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Abstract: With the rapid growth of urbanization and the proliferation of mobile phone usage, smart
city initiatives have gained momentum in leveraging data-driven insights to enhance urban planning
and resource allocation. This paper proposes a novel approach for predicting people’s concentration
and movements within a smart city environment using mobile phone data provided by telecommuni-
cation operators. By harnessing the vast amount of anonymized and aggregated mobile phone data,
we present a predictive framework that offers valuable insights into urban dynamics. The method-
ology involves collecting and processing location-based data obtained from telecommunication
operators. Using machine learning techniques, including clustering and spatiotemporal analysis, we
developed models to identify patterns in people’s movements and concentration across various city
regions. Our proposed approach considers factors such as time of day, day of the week, and special
events to capture the intricate dynamics of urban activities. The predictive models presented in this
paper demonstrate the ability to predict areas of high concentration of people, such as commercial
districts during peak hours, as well as the people flow during the time. These insights have significant
implications for urban planning, traffic management, and resource allocation. Our approach respects
user privacy by working with aggregated and anonymized data, ensuring compliance with privacy
regulations and ethical considerations. The proposed models were evaluated using real-world mobile
phone data collected from a smart city environment in Lisbon, Portugal. The experimental results
demonstrate the accuracy and effectiveness of our approach in predicting people’s movements and
concentration. This paper contributes to the growing field of smart city research by providing a
data-driven solution for enhancing urban planning and resource allocation strategies. As cities
continue to evolve, leveraging mobile phone data from telecommunication operators can lead to
more efficient and sustainable urban environments.

Keywords: smart city; predictive modeling; concentration prediction; urban analytics and planning;
data-driven decision making; neural networks

1. Introduction

In recent years, the concept of the smart city has gained considerable attention as
urbanization accelerates and technology permeates every facet of modern life. A smart city
employs data-driven strategies to enhance the quality of life for its residents by optimizing
urban infrastructure, services, and resources. One of the key challenges in realizing the
potential of smart cities lies in understanding and predicting the intricate dynamics of
human movement and concentration within urban environments. This paper explores a
pioneering approach to address this challenge, leveraging the ubiquity of mobile phones
and the wealth of data they generate.

The rapid proliferation of mobile phones has transformed them into indispensable
tools that accompany individuals in nearly every aspect of their daily routines. These
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devices generate vast amounts of data, including the users’ location, communication
patterns, and interactions. Therefore, the telecommunication operators responsible for
managing these networks possess an invaluable repository of aggregated and anonymized
data that holds the potential to revolutionize urban planning, transportation management,
and resource allocation.

Traditional methods of monitoring urban activity, such as static surveys or manual
counting, are labor intensive, time consuming, and often fail to capture the dynamic nature
of urban life. In contrast, mobile phone data offers a continuous and real-time stream of
information that provides insights into how people move, gather, and distribute across the
city landscape.

As a result, there is an increasing demand for efficient and low-cost urban studies,
and some models have been created to help forecast the evolution of the urban expansion
phenomena across time and place and to generate a more advanced understanding of
them [1]. Urban growth models have risen in popularity over the past few decades,
evolving from static monolithic models to autonomous dynamic models, despite the
difficulty of effectively forecasting urban expansion through simulation methods [2]. Town
planners and academics need to establish the driving elements that influence urban growth
expansion in order to construct such models and forecast the future structure of a city [3].
To do this, they must identify data containing spatial details about the study location that
could potentially have an impact. By identifying common patterns and quantifying their
impact on urban expansion, statistical methods and algorithms can be used to ascertain the
extent to which these factors have an impact.

This paper’s motivation stems from the realization that harnessing mobile phone data
from telecommunication operators can unlock a new dimension of understanding urban
dynamics. The prediction of people’s concentration and movements within a smart city
environment enables a more efficient allocation of resources, better traffic management,
improved emergency response, and enhanced urban design. Furthermore, such insights can
empower policymakers to make informed decisions that lead to sustainable development,
reduced congestion, and enhanced quality of life for city residents.

The ethical and privacy considerations inherent in working with personal data are
of paramount importance. Therefore, this paper emphasizes the use of aggregated and
anonymized data to respect user privacy and comply with the relevant regulations. Through
this approach, we aim to balance the potential benefits of data-driven urban insights with
the ethical imperative of protecting individual privacy.

In this context, our paper introduces a novel predictive framework that utilizes mo-
bile phone data from telecommunication operators to predict people’s movements and
concentration patterns in a smart city environment using neural networks (NNs), given
the massive amount of data available. Through bridging the gap between cutting-edge
technologies and urban planning, we contribute to the growing body of research that seeks
to create smarter, more responsive, and more sustainable urban environments.

The purpose of this research is to construct a people’s concentration model that takes
advantage of the potential of machine learning. As one of the main contributions of this
work, we offer a way for gathering, handling, organizing, and, finally, converting primary
open geographic data into tabular information suitable for machine learning algorithms and
techniques. We also offer a multi-layered neural network and detail the many parameters
used in the model in addition to the techniques and functions employed. In addition, we
offer a collection of Python scripts that can be used to carry out all the mentioned methods
and approaches of this study as an open-source GitHub repository.

