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Physiological models of gas exchange in decision support of 

mechanical ventilation – prospective evaluation in an intensive care 

unit 

Abstract of thesis defended 27 November 2009 

Introduction: Management of mechanical ventilation is a complex process of finding 

the right balance between conflicting goals, where clinicians must make timely 

decisions in unfavorable circumstances. Minimal models of pulmonary gas exchange 

may be used at the bedside in the intensive care unit to help in this process providing a 

deeper understanding of the patient‟s gas exchange status. The aim of this PhD project 

was to build and evaluate minimal models of gas exchange, and prospectively 

evaluate a minimal model-based decision support system. 

Methods: Three retrospective studies were performed using data from various patient 

types including intensive care patients: comparing a hypoxemia index and model of 

O2 gas exchange available in clinical practice with a two parameter minimal model; 

evaluating a decision support system for suggestions of inspired O2 fraction; and 

investigating three minimal models of varying complexity for their ability to describe 

gas exchange of both O2 and CO2. A prospective study was performed in an intensive 

care unit to compare decision support system suggestions of inspired O2 and resulting 

oxygenation with those selected by attending clinicians. 

Results: The often used hypoxemia index, PaO2/FiO2 ratio, varies significantly with 

changes in inspired O2, a common change in therapy. The clinically available shunt 

only model of gas exchange can not accurately describe this variation, a two 

parameter minimal model describing shunt and ventilation-perfusion mismatch can. 

The decision support system provides appropriate suggestions of inspired O2 fraction 

retrospectively, and prospectively. A three parameter minimal modeling complexity is 

necessary for an accurate description of gas exchange of both O2 and CO2. 

Conclusions: A minimal model-based decision support system can be used to provide 

a deeper understanding of the individual patient‟s gas exchange status, and to provide 

appropriate suggestions on inspired O2 fraction freeing the focus of clinicians for 

more challenging therapies. 
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Abbreviations and symbols 

In the thesis, most measurements and model variables are written as a main symbol 

followed by a modifier and substance, e.g. PaCO2 for partial pressure of carbon 

dioxide in arterial blood, or with no specific substance, e.g. AV  for alveolar 

ventilation. Hemoglobins are not defined for specific blood components and are 

specified without a modifier, e.g. CHb for Hemoglobin concentration in blood.   

 

Main symbols 

F Gas fraction  Q Cardiac output 

P Gas pressure  V  Ventilation 

C Concentration  V Volume  

S Saturation    

 

Modifiers 

A Alveolar Dana Anatomical dead space 

i Inspired a Arterial 

et End-tidal mv Mixed venous 

c Capillary p Pulse oximetry 

t Tidal m Model predicted 

 

Substance 

O2 Oxygen CO2 Carbon dioxide 

Hb Hemoglobin MetHb Met-hemoglobin 

COHb Carboxy-hemoglobin   

 

Other abbreviations and symbols 

ΔPO2 

 

O2 pressure drop from alveolar 

air to lung-capillary blood 

A/QV  

 

Alveolar ventilation/perfusion 

ratio 

DSS Decision support system DPG 2,3-diphosphoglycerate 

PEEP Positive end-expiratory pressure VILI Ventilator Induced Lung Injury 

ICU 

f 

Intensive Care Unit 

Respiratory frequency 

MIGET Multiple inert gas elimination 

technique 
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… modelling is assuming a more prominent role in mainstream 

anaesthesia and critical care research, becoming an accepted 

methodology and an ever-more useful part of the research 

process. 

... Modelling runs through all of our endeavours, and we stand 

to benefit hugely by becoming acquainted with this powerful 

device. 

J. G. Hardman and J. J. Ross 

Editorial in British Journal of Anaesthesia 2006 

Vol 97, pages 589-92 
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1. Clinical and technical background of the project 

1.1 Introduction 

Mechanical ventilation is a life-sustaining therapy used to secure sufficient 

oxygenation and carbon dioxide elimination and spare patients‟ energy allowing them 

to cope with underlying diseases and recover from surgery or trauma. Managing 

mechanical ventilator settings for ventilator therapy of the common postoperative 

patient is generally a simple task mainly comprised of weaning the patient from 

ventilator support, i.e. stepwise reduction in ventilator support until the patient alone 

is driving ventilation. However, in critically ill patients presenting in the intensive 

care unit (ICU), with failure of one or more organ systems often including the lungs, 

managing mechanical ventilation is a complex task. In these patients, selecting the 

appropriate ventilator settings can be considered as a search for the optimal 

compromise of conflicting goals. Such a search would preferably be performed based 

on a good understanding of the patient‟s lung function. However, this is often difficult 

using the vast number of relatively simple measurements currently available in the 

ICU. Mathematical models of pulmonary gas exchange may be used to integrate 

simple measurements and provide a deeper understanding of the patient‟s underlying 

physiology and pathophysiology. Implementing such models in decision support 

systems (DSSs) to calculate suggestions on therapy and provide physiological 

understanding may provide a valuable tool for clinicians, when deciding on 

appropriate therapy. 

 

To illustrate the need for DSSs in mechanical ventilation, section 1.2 will present the 

clinical background of the project. The syndromes acute lung injury and acute 

respiratory distress syndrome are introduced. Ventilator induced lung injury (VILI) 

will be presented constituting the background of recent approaches to mechanical 

ventilation, termed lung protective ventilator strategies. Recent studies on ventilator 

strategies will also be introduced illustrating the lack of consensus on how to properly 

mechanically ventilate patients with severe lung disorders. In section 1.3 the literature 

on decision support systems is reviewed covering rule-based systems representing the 

most prevalent type of DSS, and model-based DSS. The focus of this PhD is decision 

support of mechanical ventilation using models of pulmonary gas exchange. Model-
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based DSSs require physiological models which can predict the response of the 

individual patient to changes in therapy and preferably also provide the clinician with 

a deeper understanding of the lung status of the patient. Section 1.4 contains a review 

of currently available measurements and models of pulmonary gas exchange in 

clinical practice, the reference technique for measurement of pulmonary gas exchange 

and finally „minimal‟ models of gas exchange, which represent compromises between 

the oversimplified models in clinical practice and the complex techniques used in the 

pulmonary laboratory. The scientific and clinical questions which have formed the 

aims of this PhD project are stated in section 1.5. 

1.2 Managing mechanical ventilation in the ICU 

Acute lung injury and the acute respiratory distress syndrome 

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are 

syndromes of inflammation and increased permeability with significantly impaired 

lung function, the only difference between the syndromes being a more severe degree 

of hypoxemia in ARDS patients.  

 

In 1994, Bernard and co-authors published a now generally accepted definition of the 

syndromes [1]: 

 Acute onset 

 Hypoxemia 

o ALI: PaO2/FiO2 ≤ 300 mm Hg (40 kPa) regardless of PEEP level 

o ARDS: PaO2/FiO2 ≤ 200 mm Hg (27 kPa) regardless of PEEP level 

 Bilateral infiltrates seen on frontal chest radiograph 

 Pulmonary artery wedge pressure ≤ 18 mm Hg or no clinical evidence of left 

atrial hypertension 

 

The incidence of ALI and ARDS in Denmark were reported in 2000 to be 17.8 and 

14.6 patients per 100000/year, respectively [2], with 90-day mortalities being 47.3 % 

and 46.5 %, respectively [2]. A later European study reported that 7 % of all patients 

admitted to an ICU and 15 % of patients mechanically ventilated for at least 24 hours 

had or developed ALI/ARDS [3]. This study reported hospital mortalities in ALI and 

ARDS patients of 32.7 % and 57.9 %, respectively.  
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The lung damage seen in lungs of patients with ALI/ARDS is heterogeneously 

distributed with alveolar collapse and alveolar over-distension seen in different 

regions of the lungs [4]. Collapse is mostly reported to occur in dependent regions 

whilst over-distension is seen in the non-dependent regions, often referred to as the 

baby-lung of ALI/ARDS [4,5]. The severity and spread of lung damage increases the 

need for aggressive ventilator support such as high levels of inspired oxygen (FiO2) 

and high pressures and volumes but at the same time also increases the risk for 

ventilator induced lung injury (VILI). For example, increases in pressure and volume 

may act to open collapsed alveoli improving gas exchange in some regions whilst 

further over-distending alveoli in other lung regions causing lung damage.  

Ventilator induced lung injury 

The fact that mechanical ventilation may cause damage to the patient‟s lungs is not 

new and was discussed as early as in the 1700s [6]. However, over the last decades 

the topic has received increasing attention with the realization that other damaging 

mechanisms exist besides air leaks due to rupture of the airspace wall caused by high 

pressures (barotrauma) [7,8]. Studies of lungs from animals and patients who have 

undergone ventilator therapy with large pressures and volumes have shown lung 

tissue damage such as interstitial fibrosis, hyaline membranes and alveolar edema 

[8,9].  

In addition, the major cause of death of ALI/ARDS patients has been found not to be 

hypoxemia but multiple organ failure [3,10]. Several authors have suggested that VILI 

has an important role in the pathology of multiple system organ failure due to 

hypoxia, release of inflammatory mediators (biotrauma), and spillover of these 

mediators and bacteria to the blood due to increased alveolar and microvascular 

permeability [11-12].  

 

Biotrauma has been shown in relation to injurious mechanical ventilation in both 

animals and patients [8, 13-15] but not all results have been consistent [16]. Two 

mechanisms, termed volutrauma and atelectrauma, have been suggested as causes of 

tissue damage, biotrauma and increased alveolar and microvascular permeability. 

Overdistension of lung tissue due to high volumes and/or pressures (volutrauma) 

occurs, in particular, in the baby-lung of ARDS where tidal volumes considered 
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normal in healthy lungs are deleterious [5]. Repeated recruitment and de-recruitment 

of atelectic lung regions (atelectrauma) has been suggested to cause stress and strain 

in the junctions between adjacent alveoli [8,17]. The physical stress and strain 

involved in volutrauma and atelectrauma may lead to epithelial damage and increased 

alveolar and microvascular permeability causing pulmonary edema [8]. Volutrauma 

and atelectrauma may also impair the function of pulmonary surfactant [18]. 

