represents the 
case where the mechanical properties are uniform along the entire wall. 
Furthermore, the direct influence of the coefficient of variation (CoV) of 
the joint friction angle on the results is studied by considering three 
different values of CoV (0.25, 0.15, and 0.05). 

The paper is organized as follows: In Section 2, the mathematical 
background of the employed modeling strategy and the proposed sto
chastic analysis framework are explained. In Section 3, the spatial and 
non-spatial analysis results are presented and compared. Then, in Sec
tion 4, the influence of the CoV of the joint friction angle on the behavior 
and capacity of the URM wall is evaluated. Furthermore, the propaga
tion of the uncertainty in the input parameters into the results is quan
tified. In Section 5, the joint-to-joint spatial correlation of modeling 
parameters is investigated, and finally, conclusions are derived in Sec
tion 6. 

2. Stochastic discontinuum modeling 

The inherent variation in the masonry properties and uneven dete
rioration of masonry across its different areas results in an overall un
certainty in the mechanical properties of walls. Even in a controlled 
laboratory environment, noticeable variations in the results can be 
observed due to the heterogeneous characteristics of the masonry. For 
simplicity, masonry structures are often analyzed using deterministic 
models; hence, the probabilistic nature of their mechanical properties is 
ignored. On the other hand, stochastic models provide more realistic 
solutions for the structural engineering problems associated with 
random variables, such as material properties, loads, and boundary 
conditions [31]. Several recent examples regarding the probabilistic 
seismic assessment of masonry structures have demonstrated the 
importance of stochastic modeling and the need for substantial research 
to quantify the uncertainties in the analysis, both at component and 
system levels [32–34]. 

In this study, a DEM-based stochastic discontinuum analysis frame
work is proposed to assess a URM masonry wall subjected to lateral 
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loading. First, the employed modeling approach is validated against a 
benchmark study, a recent experimental work where a URM stone ma
sonry wall is tested under combined compression and in-plane shear 
loadings. After the capacity and behavior predictions of the wall are 
demonstrated to match the experimental results, uncertain model pa
rameters are introduced, and the stochastic analysis is conducted. 

Please note that this study considers only the parameter uncertainty 
stemming from imprecise model input values. Other types of un
certainties such as numerical uncertainty, bias error due to our ideali
zations of the boundary conditions and acting forces, and experimental 
uncertainty are not taken into account. 

2.1. Background on the numerical DEM procedure 

The computational modeling of masonry structures has been an 
active research field for the last several decades. Different numerical 
techniques and strategies have been proposed by researchers consid
ering various levels of complexities, relying on continuum and 
discontinuum-based computational formulations [35–40]. In this 
research, the latter approach is utilized to analyze a URM wall based on 
the discrete element method developed by Cundall [41]. The proposed 
DEM-based model can be categorized as a simplified micro modeling 
approach, where the units are expanded to include half-mortar thick
ness, similarly to previous studies [30,42,43]. 

In DEM, the load-bearing masonry systems are replicated via indi
vidual rigid or deformable blocks with zero-thickness interfaces, in 
which the blocks can interact with each other along their boundaries. 
Deformability is introduced by discretizing the blocks into tetrahedral 
zones (volumes in 3D), which may undergo elastic or plastic de
formations. However, it is worth noting that the choice of a rigid or 
deformable block in DEM simulations is determined considering multi
ple factors, such as the physics of the problem, the research question 
sought, and the computational cost. For instance, rigid blocks are pref
erable in dynamic analysis since they require less computational time 
than deformable blocks, as Lemos [39] highlighted. On the other hand, 
deformable blocks can provide valuable information (if needed) 
regarding the elastic and plastic stress/strain histories developing within 
blocks, which may be necessary for specific problems (e.g., [44,45]). 
This research uses rigid blocks to simulate the URM wall behavior 
(different from the authors’ recent work in which the deformable blocks 
were utilized for the same structure [21]). The primary motivation to 
utilize rigid blocks is to diminish the computational cost and run more 
analyses within a reasonable time. It takes approximately 9 min to 
analyze the benchmark study for the rigid block model for this specific 
problem, five times faster than the deformable block model using a 
computer system Intel® CoreTM i7 CPU @ 2.7 GHz processor and 16 GB 
memory RAM. Note that the proposed modeling strategy offers less 
computational demand than the FEM-based micro-modeling approach, 
mentioned in other studies [25], even though they are not precisely 
comparable since different computer systems and structures are 
employed. 

Briefly, the core idea of DEM relies on the explicit integration of 
equations of motions (both translation and rotational) for each block’s 
center of mass. The new translational (u̇t+) and rotational (ωt+) veloc
ities, which are evaluated at the mid-intervals of a time step,Δt (e.g., 
t+ = t + Δt/2, t− = t − Δt/2) are obtained as given in Equations (1) and 
(2), respectively. 

u̇t+ = u̇t− +
Δt
m

Ft (1)  

ωt+ = ωt− +
Δt
I

Mt (2) 

where F, M, I, and m are the force vector, including the sum of 
contact forces and applied forces, the moment vector, consisting of 
moments developed by contact forces and applied forces, the mass 

moments of inertia, and block mass, respectively. Cundall’s local 
damping formulation is utilized to obtain steady-state solutions (either 
corresponding to equilibrium or steady-state failure, i.e., collapse) from 
the given dynamic equations, as discussed in the [46]. Moreover, the 
numerical stability is ensured using small time steps (Δt < Δtcritical). After 
the new velocities are calculated, the displacement (Δx) and rotation 
(Δθ) increments are obtained using Equation 3 to get the new position of 
the block centroid (xt+), as written in Equation (4). Accordingly, block 
vertices and edge orientations are determined in order to compute 
contact (interaction) forces. 