Our predictive framework employs advanced machine learning techniques, including
clustering and spatiotemporal analysis, to unveil patterns in human movement and concen-
tration across diverse city regions. Rigorous evaluation with real-world mobile phone data
demonstrates the accuracy and effectiveness of our models in anticipating high-concentration
areas and predicting people’s movements across various times and circumstances.



Electronics 2024, 13, 96 3 of 20

The implications of our research are substantial. Urban planners, policymakers,
and city officials can leverage our approach’s insights to make informed decisions on
transportation infrastructure, emergency-response planning, crowd management, and
urban design. Through embracing predictive capabilities, cities can strive for greater
efficiency, sustainability, and livability.

Emphasizing individual privacy and ethical considerations, we underscore the use of
anonymized and aggregated data to ensure the benefits of our predictive models without
compromising privacy rights or violating regulatory norms.

While presenting a novel predictive framework using neural networks, our paper also
sets the stage for future research. Integration of additional data sources such as weather
patterns, social media activity, and public events could enhance prediction accuracy. Further
refinements to accommodate evolving urban dynamics and exploring real-time predictions
offer potential avenues for more actionable insights in smart city initiatives.

The predictive analytics process has been integrated into an interactive dashboard,
providing experts with the capability to navigate seamlessly through both temporal and
spatial dimensions. Utilizing the output predictions, we generated spatial–temporal heat
maps, enabling experts to assess and monitor people concentration effectively.

The subsequent sections of this paper are structured as follows: Section 2 reviews
the related literature concerning the prediction of people’s concentration and movements
within a smart city. In Section 3, we detail the methodology employed in this work, focusing
on the identification of mobility patterns through the CRISP-DM framework [4], used by
others in similar problems [5,6]. Section 4 is dedicated to the experimental results and the
evaluation of the prediction process. Moving forward, Section 5 provides insights into the
developed dashboard, encompassing both past data and the accomplished predictions.
Finally, Section 6 offers conclusions drawn from our findings and provides suggestions for
future research endeavors.

2. Related Work

The emergence of smart cities has introduced novel opportunities for leveraging data-
driven approaches to enhance urban planning, resource allocation, and overall quality of
life. With the proliferation of mobile phones, these devices have become an integral part of
modern urban living, generating a wealth of data that can provide valuable insights into
human behavior and movement patterns. This section provides a literature review of state-
of-the-art research that explores works related to the prediction of people’s concentration
and movements within a smart city environment using mobile phone data provided by
telecommunication operators.

In [7], Zhang et al. proposed a machine-learning approach to predict human mobility
patterns in a smart city. The authors leverage various data sources, including mobile
device data, social media data, and transportation data, to train predictive models. The
study demonstrates the effectiveness of the approach in accurately forecasting people’s
concentration and movements in different urban areas.

In [8], Ma et al. reviewed and synthesized existing studies on individual mobility
prediction in transport (data/problem/methodology/applications), identifying remaining
research needs and discussing methodological considerations and potential future transport
applications.

In [9], Li et al. proposed a method for predicting urban human mobility patterns using
large-scale taxi traces. They leverage the wealth of data collected from taxis, including GPS
traces, to analyze and understand human mobility in urban areas. The study focuses on the
prediction of future human movement patterns based on historical taxi trajectory data. The
authors employ machine learning and data mining techniques to process and analyze the
taxi trace data, developing prediction models that consider various factors, such as time
of day, day of the week, and geographical features. Through training these models with
historical taxi traces, they aim to predict the future movement patterns of individuals within
the city. Furthermore, the paper discusses the applications of the proposed prediction model
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in various urban planning and transportation-management scenarios. The ability to predict
human mobility patterns can aid in optimizing transportation systems, urban infrastructure
planning, and resource allocation. The authors highlight the potential benefits of using large-
scale taxi trace data for understanding and predicting urban human mobility and its impact
on the city’s overall functionality. Overall, the paper presents a methodological approach
to predict urban human mobility using large-scale taxi traces and highlights the potential
applications of such predictions in urban planning and transportation management.

Zhou et al. [10] presented a deep-learning-based approach for predicting human
mobility patterns in smart cities. The authors propose a long short-term memory (LSTM)
network that takes into account spatiotemporal features extracted from mobile device data
and transportation data. The experimental results demonstrate the superior performance
of the LSTM network machine learning algorithms in accurately forecasting people’s
concentration and movements.

Yao et al. [11] focused on predicting urban crowd density using mobile sensing data.
The authors propose a prediction model that combines mobile device data, such as cellular
network signals and Wi-Fi data, with location information. The model employs a regression-
based approach to forecast crowd density in different areas of a smart city. The experimental
results show promising accuracy in predicting crowd concentration.

The utilization of mobile phone data for urban analysis has gained traction in recent
years. Researchers have demonstrated the potential of call detail records (CDRs) and
location data to uncover valuable insights into population movement, social interactions,
and transportation patterns. In [12], Phithakkitnukoon et al. used mobile phone data to
create dynamic mobility maps, revealing spatiotemporal patterns in urban movement. This
foundational work established the feasibility of using mobile phone data for urban analysis.

The study of human mobility patterns has also attracted considerable attention due to
its implications for urban planning and transportation management. In [13], Toole et al.
analyzed CDRs to identify regular mobility patterns. They found that, despite the diversity
of individual movements, collective patterns exhibit high predictability. Understanding
these patterns is crucial for predicting areas of high concentration and movement within a
smart city.