Surfactant is a chemical compound which acts on the air/water interface inside the 

alveolar epithelium to reduce surface tension lowering work of breathing, maintaining 

fluid balance across the alveolar membrane and preventing alveolar collapse [18].  

 

High fractions of oxygen in the inspired air (FiO2) can also affect lung status leading 

to gas-exchange impairment or tissue damage. High levels of FiO2 can cause 

atelectasis in regions with low ventilation/perfusion ratios [19-21] and cause toxic 

effects [22-23].  

Lung-protective ventilator strategies 

The role of mechanical ventilation as a major cause of patient mortality has spurred 

numerous experimental investigations and clinical trials addressing how to properly 

manage mechanical ventilation, in particular in ALI/ARDS patients. In the following, 

some of the major studies within lung-protective ventilation are described. 

 

In 1998, Amato and coworkers described a statistically significant improvement in 

28-day mortality in 53 ARDS patients by using a strategy consisting of: recruitment 

maneuvers i.e. short periods of large pressures to open atelectic lung regions; positive 

end expiratory pressure (PEEP) to keep recruited alveoli open; and small tidal 

volumes to reduce lung tissue stress [24]. After 28 days the mortality of the lung 

protective group was 38 % compared to 71 % in the conventionally treated group. 

However, several studies with similar strategies and number of patients did not find 

significant differences in mortality between low and high tidal volumes [25-27].  

 

A large multicenter study conducted by the Acute Respiratory Distress Syndrome 

Network (ARDSNet) followed the trial by Amato et al. comparing the use of small 

and large tidal volumes [28]. This study showed that a strategy comprising tidal 

volumes small (Vt = 6 ml/kg) in comparison to previously common tidal volumes and 
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peak inspiratory pressures less than 30 cmH2O resulted in improved mortality 

compared to large tidal volumes (Vt = 12 ml/kg) and peak inspiratory pressures less 

than 50 cmH2O.  

 

A later study conducted by the ARDSNet investigated the use of low versus high 

PEEP, maintaining a Vt of 6 ml/kg in both groups [29]. The study did not find any 

significant difference in mortality between the two groups. However, later analysis 

has indicated that this study might not have had large enough differences in PEEP 

levels between the two groups to demonstrate a significant difference in mortality 

[18].  

 

Larger differences between PEEP levels in two patient groups (13.4 ±2.6 cmH2O in 

53 patients vs. 9.8 ± 2.8 cmH2O in 50 patients) were reported in a recent study to 

produce significant improvement in mortality [30]. However, the two groups were 

ventilated with different tidal volumes preventing the authors from drawing 

conclusions on the importance of PEEP levels on mortality [30]. In addition, two 

recently published multicenter trials compared two groups with equal low tidal 

volumes but with lower and higher PEEP levels [31,32]. Neither of these two studies 

could demonstrate significant differences in mortality between the studied patient 

groups.  

 

The focus of current ventilator strategies is on preventing VILI by lowering volumes 

and pressures. However, FiO2 should not be increased indiscriminately to secure 

oxygenation [19-23], and several authors have pointed out that low tidal volumes may 

lead to low ventilation/perfusion ( A/QV ) regions in the lungs, which limits gas 

exchange and are highly susceptible to adsorption atelectasis due to hyperoxia 

[33,34]. Although not the focus of recent debate, the vast majority of clinical trials 

have included limitation of FiO2 either directly or through goals for oxygenation in 

their ventilator strategies [15, 24-29, 31,32]. 

 

Whilst there is a general consensus that the lungs should be ventilated with caution, 

there is also a general consensus that the understanding of the different types of lung 

damage and the mechanisms involved is not complete [16-18,33-35]. Furthermore the 
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varying results from clinical trials indicate that the perfect ventilation strategy, if there 

is such a thing, has yet to be found. It has been speculated, that the heterogeneity of 

ALI/ARDS patients requires that every patient should be treated on an individual 

basis [17], which is supported by recent clinical studies [36,37]  

 

This leaves intensive care clinicians with a far from straightforward task, which needs 

to be performed in a timely manner, based on interpretation of large amounts of data. 

The increasing complexity and available options on modern ventilators do not help to 

alleviate the problem. These circumstances work against human nature. The human 

brain can process a limited amount of information when making decisions [38], which 

combined with the stressful environment of the ICU have been suggested as 

augmenting factors for errors committed by health care professionals in the ICU [39, 

40]. These points illustrate that DSS for mechanical ventilation may be beneficial.  

1.3 Decision support systems for mechanical ventilation 

Decision support systems (DSSs) may be categorized with regards to several aspects: 

open or closed loop; approach to data integration and analysis; approach to decisions, 

e.g. rule-based, utility theory, etc.; and the settings optimized by the system. In the 

following, the literature is reviewed categorizing published DSS for mechanical 

ventilation into rule-based systems and model-based systems. Rule-based systems will 

refer to systems that are mimicking experts in the field or clinical guidelines 

performing data integration and analysis using the clinical measurements directly 

without physiological models.  

Rule-based systems 

The vast majority of developed DSS for ventilator management have been rule-based 

systems [41-63]. These systems have often been developed for specific subproblems 

of ventilator management such as weaning patients from mechanical ventilation [49]. 

 

Figure 1 shows the general overall structure of such systems. Rule-based systems 

typically include 4 overall components: data input; data integration and analysis; rule 

base; and decision control (often also called inference engine). The interaction and 

integration of these components may vary from system to system. Data input can 

consist of ventilator settings, lung mechanic measurements, gas exchange 
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measurements, metabolic measurements, hemodynamic measurements and patient 

characteristics such as height, diagnosis etc. These data may be automatically 

retrieved from the ventilator and monitoring devices, or typed in manually by the 

clinician, or both. The role of the data integration and analysis component varies from 

system to system but may be comprised of tasks such as data validation and 

classification e.g. removal of noise, and temporal data analysis. The rule base 

comprises the built-in rules of the system, e.g. IF-THEN-ELSE descriptions linking 

patient physiological data with system response. The decision control component 

selects the advice to provide to the clinician. 

 

If the DSS is an open-loop system the clinician manually sets the ventilator settings 

according to the suggestions provided by the DSS. In a closed-loop system the DSS 

automatically adjusts the ventilator settings. Irrespectively, rule-based systems have in 

common that they are black-box systems, i.e. the clinician is not aware of the 

considerations involved in the suggestions provided by the systems. 

 

 

 

Figure 1: The general structure of a rule-based decision support system for ventilator 

management. 

 

Strict rule-based systems i.e. comprised of IF-THEN-ELSE rules are predominating 

[41-58].  In the simplest form these are relatively easy to implement and constitute 
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electronic versions of paper based clinical guidelines [e.g. 45-48]. Almost all 

published DSS based on this simple structure have been prospectively evaluated [41-

53]. Two of these studies have been large multicenter randomized trials [48, 53]. The 

study reported by East et al. investigated a clinical guideline for managing ARDS 

patients, and although the implemented clinical guideline did not result in statistically 

significant improvement in mortality, the study demonstrated the feasibility of 

implementing a DSS across several institutions [48]. The study by Lellouche et al. 

compared weaning of patients using a closed-loop DSS (GANESH) [49] with 

weaning using written clinical guidelines [53]. The patient group weaned using 

GANESH had lower duration of weaning, shorter duration of mechanical ventilation 

and shorter ICU stay [53]. GANESH has also been implemented as part of a 

commercial system, termed SmartCare
TM

/PS by Dräger Medical [64].  

 

Adaptive support ventilation (ASV) is another commercially available closed loop 

DSS, implemented in Hamilton ventilators [65]. When using ASV the clinician 

defines a desired minute volume and the system automatically adjusts respiratory 

frequency, tidal volume and inspiratory pressure and switches between support and 

control behavior using rules according to measurements of the patient‟s lung 

mechanics [65]. Several studies have been performed using ASV, for example a 

multicenter study comparing ASV with controlled ventilator modes in patients with 

acute respiratory failure [66]. The study showed that ASV could maintain similar 

PaCO2 as clinicians but with lower peak airway pressures.  

 

In addition to SmartCare
TM

 and ASV several advanced ventilator modes have been 

developed which have elements in common with DSS. Most notable are proportional 

assist ventilation (PAV), and neurally adjusted ventilatory assistance (NAVA) which 

can be considered advanced versions of the pressure support mode. These systems 

determine the level of pressure support using a gain factor adjusted by the clinician 

combined with either measured inspiratory flow (PAV) or the electromyographic 

activity from the diaphragm (NAVA) [67].  

 

Different research groups have taken alternative approaches to capture the heuristics 

of critical care experts [59-63]. These approaches include knowledge bases using 

automated knowledge acquisition [59], and fuzzy logic for temporal data 
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classification [60, 63], to derive the rule base [62], and to mimic human decision-

making [61]. One of these systems have been implemented and prospectively 

evaluated in 7 neonates showing agreement between clinicians and provided advice in 

more than 90% of cases [63]. 

 

The black-box approach shared by all the presented rule-based DSS is also one of the 

major weaknesses of these systems, as they do not provide the clinician with a deeper 

understanding of the individual patient‟s status. If changes in settings alter the status 

of the patients this may require reevaluations leading to new changes. As such, the 

rule-based systems may require a trial and error approach. Model-based DSS may 

solve both of these problems. Parameters of physiological models may provide a 

deeper physiological understanding of the patient. In addition, once model parameters 

have been tuned to fit the individual patient data, models can predict patient response 

to changes in ventilator settings allowing the clinician quick evaluation of therapy 

changes, thereby eliminating the need for the trial and error approach [68]. 

Model-based decision support in ventilator management 

Figure 2 shows the overall general structure of model-based DSS in ventilator 

management. Five overall components are generally included: data input; 

physiological models; parameter identification; model prediction; and decision 

control. The data input component is conceptually identical to that of the rule-based 

systems. The physiological model component constitutes the physiological models 

used in a model-based DSS such as models of pulmonary gas exchange. Parameter 

estimation often constitutes measurement of patient response to small variations in 

therapy to allow tuning of model parameters to fit the physiological models to the 

individual patient. This process can be manual with the system interacting with the 

user during the process or it can be automated. Parameter estimation will often 

encompass the data integration in the system. Once fitted to patient data the models 

can be used to simulate patient response to changes in therapy, e.g. changes in 

oxygenation upon changes in inspired oxygen fraction. This can involve the clinician, 

by letting the clinician test different changes in settings without involving the patient 

or it can be done by the DSS to calculate optimal therapy. This can be performed by a 

decision control component using mathematical functions associating different 

strategies with corresponding utilities, i.e. models of clinical preferences. Hybrid 
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systems have also been developed where physiological models are combined with a 

rule base to decide suggestions on therapy.  