Δu =
(
u̇t+)Δt (3a)  

Δθ = (ωt+)Δt (3b)  

xt+ = xt +Δu (4) 

Contact forces are computed based on the updated spatial configu
ration of the discontinuous system among the adjacent blocks. At each 
contact surface (also referred to as joint), orthogonal linear/nonlinear 
springs are defined for the prescribed contact points that control the 
contact stiffness and strength in normal and shear directions along the 
joint. Through this study, fracture energy-based contact constitutive 
models are utilized to better represent the post-peak response of the 
material [47,48]. As shown in Fig. 1, the Coulomb-Slip joint model is 
utilized with tension–compression elastic-softening behavior. The 
employed point contact approach requires normal (kn) and shear (ks) 
stiffness as well as initial and residual strength parameters. The ten
sion–compression behavior is defined considering simple linear soft
ening laws, requiring tensile strength (fT), mode-I fracture energy (GI

f ) 
and compressive strength (fC) with associated fracture energy (GC), 
respectively. Moreover, the shear failure criterion is defined using 
cohesion (c0), friction angle (ϕ0), mode-II fracture energy (GII

f ), residual 
cohesion (cres) and residual friction angle (ϕres), presented in Fig. 1. The 
damage in tension and shear is coupled using a single damage param
eter, further explained in Pulatsu et al. [22]. 

It is important to note that the contact stiffnesses are only defined for 
the potential crack surfaces within the units (denoted as kn,u and ks,u) 
and the unit-mortar interfaces (kn,j, ks,j), based on the horizontal (sH) and 
vertical (sV) joint spacings using Equation 5, in which kj is estimated as 

Fig. 1. Contact constitutive law defined at the contact point in the normal and 
shear directions: Tension-compression (Top); Shear (Bottom). 
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0.4 times kn (see Equation 5) [49–51]. 

kn,u = Eunit/sH&ks,u = 0.4kn,u (5a)  

kn,j = Ewall/sV &ks,j = 0.4kn,j (5b)  

where Eunit and Ewall are Young’s modulus for stone units and masonry 
walls. 

The point contact stresses are obtained incrementally for normal 
(Δσ) and shear (Δτ) directions. The executed contact stress computation 
relies on the predictor–corrector scheme, typically performed in a 
nonlinear explicit numerical solution. Initially, the elastic contact stress 
increments are obtained using Equation (6), where the relative point 
contact displacement is decomposed into the normal (Δun), and shear 
direction (Δus). Then, the obtained stress increment is added to the 
previous one to obtain the new contact stresses (see Equation (7)). If the 
new contact stresses violate the defined failure criteria, the new contact 
stresses are updated with the corrected one and multiplied with the 
associated contact area to be utilized as forces in equations of motion (as 
given earlier in Equations 1–2) [52]. 

Δσ = knΔun  

Δτ = ksΔus (6)  

σt+ = σt +Δσ  

τt+ = τt +Δτ (7) 

The proposed DEM-based modeling framework is performed using a 
commercial three-dimensional discrete element code (3DEC) developed 
by ITASCA [53]. The proposed contact models are written in C++ and 
compiled as DLL (dynamic link library) into 3DEC via the user-defined 
constitutive model option. In the next section, validation of the pro
posed modeling strategy is presented. 

2.2. Validation study 

A laboratory experiment conducted by the authors was used to 
validate the proposed DEM procedure. A stone masonry wall with di
mensions of 1.55 m × 1.60 m × 0.30 m was tested in reversed cyclic in- 
plane shear compression, and its constituents were characterized via 
several destructive and non-destructive tests. These laboratory tests 
have been extensively documented elsewhere [15,16,21], and they are 
not the focus of this study. However, all the necessary information to 
model the wall is presented herein. 

The wall panel was constructed using ashlar stones and a commercial 
brand natural hydraulic lime (NHL) mortar. The wall base consisted of a 

Fig. 2. Left: Illustration of the test setup; Right: Discrete Element model.  

Fig. 3. Left: Stone masonry wall panel after the test; Right: Damage state of the wall at the last stage of the DEM analysis.  
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reinforced concrete (RC) foundation and a cement-based high-strength 
mortar, connecting the structure to the RC foundation. At the base level, 
two C-shaped steel profiles at both sides of the wall prevented any lateral 
translation. The same high-strength mortar was also used at the top of 
the wall to bond the top layer of stones and prevent individual sliding of 
units. An RC loading beam at the top of the wall distributed the vertical 
load evenly, which caused mean compressive stress of 0.5 MPa. A rig 
was used to apply displacement-controlled lateral loading, clamped to 
the top layer of the stones and the RC spreader beam. Two roller sup
ports on both sides of the walls prevented the out-of-plane movement of 
the walls. An illustration of the test setup is presented in Fig. 2. 