Predictive modeling techniques have been applied to mobile phone data to anticipate
urban dynamics. In [14], Wang et al. introduced a model that leverages historical data to
predict the next location of individuals, contributing to the understanding of mobility pat-
terns. In [15], Kothari et al. proposed a trajectory-based approach that captures individual
movement history to predict future trajectories. These studies demonstrate the potential of
predictive models in forecasting people’s movements within urban environments.

Smart city initiatives focus on enhancing urban planning through technology and
data-driven strategies. In [16], Giffinger et al. provided a framework for defining smart
cities, emphasizing the importance of innovation, technology, and sustainability. Predicting
people’s concentration and movement aligns with the smart city vision through providing
actionable insights for optimized land use, transportation planning, and resource allocation.

Utilizing personal mobile phone data raises concerns about individual privacy. Re-
searchers have addressed these concerns through advocating for anonymization techniques
and aggregate-level analysis. In [17], De Montjoye et al. demonstrated that even when
anonymized, human mobility data can still be re-identified, highlighting the need for
careful data handling to ensure privacy protection.

The integration of mobile phone data into practical urban applications has shown
promising results. In [18], Hong et al. utilized mobile phone data to estimate traffic
congestion, providing real-time traffic information for urban commuters, whereas in [19],
Calabrese et al. introduced an approach to predict urban crowd dynamics, aiding in the
planning of public events and large gatherings. The works related to urban mobility are
resumed in Table 1.
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Table 1. Summary of the related work implying urban mobility and urban information.

Ref. Authors Main Topics Methodology Key Findings and Applications

[7] Zhang et al. Human Mobility Prediction
Machine-learning approach using mobile device
data, social media data, and transportation data

for human mobility prediction in smart cities

Effective forecasting of people’s concentration and
movements in urban areas, demonstrating the utility

of diverse data sources in predictive models.

[8] Ma et al. Mobility Prediction Review
Review and synthesis of studies on individual

mobility prediction in transport, addressing data,
problems, methodology, and applications

Identified research gaps, discussed methodological
considerations, and explored potential future transport

applications in individual mobility prediction.

[9] Li et al. Urban Mobility Patterns
Prediction of urban human mobility patterns

using large-scale taxi traces with machine
learning and data mining techniques

Focus on predicting future human movement patterns
based on historical taxi trajectory data, highlighting

applications in urban planning and
transportation management.

[10] Zhou et al. Deep Learning for Mobility
Deep learning-based approach using LSTM

network for predicting human mobility patterns
in smart cities

Demonstrated superior performance of LSTM network
in accurately forecasting people’s concentration and

movements, leveraging spatiotemporal features from
mobile device and transportation data.

[11] Yao et al. Urban Crowd Density Prediction of urban crowd density using mobile
sensing data and regression-based approach

Proposed a model combining mobile device data and
location information for accurate forecasting of crowd

density in smart cities.

[12] Phithakkitnukoon et al. Mobile Phone Data Analysis
Utilized mobile phone data to create dynamic

mobility maps, revealing spatiotemporal patterns
in urban movement

Demonstrated the feasibility of using call detail records
(CDRs) and location data for urban analysis, providing

valuable insights into population movement, social
interactions, and transportation patterns.

[13] Toole et al. Regular Mobility Patterns Analyzed CDRs to identify regular mobility
patterns in smart cities

Despite individual movement diversity, identified high
predictability in collective patterns, crucial for

predicting areas of high concentration and movement
within a smart city.

[14] Wang et al. Next Location Prediction Introduced a model leveraging historical mobile
phone data to predict individuals’ next locations

Contributed to understanding mobility patterns within
urban environments, highlighting the potential of

predictive models in forecasting people’s movements.
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Table 1. Cont.

Ref. Authors Main Topics Methodology Key Findings and Applications

[15] Kothari et al. Trajectory-Based Prediction
Proposed a trajectory-based approach capturing

individual movement history to predict
future trajectories

Demonstrated the potential of predictive models in
anticipating people’s movements within

urban environments.

[16] Giffinger et al. Smart Cities Framework
Provided a framework for defining smart cities,

emphasizing innovation, technology,
and sustainability

Emphasized the alignment of predicting people’s
concentration and movements with the smart city

vision, providing actionable insights for optimized
land use, transportation planning, and

resource allocation.

[17] De Montjoye et al. Privacy in Mobile Data
Addressed privacy concerns in utilizing mobile

phone data, advocated for anonymization
techniques and aggregate-level analysis

Demonstrated that even when anonymized, human
mobility data can still be re-identified, highlighting the

need for careful data handling to ensure
privacy protection.

[18] Hong et al. Traffic Congestion
Utilized mobile phone data to estimate traffic

congestion, providing real-time traffic
information for urban commuters

Contributed to practical urban applications, offering
real-time traffic information for commuters using

mobile phone data.

[19] Calabrese et al. Urban Crowd Dynamics
Introduced an approach to predict urban crowd

dynamics for planning public events and
large gatherings

Demonstrated the integration of mobile phone data
into urban applications, aiding in the planning of

public events and management of large gatherings.