 

 

Figure 2: General structure of model-based decision support systems for ventilator management. 

 

Model-based DSSs may solve two problems, i.e. providing a deeper understanding of 

patient physiology and preventing trial and error approach to ventilator management. 

However, they may also introduce two overall limitations. When physiological 

models are integrated into the calculation of new advice, model-based DSS depend on 

the implemented models to accurately predict patient response to changes in ventilator 

settings. In addition, in order to allow patient specific predictions, the model 

parameters must be tuned to fit patient specific data before suggestions on therapy can 

be calculated, and this may be a time-demanding process. These limitations have been 

dealt with in different ways by the different model-based DSS [69-74]. 

 

The first reported DSS using physiological models was the open-loop system 

OPTPROG [69]. OPTPROG found the combination of respiratory frequency (f), tidal 

volume (Vt) and PEEP which resulted in the minimal peak respiratory power (PRP), 

which was defined as an index of lung trauma. The system also maintained PaO2 and 

PaCO2 within limits defined by a clinician. OPTPROG was prospectively evaluated in 

5 patients with various pulmonary diseases and 7 post operative coronary artery 

bypass graft patients showing that the system was able to minimize PRP whilst 
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maintaining adequate PaO2 and PaCO2 values [69, 70]. However, OPTPROG had a 

couple of significant limitations. OPTPROG was based on linear programming, and 

the model parameters had no physiological interpretation [68]. As such, the system 

did not provide clinicians with a deeper physiological understanding of the patient. In 

addition, estimation of model parameters required a time-demanding experiment 

taking approximately one hour involving frequent sampling of arterial blood beyond 

that of routine clinical practice [68]. 

 

The VentPlan system [71] used a model of pulmonary gas exchange to provide open-

loop decision support of FiO2, Vt and f. The implemented model was a classical three 

compartment model with model parameters having physiological interpretations [75]. 

The model includes two parameters: a shunt parameter which quantifies the fraction 

of pulmonary perfusion not reaching ventilated alveoli; and a parameter describing the 

amount of physiological dead space, i.e. the amount of ventilation not participating in 

gas exchange. Parameter estimation was performed as a combination of a Bayesian 

belief network and patient specific measurements [71]. The belief network was 

implemented to enable parameter estimation in cases when measurement data were 

insufficient to allow a unique numerical solution when estimating model parameters. 

Advice was calculated based on a combination of model simulations and utility theory 

[76], using penalty functions to model clinical preferences. VentPlan was 

retrospectively evaluated using data from 10 ICU patients indicating potential of the 

system [71]. However, to the best of my knowledge, VentPlan development stopped 

before any prospective evaluation could be performed. 

 

The Sheffield Intelligent Ventilator Advisor (SIVA) uses a physiological model 

describing the same factors as that of VentPlan, i.e. shunt and physiological dead 

space [72]. SIVA uses the ratio between the alveolar-arterial oxygen difference to 

PaO2 (PA-aO2 / PaO2) as an input to an Adaptive-Network-based Fuzzy-Inference 

System [62] to estimate the shunt parameter. To estimate the physiological dead space 

the system requires invasive measurement data using a pulmonary artery catheter and 

a numerical method, which the authors report has often convergence problems [72]. 

Alternatively physiological dead space could be estimated by the clinician. SIVA is a 

hybrid system and uses fuzzy rule-bases in combination with models to provide open-

loop decision support of FiO2, PEEP, inspiratory pressure (Pinsp) and f, although 
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without modeling the effect of PEEP. Evaluations of SIVA have so far been limited to 

simulation studies [72]. 

 

The open-loop system INVENT presented by Rees et al. uses a two parameter 

physiological model of gas exchange in combination with a model of the acid-base 

chemistry of blood as well as a simple model of lung mechanics [73]. The gas 

exchange model describes shunt and ventilation/perfusion mismatch, the two major 

factors affecting pulmonary gas exchange in patients with respiratory failure [77]. The 

parameters of the gas exchange model are estimated using a method comprised of 

varying inspired oxygen fraction in 4-6 steps and measuring the oxygen contents of 

the expired gas as well as pulse oximetry oxygen saturation (SpO2), this process 

taking approximately 10-15 minutes [78]. The lung mechanics model requires input of 

PEEP and respiratory compliance and the blood model and the gas exchange model 

also require a single arterial blood gas measurement. The INVENT system provides 

advice on FiO2, Vt and f using utility theory in the form of penalty functions 

combined with the three models [73]. At the beginning of this PhD project evaluations 

of the system had not been published. 

 

The most recently introduced model-based DSS is the FLEX hybrid system, which 

can act both as an open-loop and a closed-loop system [74]. The approach of the 

FLEX system has similarities to the OPTPROG system with the implemented models 

being empirical by nature and mainly using model parameters without physiological 

interpretation. FLEX incorporates a large number of these simple models in 

combination with a rule base to calculate suggested levels of FiO2, PEEP, f, I:E-ratio, 

PIP, and Vt as well as to wean patients [74]. In this process the system aims at 

minimizing the work of breathing using a modified version of an empirically derived 

equation [79]. The FLEX system does not require any parameter estimation 

procedures, but use readily available measurement data or parameters which are not 

fitted to the individual patient. So far, the system has been limited to retrospective 

evaluations, showing the suggestions of the system to be in general agreement with 

decisions taken by clinicians in ICU patients [74] and neonates [80].  



 21 

1.4 Mathematical models of gas exchange 

Measurements and models available in clinical practice 

Several measurements are available in clinical practice which may provide some 

information regarding the gas exchange status of a patient. For oxygenation, 

measurement of arterial blood gases yields arterial partial pressure of O2 (PaO2) and 

arterial oxygen saturation (SaO2). An arterial blood sample can also be analyzed to 

measure hemoglobins (Hb, MetHb and COhb) providing information regarding the 

oxygen carrying capacity of the blood. Hemoglobin concentration, PaO2 and SaO2 can 

also be used to calculate the total contents of O2 in arterial blood. Oxygen 

concentrations and pressures can also be obtained from samples of central or mixed 

venous blood, yielding information regarding the use of oxygen by the organs and 

peripheral tissues, i.e. the general ischemic status of the body. Mixed and central 

venous blood samples, however, require catheters in the pulmonary artery or one of 

the larger veins (e.g. the internal jugular vein), respectively, and are not part of routine 

clinical care in all ICUs. These measurements need to be related to the ventilation and 

FiO2 to be interpreted with regards to the lung status of the patient. 

 

A range of oxygen tension based indices have been developed to aid in interpretation 

of oxygenation with regards to ventilator settings. The ratio between oxygen partial 

pressure in arterial blood to FiO2 (PaO2/FiO2) is probably the most common index of 

hypoxemia, especially in clinical studies, and is part of the definition of ALI/ARDS. 

Another frequently used tension based index is the alveolar-arterial oxygen partial 

pressure difference (PA-aO2) [81]. This index provides an estimate of the total drop in 

oxygen partial pressure through the pulmonary system. However, the index requires 

calculation of the alveolar partial pressure of oxygen (PAO2) using the alveolar air 

equation requiring measurement of, or an assumed value of the respiratory quotient 

[81]. All these oxygenation measures and indices vary with one or more 

extrapulmonary factors such as ventilation and variation in FiO2 which are common 

therapeutic interventions in mechanically ventilated patients and affect oxygenation 

but not the underlying physiology or pathophysiology of the patient [77,]. 

 

The standard method for evaluating pulmonary gas exchange of CO2 is to measure the 

partial pressure of CO2 in arterial blood (PaCO2). In addition, capnography can be 
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used to evaluate the CO2 contents in the expired gas in relation to either time or 

expired volume, although this is not commonly applied in the ICU [83]. Capnography 

allows measurement of end-tidal partial pressure or fraction of CO2 (PetCO2 or 

FetCO2). When both PetCO2 and PaCO2 are available it is possible to calculate the 

PetCO2-PaCO2 difference which will increase with A/QV  mismatching and to a 

lesser degree venous admixture [84]. The anatomical and alveolar dead space volumes 

can also be calculated from the capnogram, the latter if a PaCO2 measurement is 

available. Alternatively the physiological dead space can be calculated using 

Enghoff‟s modification of the Bohr equation [85] requiring PaCO2 and measurement 

or calculation of the partial pressure of CO2 in the mixed expired gas.  

 

The current state of the art for quantifying pulmonary gas exchange in clinical 

practice is measurement of intrapulmonary shunt [81]. When measured at an FiO2 less 

than 100% the value is termed venous admixture and describes the patient‟s 

pulmonary gas exchange abnormality as due to alveoli being perfused but not 

ventilated. It has been shown that the measurement of intrapulmonary shunt is 

inadequate to describe changes in oxygenation with variation in FiO2, and that it is 

necessary to separate oxygenation problems into that caused by pulmonary shunt and 

that due to an alveolar-lung capillary drop in partial pressure of oxygen [86-88]. By 

measuring intrapulmonary shunt at FiO2=100%, the intrapulmonary shunt can be 

measured without the effects of an alveolar-lung capillary drop in partial pressure of 

oxygen. However, inspiration of pure oxygen may cause absorption atelectasis 

thereby giving an overestimate of the true shunt value [19,89] and the method still 

gives no information regarding the presence of an alveolar-lung capillary drop in 

partial pressure of oxygen, such as due to A/QV  mismatching in the lungs. 