During testing, the wall displayed a flexural rocking behavior at the 
beginning, causing cracks along the lower course of bed joints. Then, a 
mixed-type behavior was observed as a diagonal stepped-crack appeared 
through the stone-mortar interfaces. In the last cycles of testing, a bed- 
joint sliding combined with toe crushing was noted. Fig. 3 illustrates the 
final damaged state of the tested URM wall. 

For the validation, boundary conditions and geometrical features of 
the URM wall are represented in the discrete element model. The lateral 
loading is imposed as a constant displacement rate of 5 mm/s. The 
mechanical properties used in the DEM model are taken from the 
available material characterization testing performed in the experi
mental study and presented in Table 1. Moreover, the necessary input of 
fracture energies is assumed based on the ductility index for tension, 
shear, and compression recommended in the literature [54]. The joint 
tensile strength (ft,j) is approximately assumed as 5% of the masonry 
compressive strength (fm). Note that the experimental material charac
terization was limited to the masonry compressive strength, and tensile 
and compressive strength of the units [16]. For the remaining proper
ties, the same values utilized in a previous DEM-based study of this 

structure [21] are adopted to be able to directly compare the results. All 
the values of the contact parameters used in the benchmark study are 
presented together in Table 1. 

A similar damage progression to the experimental results is observed 
during the numerical analysis, consisting of flexural cracks and sliding 
failures at the bed joints, diagonal stair-step cracks, and compression 
failure at the toe of the wall, as shown in Fig. 3. Qualitative verification 
is established since the DEM model accurately simulates the damage 
progression and crack pattern. Quantitative agreement between the 
numerical and experimental results is also established, as shown in 
Fig. 4. The base shear force versus the lateral deflection at the top of the 
URM wall is compared against the experimental envelope and a previous 
DEM-based solution (made up of deformable blocks, [21]). In Fig. 4, the 
gray-shaded part represents the area between the positive envelope and 
the absolute value of the negative envelope curve (the reverse direc
tion). For small displacements (less than 5 mm), the present model 
behavior falls right into the middle of the experimental positive and 
negative envelope curves (presented in absolute values) obtained from 
the cyclic-shear test. On the other hand, when the displacement is higher 
than 5 mm, the results converge to the lower bound of the experimental 
envelope. It is also worth noting that very close results are obtained from 
different DEM-based simulations, confirming that both approaches are 
acceptable. Considering the qualitative and quantitative match between 
the numerical and experimental results, the deterministic DEM model is 
validated. 

2.3. Uncertainty in the model parameters 

In the probabilistic analysis approach, the unit and joint properties 
are considered either deterministic, random, or dependent variables. 
This research focuses on the nonlinear parameters utilized in DEM; 
hence, the contact stiffness is kept constant in all analyses. The readers 
are referred to the earlier work of the authors discussing the influence of 
contact stiffness [22]. The parameters to which the strength and 
displacement capacity are the most sensitive are determined as random 
variables and presented in Table 2. They are the compressive strength of 
masonry (fc), the bond (unit-mortar interface) tensile strength (ft,bond), 
the tensile strength of units (ft,unit), the friction angle within the units 
(ϕunit), and the friction angle for joints (ϕbond). Note that the cohesion of 
the unit and bond cohesion are considered as dependent variables with 
the relationships cunit = 2ft,unit and cbond = ft,bond, respectively. Similarly, 
the fracture energies are calculated according to the corresponding 
strength values, considering the suggestions presented in the literature 
[54] and the expressions given in Table 2. 

A normal distribution is assumed for the compressive strength of 
masonry, whereas the tensile strength of the units and bonds follow a 
lognormal distribution to prevent negative values during sampling, 
following the pertinent literature [21,25,32]. The statistical parameters 
of the compressive strength of masonry and the tensile strength of units 

Table 1 
Contact properties defined for unit-unit and unit-mortar interface interactions 
using in discrete element model to simulate the benchmark study.  

Interaction within the stone masonry units 
ft,u (MPa) c (MPa) ϕu (

◦
) ϕres (

◦
)

1 2 40 40 
fc,u(MPa) GI

f (N/m) GII
f (N/m) Gc(N/m)

23.3 30 550 23000 

Interaction between the masonry units 

ft,j(MPa) c(MPa) ϕj(
◦
) ϕres(

◦
)

0.2 0.2 30 30 
fm(MPa) GI

f (N/m) GII
f (N/m) Gc(N/m)

5.5 5.8 0 8820  

Fig. 4. DEM prediction from the deterministic DEM-based models vs. the 
experimental envelope curves. 

Table 2 
Variables, their associated distributions, and statistical parameters.  