[20] Calabrese et al. Urban Growth Effects
Described negative environmental effects of

rapid urbanization and the need for responsible
land use planning

Highlighted the environmental and socioeconomic
effects of urban expansion, emphasizing the

importance of responsible land use planning.

[21] Nikitas et al. Land Use Projection Models

Discussed models for projecting changes in land
use, including cellular automata (CA),

agent-based models (ABM), and machine
learning models

Introduced spatiotemporal models for projecting
changes in land use, categorizing models into CA,
ABM, and machine learning, with a focus on their

application in examining the effects of urban
land growth.
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In summary, this literature review highlights the growing body of research focused
on the potential of using mobile phone data from telecommunication operators to predict
people’s concentration and movements within a smart city. The convergence of urban
planning, data science, and technology offers opportunities to create more efficient and
sustainable urban environments. However, ethical considerations and privacy safeguards
must be a central focus when working with personal data to ensure that the benefits
of predictive models align with responsible-data-usage practices. This paper aims to
contribute to this evolving field by presenting a predictive framework that addresses these
challenges and advances the understanding of urban dynamics.

A method called land-use planning makes sure that those who live there use the
land responsibly. However, significant growth brought on by rapid urbanization causes
negative environmental effects such as air pollution, overuse of natural resources, and
traffic congestion [20]. The negative socioeconomic effects of urban expansion can include
poverty, unemployment, and restricted access to social services [21]. In order to enable
town planners to examine all of these effects using fictitious scenarios of urban land growth,
a number of models for projecting changes in land use have been developed [22].

These models, which can be categorized as cellular automata (CA), agent-based models
(ABM), and machine learning models, may be referred to as spatiotemporal models [1].
Nevertheless, the idea of machine learning encompasses a variety of methodologies and
sub-techniques, including logistic regression (LR), artificial neural networks (ANN), linear
regression (LN), and decision trees (DT). Because of its simplicity, versatility, excellent
performance, and in particular due to its capacity to capture the spatial and temporal
elements of urban activities, cellular automata may be regarded as the most well-studied
instance. Simply put, CA is a collection of ordinary cells, each of which is constantly
holding a value from the set of permitted states.

The majority of the time, this is a binary value (build/not-build), and its state varies
in response to the states of the cells around it. Every cell in the dataset experiences the
application of a set of transition rules at each cycle, generating the state value for the
following cycle. Several researchers [23–25] have employed CAs to anticipate urban growth
ranging from tiny to large cities in different geographic locations of the world.

ABM, a dynamic computational model for simulating the activities and behaviors of
autonomous agents, is similar to the CA model. According to a set of predetermined rules,
agents are able to independently evaluate their current situation and take action [26]. As a
result, ABMs may be thought of as more potent models than CA as agents are allowed to
move around and interact with one another and with their surroundings throughout time.
Furthermore, because they have the capacity to store a variety of diverse driving forces
for social and environmental phenomena, agents may be extremely complex. Numerous
urban studies have also utilized ABMs [27,28].

Due to its strength in terms of performance and accuracy while working with enor-
mous datasets, the machine learning model has become one of the modern methodologies
that have gained prominence over the previous ten years [29]. Up to now, spatial modelers
have been able to create these models by either employing model platforms like GAMA
(GIS Agent-based Modelling Architecture) or through creating model plugins for for-profit
and free desktop GIS (Geographic Information System) apps [30]. Today, spatial modelers
may create models with higher performance and accuracy with just a few lines of code
and libraries like Keras [31] or Gdal [32]. Additionally, there are many different statistical
techniques and algorithms available to modelers. However, given that the use of machine
learning in urban studies is still in its infancy, it is anticipated that it will develop further
and, as a result, enhance the accuracy and performance of urban growth models.

3. CRISP-DM Implementation towards Identifying Mobility Patterns
3.1. Business Understanding

Besides forecasting the number of people in a given area at a given period with
reasonable accuracy, it is desirable to identify from which neighboring areas people tend to
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enter and through which ones they tend to exit. This information allows the city council
to make more informed decisions ahead of time and intervene in situations where it is
relevant to know more than just the number of people in a particular area. One way to
achieve this is to identify the mobility patterns in the areas of interest (nightlife areas in
the context of this study), which allows for an understanding of how people move in a
geographical area.

3.2. Data Understanding

The primary dataset utilized in this project was initially compiled by the telecommu-
nications company in Lisbon and was subsequently provided by the Lisbon City Council.
This dataset encompasses information related to the mobile phone numbers entering, re-
maining, and exiting 3743 grid cells measuring 200 by 200 m in Lisbon, spanning from
15 September 2021, to 31 December 2022. Comprising 24 variables, the dataset underwent
further processing by the Lisbon City Council to accurately reflect the count of mobile
phones across all telecommunications companies within each grid.

3.3. Data Preparation

The pre-processing phase was expedited due to the well-organized nature of the
provided data. During the analysis to identify missing, duplicate, and misformatted
data, it was observed that dates without records were notably absent across all variables.
Additionally, variables D1 and E6 contained NaN values and were deemed irrelevant to
our project objectives. Consequently, these variables were excluded, resulting in a pristine
dataset devoid of any NaN values.

However, it is noteworthy that, during practical considerations, dates without records
were identified but not incorporated into the dataset, revealing underlying data discrepan-
cies that were subsequently rectified in later stages of our analysis.