The Multiple Inert Gas Elimination Technique 

To appreciate the concept of minimal modeling and the compromises made, one 

should first look at the current reference technique for quantifying gas exchange in the 

pulmonary laboratory, which is the multiple inert gas elimination technique (MIGET) 

[90]. MIGET relies on measurement of retention and excretion of 6 inert gases 

sampling blood and expired gas data. MIGET uses a model of pulmonary gas 

exchange comprised of 50 compartments with different A/QV  relationships 
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accounting for an alveolar-lung capillary drop in partial pressure of oxygen. The 

model also includes shunt being the one extreme of the A/QV  range ( A/QV  = 0) and 

alveolar dead space being the other extreme ( A/QV  = ∞). This model is fitted to the 

retention and excretion data and the end result is reported as distributions of blood 

flow and ventilation across the compartments of the model.  

 

Use of the MIGET technique in the pulmonary laboratory has contributed 

significantly to the current physiological understanding of pulmonary gas exchange in 

healthy subjects at different age [91], during anesthesia [92], in chronic obstructive 

pulmonary disease [89] and in patients with acute respiratory failure including ALI 

and ARDS [94]. MIGET studies have shown that lungs of ARDS patients are 

characterized by large fractions of shunt and in many patients there are lung regions 

with low A/QV  ratios and/or large fractions of ventilation going to alveolar dead 

space [94, 95]. The A/QV  distributions produced by MIGET have also been shown to 

describe the effects of various changes in therapy on pulmonary gas exchange [94]. In 

ALI/ARDS patients, for example, increases in PEEP as well as changes in posture 

from supine to prone have been shown to reduce shunt [95-98]. In addition, 

inspiration of 100 % O2 has been shown to convert units with low A/QV  into shunt 

[94] possibly due to absorption atelectasis [19, 33-34]. 

 

The MIGET experimental procedure is highly complex and involves preparing and 

infusing the inert gases, sampling of blood and expired gases and analyzing these 

using gas chromatography [90], the technique is therefore inappropriate for routine 

clinical application. 

Minimal modeling of pulmonary gas exchange 

In the past 15 years a considerable effort has been made to formulate minimal models 

based on few model compartments and parameters which can be estimated from 

routine clinical data. As originally suggested by Riley et al [86,87] and King et al. 

[88] these models describe pulmonary gas exchange abnormalities as caused by 

intrapulmonary shunt combined with an alveolar-lung capillary drop in partial 

pressure of oxygen. The latter factor has been modeled either using one [99-101] or 

two compartments to describe A/QV  mismatch [78,102-104], one compartment with 



 24 

diffusion limitation [102,105,106], or two compartments to describe both A/QV  

mismatch and diffusion limitation [107,108]. These models are poor descriptions of 

physiology compared to the 50 compartment model of MIGET but significant 

improvements compared to measurement of intrapulmonary shunt or dead space 

volume alone.  

 

Minimal models describing intrapulmonary shunt and an alveolar-lung capillary drop 

in partial pressure of oxygen have been shown to fit oxygenation data from normal 

subjects [99,103,106-108]; patients before [99,100,102,103], during [99-101] and 

after [99,100,102-104,106] major surgery; patients presenting in intensive care [103]; 

patients with chronic obstructive pulmonary disease (COPD) [107,108]; patients with 

incompensated heart failure studied before and after diuretic therapy [103]; and 

anesthetized mechanically ventilated dogs with acutely applied hypoxia or with 

induced intense small airway constriction in a rebreathing model of COPD [108].  

 

The model describing intrapulmonary shunt and A/QV  mismatch presented by 

Kjærgaard et al. [102], which is the model used in INVENT, has also been shown to 

fit retention and excretion data comparable to MIGET in pigs before and after lung 

damage caused by oleic acid infusion [109]. Additionally the model presented by 

Vidal Melo and co-workers [107] has been shown to produce A/QV  distributions 

having positive correlations with MIGET A/QV  distributions in COPD patients and 

healthy subjects before and after exercise [108]. However, at present only a single 

model has been evaluated for its ability to describe gas transport of CO2 [107,108]. 

1.5 Aims of the project 

Management of mechanical ventilation in patients with severe lung disorders 

constitutes a process of balancing conflicting therapeutic goals. This is a complex task 

which clinicians in the ICU must perform based on numerous measurements in a 

stressful environment and with no clear evidence based strategies for several of the 

ventilator settings. Several DSSs have been developed to aid the clinician in this 

process. The majority of these systems have been rule-based DSSs, which may 

provide sound advice, but do not provide the clinician with a deeper understanding of 

the individual patient. Rule-based DSSs may also require a time demanding trial and 
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error approach as commonly used in clinical practice to find the appropriate settings. 

Model-based DSS may provide a more appropriate alternative. When models are 

tuned to fit patient data they may provide a deeper physiological understanding of the 

patient and predict patient responses to changes in therapy, thereby removing the need 

for trial and error. However, this requires models with parameters having 

physiological interpretation and which may be identified from routine clinical data. 

Measurements and models of pulmonary gas exchange currently available in clinical 

practice are oversimplified. In contrast the reference technique, the MIGET, is too 

complex to use in clinical practice. Minimal models have also been developed 

presenting compromises between feasibility and complexity. This PhD project has 

addressed the use of such minimal models to describe gas exchange in the ICU and 

their use in a DSS, through investigation of the following questions:   

 

 How well do the current dominating oxygenation index (PaO2/FiO2 ratio) and 

gas exchange model (shunt model) used in clinical practice describe 

oxygenation in comparison with a two parameter minimal model of O2 gas 

exchange describing both shunt and ventilation/perfusion mismatch? (Paper I) 

 

 Can INVENT based on a two parameter model of gas exchange describing 

shunt and ventilation/perfusion mismatch combined with utility theory provide 

appropriate suggestions on FiO2 when evaluated retrospectively in intensive 

care patients? (Paper II) 

 

 Can INVENT manage FiO2 in intensive care patients when evaluated 

prospectively? (Paper III) 

 

 A model describing gas exchange of both O2 and CO2 is necessary for 

INVENT to provide suggestions of Vt and f in addition to FiO2. What 

complexity is necessary for a minimal model representation of pulmonary gas 

exchange of both O2 and CO2? (Paper IV) 

 

To address these questions technical methods were developed and refined. These 

tasks involved modeling of pulmonary gas exchange, methods for estimation of model 
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parameters, development of a version of INVENT used with a database system to 

provide suggestions on FiO2. The technical solutions were similar between studies, 

but were adapted for the specific applications. The following chapter presents the 

technical methods used during the project, and the tailoring of the methods for the 

specific studies. 
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2. Gas exchange models and decision support system 

This chapter describes the technical methods used to answer the four questions 

addressed in the PhD project. The project has evolved around minimal models of 

pulmonary gas exchange. Models of different complexity have been used in the 

studies, but all models have followed the same overall structure. The models are 

presented in section 2.1. Methods used for estimation of model parameters have been 

adapted to the individual studies depending on available measurement data and aims 

of the studies, the different approaches are explained in section 2.2. Section 2.3 

presents the version of the DSS, INVENT, developed to provide suggestions on FiO2. 

The system is integrated in a database system, ICARE, which is described briefly in 

section 2.4. 

2.1 Minimal models of pulmonary gas exchange 

All four studies were performed using physiological models with the same structure 

as the two parameter model originally presented by Kjærgaard et al [102]. These 

models are based on conservation of mass, continuous breathing and perfusion and 

assume steady state. 

Figure 3 shows the overall structure shared by these models, indicating the model 

parameters in bold. In addition to the shown compartments all models used in the 

study have a serial dead space compartment. The model presented by Kjærgaard et al. 

has a shunt parameter (fs) describing the fraction of pulmonary perfusion not reaching 

ventilated alveoli. In addition the model has two ventilated and perfused 

compartments. The perfusion is locked at a specific distribution defined by the f2 

parameter such that one parameter receives 90 % of non-shunted blood flow and the 

other 10 % (f2=0.9). Distribution of ventilation varies between the two compartments 

as defined by the fA2 parameter, such that a fA2 of 0.9 would result in optimal A/QV  

matching, whereas fA2 less than 0.9 would signify A/QV  mismatching. This two-

parameter model (fs and fA2) is used in all four studies, and is the model used in 

INVENT for predicting patient response to changes in FiO2 in papers II and III. 

 

In paper I, the two parameter model is compared with the „effective‟ shunt model, 

which is a one-parameter model having a shunt compartment, and where non-shunted 
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blood flow goes to a ventilated compartment receiving all alveolar ventilation, i.e. 

with an optimal A/QV  matching. In paper IV, the „effective‟ shunt model and the 

two-parameter model are compared with a three-parameter model where f2 is varied 

to fit patient data. Study IV investigated the use of the models in describing the 

pulmonary gas exchange of both O2 and CO2. A mathematical model of the acid base 

chemistry of blood [110] was therefore implemented in the models to also describe 

the storage of CO2 in the blood. All model equations as well as the model of the acid-

base chemistry of blood are presented in paper IV. 

 

 

Figure 3: Structure of the physiological models used in the PhD project. 

 

The parameters describing A/QV  mismatch can be transformed into a ΔPO2 value, 

which quantifies the drop in partial pressure of oxygen from the alveoli to the 

capillaries leaving the lungs before the mixing with shunted venous blood. As such a 

ΔPO2 value can be translated directly into the necessary extra pressure of O2 at the 

mouth to alleviate oxygenation problems due to A/QV  mismatch, i.e. if ΔPO2 = 10 

kPa, approximately an extra 10 % oxygen is needed (FiO2 = 0.31).   

2.2 Estimation of model parameters 

The effects of shunt and an alveolar to lung capillary drop in PO2 can be separated by 

performing an experiment where FiO2 is varied in steps and end-tidal O2 and arterial 
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oxygenation are measured at each step after steady state is achieved. Rees et al 

introduced in 2002 an automated method where the steady state was monitored by 

looking at FetO2 enabling a relatively fast experiment, taking approximately 10-15 

minutes when 3-5 FiO2 steps are taken [78]. Arterial oxygenation is estimated using 

pulse oximetry, which has been shown to produce accurate estimates of fs and fA2 

model parameters in a variety of patient groups including intensive care patients 

[103]. 