Random 
Variable 

Probability 
Distribution 

Mean 
(μ) 

Coefficient of Variation 
(CoV) 

fm (MPa) Normal 5.50  0.15 
ft,bond (MPa) Lognormal 0.25  0.45 
ft,unit (MPa) Lognormal 1.00  0.16 
ϕbond (degrees) Normal 35  0.25 
ϕunit (degrees) Normal 38  0.10 

Dependent 
Variable 

Relationship 

cunit (MPa) 2.0ft,unit 

cbond (MPa) 1.0ft,bond 

GI
f (N/mm) 0.029 ft,bond 

GC (N/mm) 1.6 fm  
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are obtained experimentally [16]. Also, a slightly higher coefficient of 
variation is assigned for the bond tensile strength due to highly scattered 
test results. It should be noted that the mean values of some parameters, 
taken as the deterministic values used in Table 1, are amended in 
Table 2. According to the previous studies, the joint and unit friction 
angle values and their CoV are revised [21,22]. 

The statistical parameters in Table 2 are used to define the prescribed 
distributions used in the Monte Carlo simulations (MCS). The Latin 
Hypercube Sampling (LHS) [55] method is used to reduce the variance 
in the derived samples. Indeed, the LHS technique has been used to 
improve the efficiency of sampling methods, resulting in significant 
savings on computational cost [56]. No correlation is specified between 
the parameters, i.e., the random variables are statistically independent. 
Twelve different cases considered the changes in the spatial variation of 
the modeling parameters and the coefficient of variation of the joint (or 
bond) friction angle. In these cases, the spatial variation of the joint 
properties is either considered as statistically uncorrelated, I) ρ = 0, or 
correlated at different levels: II) ρ = 0.65, III) ρ = 0.85 and IV) ρ =

1.00. These four cases of spatial correlation are reiterated for the three 
values of the coefficient of variation of the joint friction angle: 0.25, 
0.15, and 0.05. For instance, the four cases of spatial correlation are 
considered when CoV of the friction angle is 0.25, another four cases for 
CoV = 0.15 and the last four cases for CoV = 0.05. Thus, the total 
number of the cases adds up to 12. For each of the twelve cases, 100 
simulations are run, i.e., 100 values of each random variable are 
generated, from the corresponding probability distributions with a given 
mean and coefficient of variation. The total number of the simulations 
performed corresponds to1200. 

Among these cases, the one that includes the non-spatial stochastic 
analysis with the coefficient of variation of the friction angle equal to 
0.25 will be referred to as the “benchmark study” hereafter. As an 
example of the LHS sampling, the benchmark study is used to illustrate 
the independent random variables, their probability distributions, and 
the histograms of the sampled values, as shown in Fig. 5. Note that the 
sample size of the benchmark study is 100, as well as all for the other 
cases. 

3. Spatial versus Non-Spatial S-DA 

The mechanical properties of masonry components vary spatially 
due to several factors, such as the inherent variability of the material 

properties, workmanship, and the uneven degradation of materials and 
joints. Aging mortar may soften and lose stiffness, and bond strength 
typically decreases over time as some of the mortar is lost. Interventions 
on existing structures are another source of variability: it is common to 
tuck parts of a wall with a different, typically stronger mortar, resulting 
in significantly different mortar properties across a wall’s length/area. 
The spatial stochastic simulation is set up in the following way to 
address these phenomena: first, an identification number is defined for 
each joint (or contact plane) in the discrete block system, as illustrated in 

Fig. 5. Histograms and probability distributions of the sampled random variables for the benchmark case (ρ = 1 and CoVϕbond = 0.25).  

Fig. 6. Numbering the contact surface and spatial variation of the contact 
friction angle. 
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Fig. 6a. To effectively assign the mechanical properties of block units 
and bonds (or unit-mortar-interfaces), the joints within and in-between 
the units are grouped and numbered separately. There are 45 joints 
within units and 135 joints in-between them. Then, from the prescribed 
distributions given in Table 2, 135 different values of tensile strength, 

frictional resistance, and compressive strength are sampled using the 
LHS method and assigned to each joint in-between the units (see 
Fig. 6b). Similarly, each of the 45 joints within the units is assigned a 
different tensile strength and friction angle. Therefore, in a single 
simulation, 45 different values are sampled from the specified distri
bution for stone units, while 135 samples are generated for each 
parameter related to the masonry bond and compressive strength. The 
sampling process is repeated for each of the 100 simulations. 

In a non-spatial stochastic analysis, the same probabilistic modeling 
strategy is used as the spatial analysis. However, this time, in each 
realization of the 100 Monte Carlo simulations, one value is generated 
for each modeling parameter given in Table 2. That value is assigned to 
all joints within or in-between the units, which results in a homogeneous 
distribution of material properties. Hence, two cases are simulated in 
this section: i) every unit and joint had the same value for each Monte 
Carlo simulation, i.e., they did not differ spatially (referred to as non- 
spatial), and ii) joint properties spatially varied for each simulation. 