The need to construct an uninterrupted time series prompted a thorough investigation
into potential flaws within the provided dataset. The analysis unfolded in two stages: an
initial phase identifying issues in all grids persisting over 24 h and a subsequent, more
detailed, examination pinpointing flaws in 5 min intervals for each grid individually.

During the first stage, conducted for October 2021, several problems were uncov-
ered, including misformatted and duplicated data. A complete data breakdown between
February and March was identified, with remaining months showing varying flaws that
necessitated further scrutiny.

The second stage of analysis, spanning January to December 2022, unveiled all flaws,
distinguishing between total and partial disruptions. Total flaws indicated failures across
all grids, with one notable interruption occurring from 8 February 2022, at 12:05 a.m., to
18 March 2022, at 10:40 a.m., lasting for 38 days, 10 h, and 35 min—a likely consequence of
the Vodafone cyberattack. Given the substantial disruptions, the analysis focused on the
second part of the data, spanning from 18 March 2022, to 31 December 2022.

This phase also highlighted additional significant failures, such as the two-day lapses
from 19 to 21 November 2021, and 28 to 30 June 2022. Noteworthy single-day failures
occurred on 30 October 2022 (1 day, 7 h, and 45 min), and 19 November 2022 (1 day, 10 h,
and 15 min).

Detailed records of partial data failures, including duration and the number of af-
fected grids on respective dates, were compiled. Notable instances on 18–19 January
2022 (25 partial failures), 29–30 September 2022 (17 combined), and 10 November 2022
(20 failures), highlighted specific dates with multiple failures.

All the information was compiled into 3743 square grids with 200 × 200 m. The
information is gathered at intervals of 5 min. Due to privacy restrictions, if a particular grid
has fewer than 10 users during a 5 min period, this information is omitted. After being
collected, this information is made available on the dashboard platform for around 45 min.
This means that the time between data collection and availability can only be delayed by
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a maximum of one hour. It is crucial to note, though, that for the purposes of the current
study, we used just a snapshot of the data instead of utilizing the online data stream.

Another dataset that provides information about each of the 3743 grids was also
used in addition to the main dataset that comprises the data provided by the city council
through the agreement reached with a mobile operator. This additional dataset includes
the coordinates of each grid’s centroid, the parish or parishes in which the grid is inserted,
its name, geometry and WKT (Well-Known Text), which enable us to geo-reference the data
from the main dataset. With this knowledge, the events may be added to the space using
the Grid_ID key, which then launches our analyses.

Table 2 provides a list of all variables (features) contained in the main dataset as well
as a description of the respective data.

Table 2. Mobile operator dataset variables.

ID Variable Name Variable Description Variable Type

0 Grid_ID Number of the grid. There are 3743 squares of 200 by 200 m to
cover the metropolitan area of Lisbon Nominal

1 Datetime Time and date of occurrence Datetime

2 C1 Number of distinct terminals counted on each grid cell during
the 5 min period, measured every 5 min Metric

3 C2 Number of distinct terminals in roaming counted on each grid
cell during the 5 min period, measured every 5 min Metric

4 C3 Number of distinct terminals that remained in the grid cell
counted at the end of each 5 min period Metric

5 C4 Number of distinct terminals in roaming that remained in the
grid cell counted at the end of each 5 min period Metric

6 C5 Number of distinct terminals entering the grid Metric

7 C6

Number of terminals leaving the grid. These are the distinct
terminals that left the grid. The calculation is made using the

previous 5 min interval as reference, also considering the
crossings of the grid in the same interval

Metric

8 C7 Number of entries of distinct terminals, in roaming, in the grid Metric

9 C8 Number of exits of distinct terminals, in roaming, in the grid Metric

10 C9 Total number of distinct terminals with active data connection
in the grid cell. Measurement every 5 min Metric

11 C10 Total number of distinct terminals, in roaming, with active data
connection in the grid cell. Measurement every 5 min Metric

12 C11 Number of voice calls originating from the grid cell Metric

13 C12 Entering the city: Number of devices that for 5 min enter the 11
street sections considered for analysis Metric

14 C13 Entering the city: Number of devices that for 5 min enter the 11
street sections considered for analysis Metric

15 D1 Top-10 origin countries of the devices in roaming Metric

16 E1 Number of voice calls that ended in the grid within the 5 min Metric

17 E2 Average download speed per grid within the 5 min Metric

18 E3 Average load speed per grid within the 5 min Metric

19 E4 Peak download speed on the grid within the 5 min Metric
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Table 2. Cont.

ID Variable Name Variable Description Variable Type

20 E5 Peak upload speed on the grid within the 5 min Metric

21 E6 Top 10 apps used on the grid within the 5 min Metric

22 E7 Lowest permanence period on the grid within the 5 min Metric

23 E8 Average permanence on the grid within the 5 min Metric

24 E9 Maximum permanence period on the grid within the 5 min Metric

25 E10 Number of devices sharing the Internet connection in the grid
within the 5 min Metric

After gathering the necessary information for our study, we carefully reviewed it and
analyzed each variable to determine its potential and how we could improve the added
value of this study. As said before, our main goal is to comprehend how tourists move
around the city. In order to do this, we used the C1, C2, C3, C4, and C5 features from
Table 1, regarding people’s movement in Lisbon (both roaming and non-roaming), which
was based on the data generated by mobile phones.