 

To separate the effects of shunt and an alveolar to lung capillary drop in PO2, the steps 

must be taken so that FetO2-SpO2 points are lying on either side of the characteristic 

shoulder of the FetO2-SpO2 curve. This normally requires variation in SpO2 from 

0.85-1. Shunt affects the FetO2-SpO2 curve in the vertical direction with increases in 

shunt depressing the curve. An alveolar to lung capillary drop in PO2, i.e. as due to 

A/QV  mismatching, causes a horizontal shift in the curve with increase in A/QV  

mismatching and larger PO2 drop causing a shift to the right. Figure 4 shows an 

example of a dataset, where FetO2-SpO2 points lie appropriately, and the two-

parameter model has been fitted to the data.  

 

 

Figure 4: Example of resulting fit (solid line) from estimating model parameters of the two 

parameter gas exchange model, to fit measured FetO2-SpO2 data (+) using equation 1. Patient 

data are from an intensive care patient studied in papers I, II and IV. 

 

Model parameters are estimated using numerical minimization methods finding the 

combination of model parameters resulting in the least weighted squared difference 

between simulated and measured values. Before the PhD project an error function had 
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been developed looking at the error in both the horizontal and vertical directions, as 

stated in equation 1.  
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WRSS is the weighted residual sum of squares, SmO2 is the model predicted SaO2, 

σSpO2 is the standard deviation of SpO2 and σHoriz is the standard deviation in the 

horizontal direction due to measurement uncertainty of FetO2. σHoriz was calculated as 

the difference in SmO2 caused by increasing measured FetO2 by the standard 

deviation of FetO2 measurement (σFetO2).  σSpO2 was set to 0.01 [103] and σFetO2 was 

set to 0.005 [111]. Equation 1 was used to fit the two parameter model in figure 1.  

 

In papers I and II, the measurement data included SaO2 measurements at each level of 

FiO2. SaO2 was therefore used instead of SpO2, to give the best possible model 

description of patient data. In study II this was performed in addition to fitting the 

model to SpO2 data. The standard deviation of SaO2 (σSaO2) was set to 0.005 [112]. 

 

Before study II, the error function was modified to use both SpO2 and SaO2, 

motivated by the fact that a single arterial blood gas measurement is necessary for the 

parameter estimation, so the inclusion of SaO2, which is a more accurate measurement 

of oxygenation than SpO2, as such is free. This also allows the more accurate SaO2 

value to correct some of the error that may occur due to biases sometimes seen 

between SpO2 and SaO2. In addition, the error function was modified to normalize the 

weight of SpO2 measurements in the numerical minimization regardless of the number 

of measurements taken. SpO2 was normalized to four measurements, as having two 

SpO2 points before and after the shoulder of the FetO2-SpO2 curve is sufficient to 

separate shunt and A/QV  effects if the points are well spread. The modified error 

function is stated in equation 2. 

 

 n

1i
2

HorizSaO

2

22

2

HorizSpO

2

i2,i2,

σσ

SaOSmO

σσ

SpOSmO

n

4
WRSS

22

 (2) 



 31 

 

Equation 2 was used for estimating parameters to calculate INVENT FiO2 suggestions 

in papers II and III. The minima of equation 1 in paper I and equation 2 in papers II 

and III were found using a nested grid search approach with a maximum resolution of 

0.01, i.e. trying all possible combinations of fA2 and fs using steps of 0.01. Figure 5 

shows the same measurement data as Figure 4 but including a SaO2 measurement and 

the model fit using the two-parameter model and equation 2. It can be seen how the 

lower SD of SaO2 means this measurement is prioritized in the fitting procedure.  

 

 

Figure 5: Example of resulting fit from estimating model parameters of the two parameter gas 

exchange model, to fit measured FetO2-SpO2 data (+) using equation 1 (dashed line) and equation 

2 (solid line) utilizing a single SaO2 measurement (o). The other SaO2 measurements taken at 

each FetO2 level are also shown (diamonds) to illustrate the improved agreement with model 

simulation when including a single SaO2 in the model fitting. Patient data are the same as in 

Figure 4. 

 

In paper IV, the aim was to describe pulmonary gas exchange of both O2 and CO2. 

The model was therefore fitted to both the FetO2-SpO2 curve and a single FetCO2-

PaCO2 point. Due to the different scaling of oxygen saturations and PaCO2 as well as 

the different effects of variation of FetO2 and FetCO2, the error function was limited 

to quantify vertical errors. The resulting error function is stated in equation 3. 

 

 n

1i
2

PaCO

2

22

2

SaO

2

22

2

SpO

2

i2,i2,

222
σ

PaCOPmCO

σ

SaOSmO

σ

SpOSmO

n

4
WRSS  (3) 

 



 32 

σSpO2 was changed to 0.02 to more closely represent the variation seen in clinical 

studies and the accuracy reported by the manufacturer of the applied pulse oximetry 

device [113,114]. σPaCO2 was set to 0.09 kPa [112]. Equation 3 was in paper IV 

minimized using a nested implementation of Brent‟s method [115]. Implementation of 

a new and faster minimization method was necessary to achieve a practical speed for 

parameter estimation in MatLab (Mathworks, Natick, MA). Figure 6 shows a data 

example from paper IV with the three parameter model fitted to oxygenation and CO2 

data by minimizing equation 3. 

 

 

Figure 6: Example of resulting fit from estimating model parameters of the three parameter gas 

exchange model to O2 and CO2 data using equation 3. Left) Measured FetO2-SpO2 data (+) and 

FetO2-SaO2 point (o) and the resulting model fitted curve (solid line). Right) Measured FetCO2-

PaCO2 point (O), and resulting model fitted simulation of FetCO2-PaCO2 (x).  

 

During the experiments continuous data sampling was performed using RS-232 

interfacing to retrieve: Vt and f from the ventilator (SV300 or ServoI, Marquet, Solna, 

Sweden, papers I-IV) or a volume meter (Elkro Gas, Salerno, Italy, paper I); SpO2 

from a pulse oximetry device (Datex AS-3, Datex-Engström, Helsinki, Finland, paper 

I; SC9000 critical care monitor, Siemens Medical Systems, Munich, Germany, paper 

III; and CO2SMO Plus, Novametrix Medical Systems, Wallingford CT, USA, papers 

I, II and IV); FiO2 and FetO2 from a sidestream oxygen analyzer (Datex AS-3, paper 

I; Oxigraf, Mountain View CA, USA, papers I-IV) and FetCO2 from a sidestream gas 

analyzer (Oxigraf, paper IV). A minimum of one arterial blood sample was drawn 

during each experiment, and analyzed to obtain arterial acid-base and oxygenation 
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status (SaO2, PaO2, pHa, PaCO2, CtHb, FMetHb, and FCOHb) (ABL 525, Radiometer 

Medical A/S, Copenhagen, Denmark, paper I; ABL 625, paper I; ABL 725, papers I, 

II and IV; ABL 800, paper III). The blood gas data were manually entered into the 

computer.  

 

In addition, a number of model variables were assumed to be constant during the 

experiment. Inspired fraction of CO2 was assumed to be 0. Atmospheric pressure was 

assumed to be 101.3 kPa. Saturated water vapour pressure was assumed to be 6.3 kPa 

[77]. Concentration of 2,3-diphosphoglycerate was set to 5 mmol/L as in normal 

arterial blood [110]. Anatomical dead space (VDana) and cardiac output (Q) were also 

assumed constant during the experiments, but were assessed differently between 

studies. In paper I, VDana and Q from the original studies were used [102-104]. In 

papers II and IV, VDana was measured by volumetric capnography (CO2SMO Plus), 

except for two patients in paper IV, where VDana was estimated from the average 

VDana/Vt ratio of the other patients. In the prospective study (paper III) volumetric 

capnography was not available and total apparatus and anatomical dead space was 

assumed to be 0.2 l, as previously used [95]. In studies II, III and IV, Q was either 

measured (PiCCO plus, Pulsion Medical Systems Munich, Germany) or estimated 

from body surface area and an assumed value of cardiac index. Body surface area was 

calculated from patient weight and height using the equation defined by Gehan and 

George [116]. CI was in papers II and III assumed to be 3.0 l/(m
2
min). In paper IV CI 

was assumed to be 3.7 l/(m
2
min), as reported in a large group of intensive care 

patients [117]. 

2.3 Decision support system 

The goal of papers II and III were to evaluate INVENT for decision support of FiO2. 

Therefore a new version of INVENT was implemented for this application. The 

structure of the system is illustrated in Figure 7. Before the system can provide 

suggestions on FiO2, the two-parameter model must be identified using the parameter 

estimation procedure outlined above. This yields patient specific values of the fs and 

fA2 parameter. With parameters estimated and the patient specific variables used 

during parameter estimation input to the system, the physiological model may be used 

to simulate patient responses to changes in FiO2. The model simulates SaO2 and 
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estimates mixed venous O2 saturation (SmvO2) assuming venous pH to be 0.04 less 

than pHa, and mixed venous PCO2 to be 0.8 kPa higher than PaCO2.  

 

The INVENT system uses utility theory in the form of penalty functions to model 

clinical preferences. Each level of FiO2 and predicted oxygenation values are 

associated with a total penalty calculated as the unweighted sum of penalties due to 

local and general ischemia quantified as functions of SaO2 and SmvO2, respectively, 

and due to the risk of oxygen toxicity quantified as a function of FiO2. The 

optimization component of INVENT automatically varies FiO2 and locates the 

optimal level, which is that incurring minimal total penalty. 

 

 

Figure 7: The structure for the INVENT system for decision support on FiO2. Used with 

permission from paper II. 

 

Figure 8 illustrates the user interface of INVENT for FiO2 management. The figure is 

a screenshot taken with data input for a patient from paper III. The left hand side of 

the screen shows the patient specific predicted FiO2-SaO2 curve. On the curve a cross 

encircled by a green circle identifies the system suggested level of FiO2. The system 

allows the clinician to manually vary the FiO2 and see the resulting total penalty. This 

can be done using the button next to FiO2 under the curve in the column “Manual”. 

The currently selected manual FiO2 is marked on the FiO2-SaO2 curve by a vertical 

and horizontal line. In the column “Optimal” under the curve, the system suggested 

level of FiO2 is shown. Under “Manual” and “Optimal” model predicted values of 

SaO2, arterial oxygen concentration (CaO2) and oxygen delivery (DO2) are also 
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shown for the manual and optimal levels of FiO2, respectively. The manual and 

optimal penalties are summarized in the bar plot next to the FiO2-SaO2 curve. The 

manual FiO2 in the screenshot corresponds to the FiO2 selected by the attending 

clinician in paper III. 