The force–displacement curves obtained from non-spatial and spatial 
stochastic analyses are presented in Fig. 7. In this study, the ultimate 
lateral displacement is adopted as the point on the load–displacement 
curve where the ultimate load drops to 80% of the maximum load, if 
applicable. Otherwise, the analyses are run until 32 mm of displacement 
is reached (i.e., final displacement corresponding to 2% drift ratio). 
However, it is noted that low friction angles yield approximately 
bilinear curves (Fig. 7a) associated with the bed-joint sliding. This type 
of behavior may be considered as premature failure, where the sliding 
mechanism is formed at an early stage along a large portion of a row of 
the wall, shown in Fig. 8a. The load is sustained with increasing dis
placements until the end of the analysis (see Fig. 8b). Twelve cases of 
such failure are observed in 100 simulations when using the non-spatial 
S-DA approach. In contrast, no premature sliding failure is observed in 
spatial S-DA, which can be noticed in Fig. 7b. Also, the graphs present a 
more uniform batch compared to non-spatial S-DA, signaling less vari
ation in the maximum force and displacement values. The mechanics of 
spatial S-DA are different and more realistic than the nonspatial analysis 
since load redistributions become more influential due to the spatial 
variation of the material properties, revealing that sliding failures are 
less likely to occur. Note that the spatial variation of the joint properties 
is considered as statistically uncorrelated (ρ = 0). As demonstrated in 
the following sections, the amount of the statistical correlation might 
alter the results. The differences are further elaborated in the next 
section. 

The bed joint sliding failure requires further discussion as it is also 
encountered in the rest of the present study. It occurs when the joint 

(a) Non-spatial S-DA (b) Spatial S-DA

Fig. 7. Force-displacement curves obtained from the non-spatial and spatial S-DA.  

Fig. 8. Sliding failure (a) an example case, (b) force–displacement curve.  
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friction angle and tensile strength are low and compressive strength is 
higher. For the twelve cases encountered in the non-spatial S-DA, the 
mean values of the joint friction angle, joint tensile strength, and the 
compressive strength of masonry are 21.7 degrees, 0.21 MPa, and 5.75 
MPa, respectively. As stated, Fig. 8a illustrates an example in which 
sliding along the bed joints dominates the behavior. The nonlinearity in 
the behavior starts with an initial horizontal crack, starting from the 
lower-right of the wall and reaching towards the left. As the units at the 
bottom-left corner of the wall do not fail in compression, a sliding 
mechanism develops, and the upper portion of the wall continues sliding 
above the lower part. Although this specific case is observed in several 
analyses, it may be a numerical artifact. In other words, this type of 
failure seems less likely in physical testing, according to the experience 
of the authors. In any case, one should be cautious about the large 
displacement capacity indicated by this failure mode. 

4. Influence of the variation in joint friction angle 

The impact of the joint friction angle on the force–displacement 
behavior has been demonstrated in the previous section. In this section, 
additional stochastic analyses are carried out to investigate it further 
and quantify its effect. The same procedure, as described in Section 3, is 
followed for sampling. The identical strength parameters and values 
(given in Table 2) are utilized in the analyses, except the coefficient of 
variation of the joint friction angle, assigned a value of 0.15 and 0.05 in 
two additional cases (i.e., CoVs used are 0.05, 0.15, and 0.25). These two 
additional cases were carried out for non-spatial and spatial S-DA, 
resulting in 400 additional simulations. Therefore, six cases of non- 
spatial and spatial S-DA have been conducted. The outcomes are sum
marized in Table 3 in terms of the average maximum forces and dis
placements obtained. 

The impact of the decrease in the coefficient of variation of the bond 
friction angle is remarkable for the non-spatial cases as it significantly 
reduces the variation in the maximum force and displacement. Almost a 
linear trend is observed: 40% decrease in the CoVϕbond (from 0.25 to 0.15) 
resulted in a 40% decrease in the CoVFmax (from 0.10 to 0.06); 80% 
decrease in the CoVϕbond (from 0.25 to 0.05) resulted in a 70% decrease in 
the CoVFmax (from 0.10 to 0.03). However, the change in the ultimate 
displacements is not significant, in contrast to the effect on maximum 
forces. This outcome is expected as the post-peak behavior of the stone 
masonry walls is typically dominated by several other factors than the 
joint friction angle. As opposed to the non-spatial S-DA, the decrease in 
the CoVϕbond causes no noticeable change in the spatial S-DA. It means 
that even if higher values of CoVϕbond are assumed for the bond friction 
angle, this will not alter the results substantially, demonstrating an 
appealing feature of spatial S-DA, especially when there is a lack of data 
(or experimental results) for input material properties. 

In addition to the decrease in the number of sliding failures 
mentioned earlier, it is possible to notice other differences when the 
spatial and non-spatial results are compared. For the benchmark study 
(i.e., non-spatial & CoVϕbond = 0.25), the differences in the variation of 
the maximum forces and displacements are noteworthy when the non- 
spatial analysis is used, while when the spatial analysis is used CoVFmax 

and CoVDmax are reduced by 85% and 33%, respectively, as presented in 

Table 3. 
Fig. 9 helps to better understand the relationship between the joint 

friction angle and the lateral wall strength. A strong correlation is 
observed in all three coefficient of variations defined for the friction 
angle. Also, it is noted that the data points clustering becomes tighter as 
the CoVϕbond decreases. Additionally, the comparison between deter
ministic analyses (including the maximum (mean + standard deviation) 
and minimum (mean – standard deviation) values of joint friction angle) 
and non-spatial and spatial analyses are provided in the Appendix for 
the readers’ reference. 

Notice that the random parameters other than the joint friction angle 

Table 3 
Average maximum force and displacement obtained from spatial and non-spatial S-DA.    