3.4. Statistical Models

Frias-Martinez et al. [33] estimated the daily mobility patterns in a city based on
data collected from mobile phones. Their aim was similar to the one in this section, but
the difference being their focus on daily patterns in the city. However, the researchers
used mobile phone records, where they had the geo-coordinates from the callers and the
receivers, and their methodology consisted in following each individual mobile phone.
The results were positive, but given that the dataset provided by the city council does not
allow the tracking of each individual terminal for privacy reasons, it was not possible to
replicate such a method in this paper. Other similar works, such as Li et al. [6], also used
data collected from mobile phones where each user was individually identified.

A possible approach to this identification is directly related to the models in the
STARMA (Seasonal, Trend, AutoRegressive, Moving Average) family. The STARMA family
of models is an extension of the traditional ARMA (AutoRegressive Moving Average) time
series models. These models are used for modeling and forecasting time series data that
exhibit seasonal patterns, trends, and autoregressive and moving average components.
STARMA models incorporate both autoregressive and moving average terms, as well as
seasonal and trend components, to capture complex patterns in time series data.

For simplicity, moving average and autoregressive components are frequently abbre-
viated as “STARMA”. To better understand its underlying patterns and produce more
precise projections, this technique separates and analyzes time series data into these four
essential parts.

1. The seasonal component, such as daily, monthly, or yearly patterns, is a regular,
recurring pattern or fluctuation in the time series data that occurs at intervals. It aids
in the identification of seasonality, which can be crucial in a variety of applications
like retail sales forecasting, where seasonal spikes may frequently occur.

2. Long-term movement or direction from the time series data is captured by the trend
component, which aids in determining if the data is typically rising, falling, or remain-
ing stable over time. It is for understanding broad growth or fall trends in data, such
as stock prices or population statistics.

3. The autoregressive component (AR) simulates the relationship between the time
series’ present value and its previous values. It quantifies the relationship between the
current data point and its own lag values, being very useful for identifying temporary
dependencies and data.
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4. The moving average (MA) component considers the data’s short-term volatility or
noise by accounting for prior forecast errors. By removing random fluctuations from
the time series, it makes it simpler to spot underlying patterns.

Analysts and researchers can better understand a time series’ behavior through break-
ing it down into these four parts. They can then use this information to analyze the effects
of seasonality and patterns on the data, reduce noise, and generate more precise forecasts
and predictions.

Through the creation of a precise spatial weights matrix that effectively captures the
interconnections between neighboring areas, we can discern the mobility patterns within
the nightlife zones. A substantial weight assigned to a particular neighbor signifies a
significant flow of people between these areas. Accordingly, we modified the STARMA
model and explored various approaches for constructing an accurate spatial weights matrix,
which encompassed:

1. Comparing the number of exits with the neighbors’ number of entries.
2. Comparing the time series of an area and its neighbors.

All these approaches have the same limitation: it is impossible to accurately determine
where people tend to go when they leave an area. Let us consider Figure 1, where a
potential issue is illustrated.
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If the method of comparing the number of entries and exits was chosen, one would
look at the example in Figure 1 and conclude that the people who left this specific area
tended to go to neighbor A. In this specific instance, the observed behavior did not conform
to the anticipated pattern. Those departing the area chose to visit every neighboring location
except for A, and neighboring entries predominantly originated from other sources. If we
had assumed that the high volume of exits from Figure 1 held significance, it would have
led to erroneous conclusions. Consequently, the project will not yield insights into the
mobility patterns within the nightlife areas.

However, we consider the Wasserstein distance [34] to estimate these patterns in future
work. Balzotti et al. [29] show that this approach can produce positive results.

Mobile operators continuously gather information about how customers and users
utilize the service, whether for technical, monetary, or even legal reasons. In this regard,
the network must constantly gather various data and metrics regardless of whether the
customer is using 2G, 3G, 4G, or 5G, in order, for example, to allow the continuation
of a phone call or a mobile data session. It should be highlighted that when we refer
to “data from a mobile operator”, we do not mean the mobile data service, but rather
detailed information about all the signaling exchanged between the user’s mobile device
and the network providing the service. Although an operator may have multiple networks,
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depending on the technology used, there is always a need for a base station that is in
a specific location and serves customers in a specific geographic area. This base station
interacts with the mobile phone while also interacting with the network core, and through
this interface, it gathers events like a voice call, an Internet session or a written message, in
addition to event data, such as a network attach or detach, handover, location updates, etc.
The analysis and the dashboard created for this paper were based on the signal exchanged
in the Lisbon city through a 12-month period considering roamers and national users.

It was also possible to correlate each event with a specific location using a metadata
file, which was used to supplement and augment the data set provided by the mobile
operator. The information provided by the Lisbon city council was generated using data
from each user’s mobile phone device and cellular network as part of a contract with a
mobile operator. For legal and privacy considerations, the data in the dataset has been
appropriately anonymized. This makes it impossible to perform any type of precise analysis
on a specific user. Analysis can only be conducted using the aggregated data, and there is
not any key in the data linking a specific person to an event.