 

The right hand side shows the three penalty functions in the system, and a summary of 

the penalties associated with the manually selected FiO2 level.  

 

 

Figure 8: A screenshot of the INVENT system taken during study III. Used with permission from 

paper III. 

 

2.4 ICARE system and database 

The INVENT system and the parameter estimation procedure are implemented in a 

system, ICARE, developed at MMDS, Aalborg University [118]. The system includes 

software for communication with devices using RS-232 interfacing. It incorporates a 

MySQL database for storing all data from devices as well as model simulation data 

and INVENT suggestions. The system also includes autonomous agents responding to 

changes in specific data and calculating new values of derived variables. E.g. when a 

new value of height or weight is available an autonomous agent calculates a new 

value of body surface area. All added data are stored with an ID referring to the 

patient they describe. All stored data are also associated with a timestamp, a rank, and 
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their origin. The rank can be measured, calculated, estimated or default illustrating the 

quality of the data. Origin allows the user to see the device or software system, e.g. 

INVENT, which input the data. 
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3. Summary of Papers 

3.1 Paper I 

Aim 

To evaluate the relevance of variation in the PaO2/FiO2 ratio with FiO2. PaO2/FiO2 is 

the current dominating hypoxemia index used in intensive care and clinical trials. The 

study was also performed to evaluate the ability of a shunt only model to describe this 

variation in comparison with a two parameter model describing shunt and 

ventilation/perfusion mismatch. 

Methods 

The study was a retrospective evaluation. Several patient groups were included to 

allow the analysis to be performed simulating as many different forms of lung 

disorders and severities of gas exchange problems as possible. Experimental data 

were included from normal subjects [103], postoperative patients following 

gynaecological laparotomy [102,103] and cardiac surgery [103,104], patients 

suffering from cardiac incompensation [103], intensive care patients from a 

previously published study [103] and previously unpublished experimental data from 

a further 8 intensive care patients (see paper II, section 3.2) totaling 93 patients 

studied. A total of 36 patients were mechanically ventilated intensive care patients 

whereas 57 were spontaneously breathing. Some of the patients were studied on more 

than one occasion, e.g. after changes in PEEP, yielding a total of 134 patient cases. 18 

patient cases (spontaneous breathing) were excluded as measurement data only 

included arterial blood gas measurements at two levels of FiO2. 

First the two-parameter model was used to show the theoretical variation in 

PaO2/FiO2 upon changing FiO2 under different levels of shunt and A/QV  mismatch. 

The variation was analysed in a clinically relevant range, which was defined as the 

range of FiO2 corresponding to simulated SaO2 values in the range 92-98%. The 

variation was then analysed in 116 patient cases, using both the one parameter 

„effective‟ shunt model and the twoparameter model to fit patient data and simulate 

variation in PaO2/FiO2 ratio. The value of the PaO2/FiO2 ratio as hypoxemia index 

was then evaluated by classifying each patient as being normal (PaO2/FiO2 > 47 kPa), 
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having mild hypoxemia (40 kPa ≤ PaO2/FiO2 < 47 kPa), ALI (27 kPa ≤ PaO2/FiO2 < 

40 kPa) or ARDS (PaO2/FiO2 < 27 kPa) [1]. This was done at the minimum and 

maximum FiO2 of the patient specific clinically relevant ranges, and the number of 

patients changing classification from low to high FiO2 were quantified.  

Data are reported as means ± SD appearing normally distributed on graphic 

evaluation of Q-Q plots [119]. F-tests were used to compare goodness of fit between 

the shunt-only model and the two parameter model, taking into account the degrees of 

freedom lost with additional complexity. A confusion matrix [120] was used to 

illustrate the number of patients classified as normal, with mild hypoxemia, ALI or 

ARDS upon changing FiO2. A cut-off value of 0.05 was used for signifying statistical 

significant differences in the F-test. 

Results 

Figure 9 and Figure 10 illustrate the theoretical variation in SaO2 and PaO2/FiO2 ratio 

upon changing FiO2 under different levels of shunt and A/QV  mismatch, 

respectively. Figure 11 illustrates measured and model simulated variation in SaO2 

and PaO2/FiO2 in six patients representing typical examples from the studied patient 

groups. The two parameter model was shown to give a statistically better fit to data 

than the „effective‟ shunt model (P < 0.005).  

 

 

Figure 9: Simulated variation in SaO2 (A) and PaO2/FiO2 ratio (B) upon changing FiO2 under 

varying levels of shunt (fs). Thick solid lines indicate the portion of the curves within the 

clinically relevant range of FiO2. a and b in subplot B indicate a variation in FiO2 from 0.19 to 

0.57 for fs=20%. Simulations were performed using ΔPO2 = 0 kPa (fA2=0.9), VO2 = 0.26 l/min, 

alveolar minute volume =  5.25 l. Used with permission from paper I. 
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Figure 10: Simulated variation in SaO2 (A) and PaO2/FiO2 ratio (B) upon changing FiO2 under 

varying levels of A/QV  mismatch (ΔPO2). Thick solid lines indicate the portion of the curves 

within the clinically relevant range of FiO2. a and b in subplot B indicate a variation in FiO2 from 

0.26 to 0.35 for fs=20%. Simulations were performed using fs = 5 %, VO2 = 0.26 l/min, alveolar 

minute volume =  5.25 l. Used with permission from paper I. 

 

Disease classification changed upon varying FiO2 within the clinically relevant range 

in 38 of the 116 patient cases (~30%) according to the two-parameter model. The 

number of patient cases classified as ALI or ARDS according to the two-parameter 

model changed from 23 to 31 (~35% increase) and from 18 to 24 (~33% increase), 

respectively. 

 

 

Figure 11: Model simulations and measured patient data, for six patients representing typical 

cases. i: Measured and simulated variation in SaO2 with changes in FiO2. ii: Measured and 

simulated variation in PaO2/FiO2 with changes in FiO2. (a): Normal subject [103], (b): cardiac 

incompensation subject [103], (c): Gynaecological laparotomy patient [102,103], (d): cardiac 
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surgery patient [104], (e): intensive care patient [103], (f): patient from the previously 

unpublished study in intensive care patients. Solid lines and dashed lines indicate models 

simulations with the two-parameter model, and the ‘effective’ shunt model, respectively, thick 

part of curves correspond to the clinically relevant range of FiO2. Model parameters and root 

mean square (RMS) error are specified for each model. + represent measured patient data. Used 

with permission from paper I. 

Conclusions 

The PaO2/FiO2 ratio is dependent on both the levels of FiO2 and SaO2. Within the 

ranges investigated (SaO2 = 92-98 %) almost a third of patients change disease 

classification. Therefore the scientific and clinical utility of the PaO2/FiO2 ratio 

appears questionable. If used, then at least the FiO2 level at which the ratio was 

measured should be reported. The results indicate that the one-parameter „effective‟ 

shunt model is not capable of describing this variation correctly, but that the two 

parameter model is.   
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3.2 Paper II 

Aim 

To retrospectively evaluate INVENT for the ability to provide appropriate suggestions 

of FiO2 in intensive care patients. 

Methods 

Patient data were used from a study in intensive care patients. Data from 8 of the 

patients had been used in paper I, the remaining were previously unpublished. The 

study had been approved by the ethical committee of North Jutland and Viborg 

Counties and the ethical committee of Copenhagen. Informed consent was obtained 

from relatives or nearest guardian. The study inclusion criteria were eighteen years of 

age or more and requirement of mechanical ventilation with levels of FiO2 higher than 

0.4. Exclusion criterion was a highly dynamic patient condition potentially affecting 

measured respiratory parameters during the experiment. This was secured by 

excluding patients with base excess less than -6 mmol/L and serum lactate level 

greater than 4 mmol/L. Measurement data were used from 18 intensive care patients 

with ALI. Two of the 18 patients were excluded as malfunction of the data collection 

software had prevented successful experiments. The patients had been studied at 

Rigshospitalet (Copenhagen, Denmark), as part of a protocol investigating the effects 

of changes in PEEP. Therefore in several of the patients measurement data were 

available at two PEEP settings, and a total of 27 patient cases were available, and used 

in the retrospective evaluation. Median age and weight of the patients were 64.5 years 

(range 27-85 years) and 80 kg (range 70-140 kg), respectively. 

The two parameter model was fitted to patient data (SpO2 and a single SaO2), and 

INVENT was used to calculate the suggestion of FiO2 (FiO2
sugg

). This was compared 

to the FiO2 level and corresponding SaO2 values used in clinical practice (FiO2
clin

, 

SaO2
clin

). An additional model fit was also performed in each patient case fitting the 

model to measured SaO2 values at each FiO2 level, representing the best possible 

model description of the patient. This model fit was used to calculate the „true‟ 

resulting SaO2 (SaO2
true

) from using INVENT advice. As such, this allowed an 

estimate of the effect of using SpO2 combined with a single SaO2 value in model 

fitting to predict patient response to changes in FiO2.   
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Data are reported as median (range) as they did not appear normally distributed on 

graphic evaluation of Q-Q plots. Wilcoxon matched pairs tests were used to compare 

INVENT FiO2 and SaO2 values with clinician FiO2 and SaO2. Bland-Altman plots 

[121] were used to evaluate the agreement between SpO2 and SaO2. A cut-off value of 

0.05 was used for signifying statistical significant difference. 

 

 

Figure 12: Scatter plot of measured FiO2
clin

 versus measured SaO2
clin

 (o), and FiO2
´sugg

 versus 

model simulated resulting SaO2
sugg

 (x). Used with permission from paper II. 

 

Results 

Figure 12 shows a scatter plot of FiO2 levels selected in clinical practice plotted 

against corresponding measured SaO2 values and INVENT suggested FiO2 levels 

plotted against model simulated SaO2 values. The same is shown in Figure 13 but 

with model simulated SaO2 replaced by the simulated „true‟ resulting SaO2 values. 

Table 1 reports the median and ranges of measured and simulated FiO2 levels and 

SaO2 values. 