Non-spatial (ρ = 1) Spatial (ρ = 0)   
CoVϕbond 

CoVϕbond   

0.25 0.15 0.05 0.25 0.15 0.05 

Fmax (kN) Mean 127.48 130.07 131.85 131.10 131.31  132.87 
CoV 0.101 0.061 0.031 0.015 0.015  0.019 

Dmax (mm) Mean 19.10 18.83 18.04 19.45 18.82  19.07 
CoV 0.339 0.286 0.272 0.226 0.223  0.180 

# of sliding failure 12 4 4 0 0 0  

Fig. 9. Influence of the joint friction angle on the lateral force capacity of the 
wall in non-spatial stochastic analyses. 

Fig. 10. Influence of the random parameters on the lateral force capacity of the 
wall in non-spatial stochastic analysis (benchmark case). 
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do not directly influence the wall’s lateral strength within the pre- 
defined range of values and boundary conditions. Fig. 10 displays, for 
the benchmark case, how the strength of the wall changes according to 
the changes in the masonry compressive strength, unit and joint tensile 
strength, and the unit friction angle. This also demonstrates that no 
direct correlation of these parameters with the lateral strength can be 
inferred. Nonetheless, higher values of joint tensile strength will provide 
some correlation with the capacity, which can be forecasted from the top 
right quartile in Fig. 10. 

5. Spatial correlation of modeling parameters 

In statistical terms, correlation indicates the strength of the linear 
association between two random variables [57]. As stated, the con
struction process of masonry walls includes features that make one 
intuitively assume that some degree of spatial correlation should exist 
between the mechanical parameters of masonry. These features include 
but are not limited to the repetitive use of a single type of mortar and 
unit for most masonry types, a single mason constructing a specific part 
of the wall which implies uniform quality, same environmental condi
tions in the construction of a particular portion of the wall, and using the 
same batch of mortar for at least a specific length of the masonry course 
(s). However, very little effort was made on investigating the unit-to- 
unit or joint-to-joint correlation of the mechanical parameters of ma
sonry. Stewart and Lawrence [58] showed that the strength and struc
tural reliability of the wall is sensitive to flexural bond strength. 
Following that, Heffler et al. [24] conducted extensive laboratory work 
to determine the correlation of flexural bond strength. In their study, 
they carried out a bond wrench test for six full-sized clay brick masonry 
walls and used statistical analysis. Even though counter-intuitive, they 
concluded that a statistically significant correlation between adjacent 
unit flexural bond strengths does not exist. This finding is likely specific 
to the type of the wall studied (with a particular mortar and unit 
composition) and the types of structural analyses conducted. Further
more, other parameters than the flexural bond strength should also be 
investigated. Indeed, Müller et al. [19] showed via numerical simula
tions that the degree of spatial correlation is important for single layer 
masonry walls under compression loading. Evidently, more experi
mental work should be conducted to determine whether a statistically 
significant correlation exists between the units and joints. Meanwhile, 
the effects of such a correlation are examined here via a stochastic dis
continuum analysis. 

5.1. Method of establishing the degree of spatial correlation 

First, a methodology is established to investigate the effect of the 

spatial correlation of modeling parameters. It is noted that only the joint 
parameters are correlated, whereas no correlation is considered between 
the units. Also, the correlation is specified only for bed joints, while the 
head joints are not correlated. This assumption has a physical basis and 
is also confirmed by experimental testing [59]. The level of compressive 
stress and mortar compaction at a given point in the wall is different for 
head and bed joints, even though the materials used are theoretically the 
same. The differences in unit texture and the size effect of the areas of 
head and bed joints may lead to further deviation of mechanical prop
erties. In addition, no correlation between the masonry courses of the 
wall is taken into account, based on the test results presented in [24]. 
Therefore, each course of the masonry wall is considered as a series of 
units and joints, where the parameters of the bed joints are correlated, 
and the head joints and units are not. In other words, both the unit and 
joint parameters have spatially varying properties. While there is spatial 
correlation within each course only for the joint parameters, each unit is 
assigned a different parameter value related to the units, i.e., unit tensile 
strength and unit friction angle, for each realization of the 100 
simulations. 

In all spatial S-DA, the same spatially varying strength parameters 
are used for the units, i.e., the same spatially varying unit properties are 
used in all the six cases investigated in this section of the study. On the 
other hand, the joint parameters (tensile strength and friction angle, and 
the compressive strength of masonry) are sampled in a way that the bed 
joints in the same course have designated values with the specified 
correlation while the head joints have uncorrelated random values. Note 
that the spatial correlation mentioned in this section is different from the 
correlation between the random variables in Table 2. The random var
iables sampled using the LHS method are statistically independent, as 
mentioned earlier. This is based on the information that there is no 
evidence of a physical connection between the random parameters 
considered in this study. Dependent variables represent the parameters 
with a physical relationship. The correlation of parameters evaluated 
here comprises only the spatial correlation of each joint parameter 
within each course of the masonry wall. 

Following the description above, i.e., considering the bed joints as a 
series of equispaced data points in space, the autocorrelation function is 
chosen as the mathematical tool to define a spatial correlation between 
the joints. The autocorrelation function, ρτ, presented in Equation (8), is 
a pair-wise calculation that is conducted for all pairs of values with a 
specific lag τ in the given data series, xt. 