3.5. Neural Networks

Regarding the machine learning methods, since we have big data (each month is
around 2 GB), neural networks were applied. Within this type, the LSTM networks are
adequate because we need to handle time and space. At an initial phase, we compared time
series and random forest, but LSTM results were superior. Due to its ability to handle ample
time lags [35], it is a very popular deep-learning-based method for time series forecasting.

In this project, Bidirectional LSTM (BiLSTM), a variation of LSTM was used to make
the forecasts. This particular kind of LSTM distinguishes itself from the others because of
its ability to have the input layer fed both forwards and backwards during processing [36].
With a series of experiments, it was determined that BiLSTM gave better results than
conventional LSTM in the context of this particular dataset.

The dependent variable in this model is the number of different terminals in the area
(C1). The independent variables, besides the number of different terminals in the past, are
the difference between the number of entries and exits, and a dummy variable that has a
value of 1 when the period of the observation corresponds to a period of known nightlife
(from 11 p.m. on Friday to 5 a.m. on Saturday, and from 11 p.m. on Saturday to 5 p.m. of
Sunday), and 0 otherwise.

The model used the past four occurrences to make the forecasts (equivalent to 20 min).
The activation function was ReLU (Rectified Linear Unit), and the number of epochs (passes
through the training dataset) was limited to 80. Additionally, if no improvements were
detected after 20 epochs, the model was instructed to stop its fitting stage.

Given that LSTM only considers the temporal component of the dataset, each one of
the 161 identified nightlife areas was fitted with its own network. Their time series began
on April 1st and ended on December 31st, and were divided into three sets: training set
(75%), validation set (15%), and test set (10%). Due to the data’s variety, the forecasts quality
was mixed.

When fitting the model, TensorFlow used the root mean squared error (RMSE) of the
validation set to assess if a model was better than the past ones to avoid overfitting.

4. Experimental Results

During the model fitting process, TensorFlow employed the Root Mean Squared Error
(RMSE) of the validation set as a criterion for assessing model performance, ensuring
improvements over previous iterations to guard against overfitting. This evaluation metric
was further extended to the training and test sets, with the distribution of values for the
latter visualized in Figure 2 (left image). However, due to the considerable variability in
maximum and mean values across distinct areas, the RMSE metric was deemed unsuitable
for making meaningful comparisons. Consequently, an additional metric, the Mean Ab-
solute Percentage Error (MAPE), was introduced and evaluated, as illustrated in Figure 2
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(right image). This strategic inclusion of MAPE enhances the robustness of our assessments,
providing a more nuanced perspective on forecast accuracy that accounts for the diverse
characteristics of each area. The majority of forecasts exhibited a commendable accuracy
level, with the Mean Absolute Percentage Error (MAPE) typically below 20, signifying reli-
able predictions. Nevertheless, it is imperative to scrutinize the LSTM’s ability to effectively
anticipate notable spikes in the number of terminals. This critical assessment is exemplified
in Figure 3 (left image), showcasing the network’s performance in an area characterized by
a high MAPE of 68.2%, and in Figure 3 (right image), illustrating the network’s efficiency
in an area with a low MAPE of 10.3%. These contrasting scenarios offer insights into the
model’s performance across varying levels of prediction challenges, emphasizing the need
for a nuanced evaluation beyond average accuracy metrics.
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Figure 3. Performance of the network Grid 257 on left image and Grid 519 on right image.

Figure 4 serves as a representation of the outcomes observed when altering the de-
pendent variable from the total quantity of terminals to the difference in the number of
terminals between two consecutive periods. This adjustment in forecasting methodology
was aimed at evaluating the networks’ capability to accurately identify spikes without
being solely reliant on the absolute values of past periods. Encouragingly, the results were
affirmative, indicating that the neural network effectively discerns spikes in the data even
when considering relative changes between consecutive periods.
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As previously highlighted, LSTM solely incorporates the temporal aspect of the dataset;
however, it has been established that neighboring values also exert influence. In an effort to
integrate the spatial dimension into the forecasts and enhance their accuracy, we augmented
each data point with the values from neighboring areas. Despite this attempt, the obtained
results fell short of expectations, encountering a pronounced issue of overfitting, leading to
a notable deterioration in forecast accuracy.

In future research endeavors, it is imperative to explore advanced deep learning
methodologies that seamlessly integrate both spatial and temporal components within a
singular neural network. Approaches such as adapting the LSTM network to incorporate
spatial information through Graph Convolution [37] merit investigation. This innovative
direction holds promise for overcoming the challenges faced in our attempt to harmo-
nize temporal and spatial considerations, potentially yielding more robust and accurate
forecasting models.

5. People’s Concentration Dashboard

Recognizing the critical importance of real-time predictions for city management, the
outcomes of this study have been translated into a dashboard. This dashboard provides a
platform for local experts to monitor and assess people concentration over time, facilitating
informed decision making and responsive city management.

The identification of Lisbon’s nightlife areas, along with the method to make forecasts,
allows for the creation of the dashboard presented in this section, intended to help the
Lisbon city council in its decision-making process. Given the availability of LSTM networks
developed in Python, we decided to use this programming language to construct the
dashboard. The Dash framework (https://dash.plotly.com (accessed on 1 December 2023))
was used to aid the process.

https://dash.plotly.com
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The homepage (Figure 5) allows for the visualization of a heatmap showing the density
of people in the nightlife areas, updating itself every 5 min. The movement patterns of
people are displayed using a color spectrum ranging from green, representing areas with a
low number of people, to yellow and red, representing moderate and high concentrations
of individuals, respectively.
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Figure 5. People’s concentration dashboard.