 

FiO2
clin

 and FiO2
sugg

 as well as SaO2
clin

 and SaO2
sugg

 were significantly different 

(P<0.01). SaO2
sugg

 and SaO2
true

 were also significantly different (P<0.05). The scatter 

plots and ranges of the values show that ranges of INVENT FiO2 and SaO2 values are 

narrower than those used in clinical practice. INVENT maintained FiO2 below 60 % 

in all cases but one where the system used 64 %, whereas FiO2 levels higher than 70 
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% were used in several patients in clinical practice. All measured and simulated SaO2 

values were above 89 %. 

 

 

Figure 13: Scatter plot of FiO2
clin

 versus SaO2
clin

 (o), and FiO2
sugg

 versus model simulated ‘true’ 

resulting SaO2
true

 (x). Used with permission from paper II. 

 

Table 1. Median and range of clinical and INVENT values. Adapted from paper II with 

permission. 

 Median Min Max 

FiO2
clin

 (%) 53.3 38.6 82.6 

FiO2
sugg

 (%) 44 33.0 63.5 

SaO2
clin

 (%) 96.8 90.9 99.1 

SaO2
sugg

 (%) 94.2 91.4 96.3 

SaO2
true

 (%) 94.9 89.2 97.1 

Conclusions 

INVENT suggests appropriate levels of FiO2 and SaO2, acting to minimize risk of 

oxygen toxicity whilst maintaining adequate oxygenation. Although using pulse 

oximetry to estimate arterial oxygen saturation introduces noise in model predictions, 

the resulting SaO2 values remain within safe ranges in all patients. 
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3.3 Paper III 

Aim 

To prospectively evaluate the ability of INVENT to provide appropriate suggestions 

of FiO2 in intensive care patients.  

Methods 

The study was performed from November 2007 to March 2009 in a four-bed intensive 

care unit at Aalborg Hospital (Aalborg, Denmark). Inclusion criteria were broad and 

there were few exclusion criteria in order to evaluate INVENT in a patient population 

covering patients normally residing in an ICU. Inclusion criteria were eighteen years 

of age or more and requirement of mechanical ventilation. Patients were excluded if 

they required an FiO2 level higher than 0.8. The other exclusion criteria were clinical 

suspicion of lung emboli, critical hemodynamic status, and pregnancy, all being cases 

where the physiological model has not been validated yet. A total of 15 patients were 

included, two of which were excluded before data analysis. In addition, a single 

experiment was excluded, as the patient was turned during the experiment affecting 

the gas exchange status of the patient. Up to four experiments were performed in each 

patient totaling 45 patient cases available for analysis. 

Patients were studied over two consecutive days performing two experiments per day. 

In each experiment both INVENT and the attending clinician managed FiO2 shifting 

sequence between experiments. Between INVENT and clinician FiO2 management, 

FiO2 was reset to baseline level and 5 minutes was allowed for equilibration [77]. An 

arterial blood gas measurement was taken at baseline and 5 minutes after each change 

in FiO2.   

Data are reported as means ± SD or as median (interquartile range [range]) if not 

appearing normally distributed on graphic evaluation of Q-Q plots. A box and whisker 

plot was used to compare overall FiO2 changes from baseline level by attending 

clinicians and INVENT [119]. Linear regression was used to analyse the relationship 

between selected FiO2 levels and resulting measured SaO2 values for baseline, 

attending clinicians and INVENT. Pearson correlation coefficients were calculated to 

quantify the strength of these linear relationships. 
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Results 

Median time between two consecutive experiments was 74 (60-123 [50-302]) 

minutes. Attending clinicians varied FiO2 in 22 out of the 45 experiments (49 %), 

whereas INVENT varied FiO2 in 43 experiments (96 %) showing a more frequent 

response to changes in patient state by INVENT. Both attending clinician and the 

INVENT selected to change FiO2 in 20 out of the 45 experiments (44 %). These 

changes were all in the same direction from baseline level. There were no experiments 

where attending clinicians and INVENT selected opposite directions of changes in 

FiO2. 

 

INVENT was more prone to change FiO2 from baseline level and to make larger 

changes compared to attending clinicians, as illustrated in the box and whisker plot in 

Figure 14.  

 

 

Figure 14: Box and whisker plot of changes in FiO2 from baseline level by attending clinicians 

(Clin) and INVENT (DSS). Used with permission from paper III. 

 

Figure 15 illustrates scatter plots of baseline, clinician and INVENT selected levels of 

FiO2 versus measured values of SaO2, allowing an evaluation of the reasonableness 

eness of INVENT advice compared to clinicians on a population basis. Both the 

ranges of selected FiO2 and resulting SaO2 were narrower for INVENT in comparison 

with baseline and clinician ranges. Linear regression lines are also shown, illustrating 

the compromise of balancing FiO2 and SaO2. The resulting linear models and Pearson 

correlation coefficients with P-values were: for baseline: SaO2 = -0.036 FiO2 + 0.976 

(-0.159, P = 0.296); for attending clinicians: SaO2 = -0.026 FiO2 + 0.968 (-0.142, P = 
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0.351); and for INVENT: SaO2 = -0.111 FiO2 + 1.001 ( -0.579, P < 0.001), showing 

that only the correlation for INVENT was statistically significant. 

 

 

 

 

 

 

 

 

 

 

Figure 15: Scatter plots of FiO2 versus measured SaO2 in each patient case: A) at baseline, B) set 

by attending clinicians, and C) set following INVENT suggestions. Solid lines illustrate linear 

regressions for the relationship between FiO2 and SaO2. Used with permission from paper III. 

 

 

Interesting differences emerged when looking at selected levels of FiO2 and measured 

SaO2 on an individual patient basis during the four experiments. Figure 16 illustrates 

clinician (Figure 16A, B) and INVENT (Figure 16C, D) FiO2 and SaO2 in 6 of the 

patients. For example, in one patient, INVENT was more capable of preventing a 

large drop in SaO2 due to change in patient status between experiments (patient 

illustrated by squares), in another case, INVENT seemed too prone to increase FiO2 

from a low level when it was not necessary (patient illustrated by dots). 

 

As an interesting technical note aside, Figure 17 illustrates a Bland-Altman plot of the 

agreement between model predicted values of SaO2 and the resulting measured 

values. The model predicted on average somewhat lower SaO2 with a mean difference 

of -0.005 ± 0.012. No systematic bias can be identified from the plot. This plot was 

not included in paper III. 
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Figure 16: Selected levels of FiO2 and SaO2 in the four experiments in 6 of the patients. A) and B) 

clinician FiO2 and SaO2, respectively. C) and D) INVENT FiO2 and SaO2, respectively. Used with 

permission from paper III. 

 

 

 
Figure 17: Bland-Altman plot of agreement between model predictions of SaO2 (SaO2,pred) and 

measured resulting SaO2 (SaO2,res) from using INVENT FiO2 suggestions. Values on the x-axis 

are the average SaO2 of each set. Solid line is the average difference across all patient cases and 

dotted lines are the limits of agreement (average difference ± 2SD). Patient cases from the same 

patient are shown with identical point markers. Used with permission from paper III. 
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Conclusions 

Results indicate that the INVENT system is safe to use for suggesting FiO2 levels in 

intensive care patients. The physiological model accurately predicts SaO2, and all 

FiO2 levels suggested by INVENT resulted in appropriate values of SaO2. Both 

clinicians and INVENT often changed FiO2 when evaluating patients suggesting that 

frequent reevaluation of the patients is valuable. INVENT may help to understand 

difficult patients, and in easily managed patients the system may be used to free the 

focus of clinicians to concentrate on more challenging therapy. 
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3.4 Paper IV 

Aim 

To perform a systematic comparison of different minimal models to find the 

necessary degree of modeling complexity to describe the pulmonary gas exchange of 

both O2 and CO2 and provide an adequate description of gas exchange abnormality in 

intensive care patients. 

Methods 

The study was carried out as a retrospective study. The data used in paper II were 

selected, as these patients had severe disorders in pulmonary gas exchange. After 

publication of paper II the data from two additional patients were made available 

totaling 18 patients for the analysis. As several patients had been studied at two levels 

of PEEP a total of 30 patient cases were available.  

Three different models were compared: an one parameter „effective‟ shunt model 

(Model I); a two parameter model as used in papers I, II, and III describing shunt and 

A/QV  mismatch, with perfusion locked between two ventilated compartments, and 

fraction of ventilation varied to fit patient data (model II); and a three parameter 

model, similar to model II but where also the fraction of perfusion going to the two 

ventilated compartments is varied to fit patient data. The three models were compared 

quantitatively for their ability to fit patient data taking into account the degrees of 

freedom lost with increasing complexity, and qualitatively for their ability to describe 

the gas exchange abnormality of the individual patients.  

Data are reported as means ± SD appearing normally distributed on graphic 

evaluation of Q-Q plots. F-tests were used to compare goodness of fit between 

models, taking into account the degrees of freedom lost with more complex models. χ
2
 

tests were also used to evaluate the goodness of fit of the models on a patient case 

basis. A Bland-Altman plot was used to evaluate the agreement between SpO2 and 

SaO2. A cut-off value of 0.05 was used for signifying statistical significant differences 

in F-tests. In the χ
2
 tests P>0.1 was used as cut-off for signifying an adequate fit to 

measurement data. 
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Results 

Chi-squared tests of quality of fit to individual patient cases indicated adequate fit to 

measured data (P>0.1) in 1 patient case for model I (3% of cases), 19 (63%) patient 

cses for model II and in 24 (80%) patient cases for model III. Pairwise F-test 

comparisons showed model II to give a significantly better fit to measured data than 

model I (P<0.001), and indicate model III to give better fit than model II (P<0.1), 

however with low statistical significance. 

Figure 18 shows an example of model fits to measured O2 and CO2 data in a patient 

case where only model III provides an adequate fit to both O2 and CO2. Both models 

II and III fit the CO2 data, but model II can not simulate sufficient right shift in the 

FetO2-SpO2 curve, i.e. describe a sufficient alveolar to lung capillary drop in PO2. 