ρτ =
1
N

∑N− τ
i=1 (xi − x)(xi+τ − x)

1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N− τ

i=1 (xi − x)
2∑N− τ

i=1 (xi+τ − x)
2

√ , τ = 0, 1, 2, 3,⋯, (N − 1) (8) 

where lag τ designates the number of units between the points in the 
series, N is the number of data points (N = 10 for each masonry course, 
see Fig. 6a), and x is the mean of the data series. 

A caveat concerning the autocorrelation function presented in 
Equation (8) is that the “sample autocorrelation” conforms to the sta
tistical literature and conflicts with the “lag τ sample autocorrelation” of 
the engineering literature that is widely used in signal processing. The 
autocorrelation function used in this study has a similar pattern to 
Pearson’s product-moment correlation coefficient, which measures the 
strength of a linear association between two sets of data [57]. Therefore, 
one can infer from Equation (8) that ρτ measures the degree of corre
lation between each data point in the series and the point located τ units 
away from it. As expected, the autocorrelation function takes values 
between + 1 and –1. A value of + 1 indicates a perfect correlation be
tween each value in the data series with the values τ units away from it. 
Similarly, a value of –1 indicates a perfectly negative correlation. If the 
value of the autocorrelation function is ρ = 0, then the values are sta
tistically independent, and there is no correlation between the value of 
each joint in the masonry course and the joints τ units away from it. 
Finally, it should also be stated that there are various estimates of the 
autocorrelation function [60], but the one used in this study complies Fig. 11. A correlogram showing the autocorrelation values versus the lag.  
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with the work of Heffler et al. [24] and others to enable a direct 
comparison. 

During the sampling of the correlated parameter values, N is taken as 
10 since each wall course has ten joints. The mean values of the pa
rameters given in Table 2 are used as x. Based on the suggestions of 
Priestley [60] and Heffler et al. [24], the autocorrelation function values 
that fall within a band of ±2

̅̅̅̅̅̅̅̅̅
1/N

√
(i.e., approximately 0.60) are 

regarded as statistically not different from the case of no correlation, 
ρ = 0. Therefore, two cases of spatial correlation, one weak (ρ = 0.65) 
and one stronger (ρ = 0.85), are considered in this study in addition to 
the two cases taken into account earlier, i.e., no correlation (ρ = 0) and 
full correlation (ρ = 1). In these two intermediary stages where ρ = 0.65 
and ρ = 0.85, the parameter values sampled using the LHS were 
assigned an autocorrelation value sufficiently close to ρ for a lag of at 
least τ = 4, meaning the joint parameter values are statistically corre
lated for a minimum four adjacent joints. This adjustment is shown in 
Fig. 11 as a correlogram where the autocorrelation values for the ma
sonry compressive strength in each course of joints are plotted against 
the lag τ. The example belongs to simulation number 32, and the value of 
spatial correlation is ρ = 0.65. As can be observed, the ρτ value does not 
fall below the upper bound specified by ±2

̅̅̅̅̅̅̅̅̅
1/N

√
for at least τ = 4, and 

there is no further constraint on lag τ afterwards. 
Fig. 12 illustrates how the joint friction angle values in each course 

vary in an example simulation. This example belongs to the case where 
ρ = 0.65 and the coefficient of variation for the friction angle is 0.15. 

5.2. Results 

As we investigate the results of the stochastic analyses, given in 
Table 3 and Table 4 together, the first striking observation is the 
decrease in the strength of the walls when CoVϕbond = 0.25. The reason 
for this decline is premature sliding failures preventing the wall from 
reaching its full capacity. Indeed, when the number of sliding failures is 
investigated, it appears to be significantly high (64 and 66 for ρ = 0.65 
and ρ = 0.85, respectively) compared to non-spatial (ρ = 1) and un
correlated spatial (ρ = 0) cases. When the variation in the joint friction 
angle is reduced, the number of sliding failures also decreases, and the 
average of the maximum force attained increases. This phenomenon is 
also related to the fact that there is the highest probability of weak joints 
being surrounded by higher strength joints in the uncorrelated spatial 
case. Such distribution, i.e., weak joint surrounded by strong ones, 
provides load redistribution once the weak joint fails. That is why the 
highest mean lateral strength is attained in uncorrelated spatial analysis. 

Regarding the variation of the maximum force and displacement, 
there is no conspicuous change between the correlated spatial analysis 
cases, all being similar to each other. In general, the maximum force and 
displacement variations are much lower for spatial stochastic analyses. 
If this outcome can be generalized for various wall typology, geometry, 
and boundary conditions, then it might imply significant consequences 
in predicting the response of walls and, perhaps, defining performance 
limits. For example, the ability to predict the maximum forces with such 
a high precision might lead the research community to adopt strength- 
based performance criteria for stone masonry walls rather than 
displacement-based ones. As the difference between the peak forces is 
subtle, there would not be a significant difference in the wall’s proba
bility of failure if a strength-based reliability assessment is conducted. 

Fig. 12. An example figure displaying the value of joint friction angle for each joint in each masonry course.  

Table 4 
Average maximum force and displacement obtained from correlated spatial S- 
DA.   