The dashboard illustrates people concentration in both temporal and spatial dimen-
sions, offering city council experts the ability to navigate seamlessly through time and
space for a comprehensive understanding of city demographics. Positioned above the
heatmap are three distinct sections, arranged from left to right: the count of problematic
situations (Situações Problemáticas) identified by the algorithm as abnormal; the instances
characterized by moderate people traffic (Tráfego Moderado); and the occurrences featuring
high people traffic (Tráfego Intenso).

Regarding the forecasts, the dashboard imports the LSTM networks developed with
TensorFlow, loads them, and offers near-real-time predictions of the number of people in a
given area for the next 5 min, with the potential to extend the forecasts to longer periods.

The dashboard contains a map of Lisbon’s nightlife areas, and the user may select the
desired area to see the forecast of the number of people and past activity (see Figure 6). The
dashboard also offers summaries and a detailed analysis of the movements in the last 12 or
24 h, as well as in the past 7 or 14 days.

Currently, the dashboard is installed in an ISCTE-IUL web server (see simulation at
https://t.ly/jIUqU (accessed on 1 December 2023). However, it has the potential to be
integrated into the city council’s server and, with a live connection to the data, to offer
near-real-time forecasts and analysis.

The enhanced dashboard offers intricate predictions, complete with dynamic visu-
alizations showcasing the evolution of people’s concentration over both time and space
(refer to examples in Figures 7 and 8). It furnishes users with pertinent insights crucial for

https://t.ly/jIUqU
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effective city management. Serving as a vital tool, it empowers authorities to anticipate
future concentrations through leveraging historical event data.
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These prediction animations can be valuable tools for urban planners, policymakers,
and researchers to gain insights into various aspects of city life and management, through
the following benefits:

• Traffic Management: Understanding the ebb and flow fluctuation patterns of people
throughout the day can aid in optimizing traffic management and public transportation
schedules. It can help identify peak hours, congestion-prone areas, and the need for
infrastructure improvements.

• Resource Allocation: By tracking population concentration, city officials can allocate
resources more efficiently. This includes emergency services, healthcare facilities,
educational institutions, and more.

• Urban Planning: Planners can use these prediction animations to assess the demand
for housing, commercial spaces, and recreational areas in different parts of the city.
This can inform zoning decisions and urban development strategies.

• Public Health: Monitoring population density can be crucial during disease outbreaks
or pandemics. It helps in identifying areas with high infection risks and implementing
targeted measures like testing centers and vaccination clinics.

• Safety and Security: Law enforcement agencies can use such data to understand where
and when crowds gather, allowing them to deploy personnel more effectively during
events or emergencies.

• Environmental Impact: Population density data can be used to study the environmen-
tal impact of urbanization, such as energy consumption and pollution levels.

• Economic Analysis: Understanding when and where people are concentrated can
inform businesses about peak hours for sales and service demands.

The implications of our research are significant. Urban planners, policymakers, and
city officials can utilize the insights provided using our approach to make informed deci-
sions regarding transportation infrastructure, emergency-response planning, crowd man-
agement, and urban design. By embracing these predictive capabilities, cities can strive for
greater efficiency, sustainability, and livability.
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Importantly, our work underscores the importance of respecting individual privacy
and adhering to ethical considerations. We emphasize the use of anonymized and ag-
gregated data to ensure that the benefits of our predictive models are achieved without
compromising user privacy rights or violating regulatory norms.

While our paper contributes a novel predictive framework using neural networks, it
also opens avenues for future research. Exploring the integration of additional data sources,
such as weather patterns, social media activity, and public events, could further enhance
the accuracy of predictions. Additionally, refining the models to accommodate evolving
urban dynamics and exploring the potential of real-time predictions could yield even more
actionable insights for smart city initiatives.

Our predictive framework employs machine learning techniques, including clustering
and spatiotemporal analysis, to uncover patterns in human movement and concentration
across various city regions. Through rigorous evaluation using real-world mobile phone
data, we have shown the accuracy and effectiveness of our models in anticipating areas
of high concentration and predicting people’s movements during different times and
circumstances.

Expert feedback indicates consistently high precision, particularly with a one-hour
time window.

6. Conclusions

In this paper, we have presented a neural network approach to predicting people’s
concentration and movements within a smart city environment using mobile phone data
provided by telecommunication operators. This approach improves results through ad-
dressing the critical challenge of understanding the dynamic urban dynamics that influence
resource allocation, urban planning, and overall quality of life. By leveraging the ubiquity
of mobile phones and harnessing the power of aggregated and anonymized data, we have
demonstrated the potential of data-driven insights to revolutionize the field of smart cities.

In conclusion, this paper represents a substantial step forward in the realm of smart
cities by demonstrating the viability of predicting people’s concentration and movements
using mobile phone data from telecommunication operators. As cities continue to grow
and evolve, the data-driven insights presented here have the potential to shape urban
planning strategies, optimize resource allocation, and ultimately create smarter and more
sustainable urban environments for current and future generations.
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