ρ = 0.65 ρ = 0.85 
CoVϕbond 

CoVϕbond 

0.25 0.15 0.05 0.25 0.15 0.05 

Fmax 

(kN) 
Mean 120.44 128.25 130.50 119.06 128.51  130.55 
CoV 0.07 0.04 0.02 0.07 0.04  0.02 

Dmax 

(mm) 
Mean 26.28 19.42 18.93 26.14 20.76  18.62 
CoV 0.28 0.36 0.30 0.31 0.35  0.30 

# of sliding 
failure 

64 15 3 66 20 4  
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Also, for strength-based performance criteria, predicting the wall 
strength with higher precision may lead to calibration of the capacity 
modification factors for linear procedures. 

The overall results of the analyses (1200 force–displacement curves 
in total) are presented in Fig. 13. The outcomes of this comprehensive 
analysis reveal the influence of the CoV of the friction angle on the 
macro response of the URM wall. It is worth noting that the obtained 
results are in line with the findings discussed by Li et al. [17] that the 

coefficient of variation of a modeling parameter, which has a direct ef
fect on the strength, changes the CoV of the predicted strength values, 
and the spatial stochastic analysis significantly reduces the variation in 
the predicted strength values. In addition, the variations in the ultimate 
displacements decrease in non-spatial (ρ = 1) and uncorrelated spatial 
(ρ = 0) cases. Fig. 14 displays the histograms of the maximum force 
obtained from the uncorrelated spatial and non-spatial analyses. It il
lustrates the differences between the CoVs as the histograms of the 

= 1, = 0.05, 0.15, and 0.25 (from left to right)

= 0.85, = 0.05, 0.15, and 0.25 (from left to right)

= 0.65, = 0.05, 0.15, and 0.25 (from left to right)

= 0.00, = 0.05, 0.15, and 0.25 (from left to right)

Fig. 13. Force-displacement graphs of all cases corresponding to various spatial correlation (ρ) and coefficient of variation of the joint friction angle (CoVϕbond ).  
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spatial analyses are thinner and less dispersed. Also, notice that the 
dispersion in non-spatial analyses diminishes as the CoVϕbond reduces, 
and becomes very close to the spatial case in Fig. 14c. 

6. Conclusions 

The present study investigates the effect of material uncertainty on 
the in-plane behavior and capacity of stone URM walls subjected to 
lateral loading, using a stochastic discontinuum analysis framework. 
The outcomes of this research can be summarized as follows. 

The results demonstrate the significant differences between the re
sults of spatial and non-spatial stochastic discontinuum analyses. They 
emphasize the significance of considering the spatial variation of pa
rameters in analyzing URM walls. It is observed that by considering unit- 
to-unit and joint-to-joint spatial variability of the masonry properties, 
the damage progression and failure mechanisms captured in the nu
merical models are closer to the experimental finding. Accordingly, the 
results suggest that considering spatial variability of modeling param
eters significantly decreases the variation in the force and displacement 
capacities and leads to a more reliable prediction of the behavior. Note 
that reducing the CoV of the lateral strength and ultimate displacement 
may also necessitate fewer simulations when the MCS is employed. 

In the presence of joint-to-joint correlation of modeling parameters, 
the results indicate: i) as the correlation increases, the results resemble 
the non-spatial analysis results, ii) if the CoV of friction angle is high, 
premature sliding failures can occur that may not be physically sensible. 
In other words, the simplified micro-modeling may suggest sliding 
failure, particularly true for the cases where 0.65 ≤ ρ ≤ 0.85 and 
CoVϕbond ≥ 0.10, which is less likely to be observed physically in reality. 
Therefore, considering the joint-to-joint correlation in the spatial anal
ysis may not be necessary. 

Except for one parameter (joint friction angle), no direct relationship 
between the wall’s lateral strength and the random parameters could be 
observed. A strong correlation between the joint friction angle and the 
wall’s in-plane strength is found. Moreover, the uncertainty in the joint 
friction angle value and its effect on the results are quantified. The in
fluence of the initial assumptions on the obtained results should be 
acknowledged. As the bond friction angle value and its coefficient of 
variation are not easy to obtain experimentally, one should be careful 
about the initial assumptions of distribution parameters, especially 
when conducting non-spatial stochastic analysis. Conversely, the influ
ence of CoVϕbond on the results is found minimal in spatial S-DA; hence, 
highlighting an appealing feature of spatial S-DA in case of lack of data. 

Even though the proposed stochastic discontinuum analysis meth
odology can reliably predict the strength of the masonry walls, its 
greater purposes are quantifying the uncertainty in strength and 
displacement prediction and determining the performance criteria for 
masonry walls. It requires various types of walls with different geome
try, boundary conditions, and input parameters to be considered. With 
the aid of improved stochastic models, performance criteria for various 
loading conditions can be determined, and systematic reliability ana
lyses can be performed so that the safety for masonry walls provided in 
the codes and standards is adequately verified. 

The current work will be extended to URM walls with different 
aspect ratios, construction types, and boundary conditions in the future 
study. Further analyses are also required to assess the out-of-plane 
behavior of URM walls, including the material uncertainties. 
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Fig. 15. 
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