Of the 6 patient cases where chi-squared tests showed that model III produced an 

inadequate fit to data, 1 patient could be described by model I, i.e. shunt was 

sufficient to describe the data. In another case, model II was sufficiently complex to 

describe measured data. In the last 4 patient cases, there was a significant bias 

between SpO2 and SaO2. However, in these cases fitting model III to SaO2 showed 

small differences in resulting described degree of lung disorder according to the 

difference between alveolar and arterial partial pressures of O2 and CO2.  

 

Figure 18: Fit of the three models to measured patient data, in a patient case, where only model 

III provides a good fit to both O2 and CO2 data. Left) Model fitted simulations of oxygenation for 

model I (dashed line), model II (dotted line) and model III (solid line), and measured FetO2-SpO2 

(+) and FetO2-SaO2 (o) points. Right) Model fitted simulations of FetCO2-PaCO2 for model I 

(diamond), model II (triangle) and model III (x) and measured FetCO2-PaCO2 (o) point. 
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Figure 19 shows model fitted ventilations and perfusions of the two ventilated 

compartments versus A/QV  of the respective compartments for models II and III. For 

each patient case there are two points in each sub plot: one for the low A/QV  

compartment and one for the high A/QV  compartment. The ranges of A/QV  ratios 

that model III can describe are broader than those of model II. This is in particular 

obvious in the middle ranges of A/QV  ratios when comparing ranges of perfusion (A 

and C), and in the lowest range of A/QV  ratios when comparing ventilation (B and 

D). 

 

 

Figure 19: Model fitted perfusion and ventilation of ventilated compartments 1 (upward 

triangles) and 2 (downward triangles) versus ventilation/perfusion ratios in the respective 

compartments. A: perfusion to ventilated compartments of model II. B: ventilation to ventilated 

compartments of model II. C: perfusion to ventilated compartments of model III. D: ventilation 

to ventilated compartments of model III. Filled triangles indicate patient cases where Chi-

squared tests of quality of fit resulted in p>0.1 for model III and p<0.1 for model II, or where the 

resulting p for model III was at least 0.2 larger than that for model II.  
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Conclusions 

The results show that the one parameter model is not able to describe pulmonary gas 

exchange of O2 and CO2. The two parameter model is sufficiently complex to 

describe gas exchange of one of the two gases, but is not able describe gas exchange 

of both gases in all patients. The three parameter model is able to provide adequate 

fits to measured O2 and CO2 data, and is robust in the cases where SpO2 provide a 

poor estimate of SaO2. The three parameter model is able to provide a more varied 

description of A/QV  ratios in different patients. As such this minimal model 

represents a good compromise between complexity and feasibility, and may be used 

in clinical practice to describe lung status in patients with severe lung disorders. 
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4. Discussion 

Ventilator management can be considered a process of finding the appropriate 

compromise between conflicting goals, it is important to secure gas exchange, but at 

the same time excessive levels of pressures, volumes and FiO2 should be avoided to 

prevent VILI. This is a complex task requiring a good understanding of the 

pathophysiology of the individual patient. Although numerous measurements are 

available in the ICU to describe the gas exchange status of the lungs, currently 

available measurements are over-simplified and vary with changes in therapy not 

affecting lung status. Model-based DSSs constitute a potential solution by offering a 

deeper understanding of the patient‟s lung status and by integrating measurement data 

and suggesting optimal therapy.  

The overall aim of this PhD project was to evaluate the use of minimal models of gas 

exchange in decision support of ventilator management. Four questions were 

addressed during the project, see section 1.5. In the following the answers to these 

four questions are discussed based on the results presented in the four papers. In the 

following sections the INVENT system as well as results of the PhD project are 

discussed in relation to: rule-based DSSs and other model-based DSSs. In addition, 

this chapter will discuss the necessary future work to allow INVENT to provide 

decision support of FiO2, Vt and f in intensive care patients, and what is necessary to 

also provide suggestions on PEEP. As a final discussion on decision support, this 

chapter will discuss the necessary steps to be taken to achieve a successful integration 

of INVENT in clinical practice. This chapter will also examine the limitations of the 

mathematical models and parameter estimation methods used in all the studies 

presented in this thesis. Finally other relevant clinical perspectives related to the 

project are discussed.    

4.1 The major findings of this thesis 

Paper I shows that the currently dominating oxygenation index, the PaO2/FiO2 ratio 

varies significantly with changes in FiO2. This has been shown both theoretically, 

according to a two parameter gas exchange model describing shunt and A/QV  

mismatch, but also in various patient groups including intensive care patients. The 

clinical and scientific value of the index therefore appears doubtful. A shunt only 
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model can not describe this variation accurately, but the two parameter model can. 

The results presented in paper I illustrate that a two parameter gas exchange model is 

necessary  to accurately predict changes in oxygenation with FiO2, and is therefore the 

necessary complexity for decision support of FiO2 in the ICU. 

 

A two parameter model describing shunt and A/QV  mismatch is an integrated part of 

the INVENT system originally presented by Rees et al. [73]. As a first step towards 

clinical integration INVENT was modified in this PhD to provide decision support of 

FiO2. This version of INVENT is based on the two parameter gas exchange model 

alone to predict patient response to changes in FiO2. In addition, the parameter 

estimation procedure was modified to include arterial oxygen saturation measured 

from an arterial blood sample. Paper II describes the retrospective evaluation of 

INVENT for decision support of FiO2 in intensive care patients. The results indicate 

that INVENT suggests appropriate levels of FiO2 and SaO2. However, the study was 

retrospective and resulting oxygenations were predicted by model simulations, 

therefore the study is limited to indicate that INVENT is safe to use in an ICU. 

 

Paper III presents the prospective evaluation of INVENT for providing decision 

support of FiO2 in 13 intensive care patients in up to four experiments over two 

consecutive days. Although the number of patients was limited, the results indicate 

that INVENT provides safe and appropriate suggestions of FiO2 in intensive care 

patients with varying severities of respiratory failure. The scatter plots illustrating 

INVENT FiO2 versus resulting SaO2 (Figure 15C) show that INVENT standardizes 

the compromise of achieving sufficient oxygenation versus avoiding the adverse 

effects of hyperoxia, these compromises being patient specific as INVENT 

suggestions are based on model parameters estimated to describe the individual 

patient. When higher FiO2 is required, INVENT accepts lower SaO2. Both in the 

retrospective and the prospective study, it appears that INVENT managed this balance 

as well as or better than attending clinicians. 

 

INVENT was originally designed to provide decision support of FiO2, Vt and f [73]. 

To provide appropriate suggestions of Vt and f, it is necessary to also model the 

pulmonary gas exchange of CO2 as changes in alveolar ventilation caused by changes 
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in Vt and f modify gas exchange of CO2 and thereby affect the acid-base status of the 

blood. Paper IV describes a systematic evaluation of what modeling complexity is 

necessary to obtain an accurate minimal model representation of pulmonary gas 

exchange of both O2 and CO2. The results presented in paper IV show that a three 

parameter model describing shunt and A/QV  mismatch can accurately describe O2 

and CO2 gas exchange in intensive care patients. The two parameter model describing 

shunt and A/QV  mismatch was sufficient in the majority of patient cases but failed in 

some. In comparison, the three parameter model can describe broader ranges in 

A/QV  ratios and is able to describe perfusion to a model compartment with very low 

A/QV  ratios, close to 0.1. This is an interesting quality as perfusion of lung regions 

with very low A/QV  ratios has been described in ARDS patients in studies using the 

MIGET technique [94,95]. The two parameter model could not provide such a 

physiological description. 

4.2 Model-based or rule-based decision support systems? 

The successful prospective evaluation of INVENT for suggestions of FiO2 is an 

important indication of the clinical usability of a model-based DSS. However, in 

comparison numerous clinical trials have been performed with rule-based systems 

including large multicenter studies and often in complex problems involving several 

ventilator settings. Rule-based systems have also been successfully implemented in 

commercial ventilators. Development of a model-based decision support system is a 

complex and time-consuming task involving mathematical description of a complex 

physiological system, quantification of clinical preferences and development of 

methods for estimating model parameters from clinical data. Indeed, given the current 

status of rule-based systems compared to model-based systems one may ask, is it still 

worth it? 

 

There is no doubt that under certain conditions use of a rule-based system may result 

in improvement in patient care [e.g. 47,53] and in general standardize care, which is a 

quality in itself [40]. Multicenter studies have also shown that this can be achieved 

with the same system successfully across several institutions [47,53]. It may also be 

argued that compared to a model-based DSS, a rule-based DSS in the simplest form is 

of relatively low cost to build, for example by implementing a computerized version 
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of a clinical guideline. However, rule-based systems remain blackbox systems, which 

do not provide the clinician with a deeper understanding of the patient nor the 

provided advice. Implementation of intelligent graphic user interfaces have been 

suggested to address this problem [67], however, graphic interfaces do not help 

clinicians in understanding the provided advice, and would likely be more valuable 

with an underlying physiological interpretation of the patient as in a model-based 

DSS. 

 

When estimated, the model parameters for the two parameter gas exchange model 

used in INVENT provide a physiological interpretation of the individual patient. The 

fs parameter quantifies the degree of intrapulmonary shunt, and the fA2 parameter 

describes the degree of A/QV  mismatching. This is directly related to the response of 

the individual patient to changes in FiO2, as increases in intrapulmonary shunt causes 

a vertical depression of the FiO2-SaO2 curve, i.e. changes in FiO2 have less effect on 

SaO2. An increase in A/QV  mismatching (low fA2) causes a horizontal right shift in 

the FiO2-SaO2 curve. This can be translated to a ΔPO2 value, which describes the 

extra amount of oxygen necessary at the mouth to counter the oxygenation problem 

due to A/QV  mismatch.   

 

The requirement of a parameter estimation procedure may be regarded as a limitation 

of model-based DSS compared to rule-based DSSs. The parameter estimation 

procedure used to identify the two parameter gas exchange model in INVENT 

requires variation in FiO2 and measurement of oxygenation using pulse oximetry, a 

single arterial blood gas analysis and measurement of oxygen fraction in the expired 

air. Variation of FiO2 is a common procedure in an ICU and only measurement of 

expired gas fractions can be considered not a part of routine clinical data. However, 

these measurements can be obtained from medical equipment, and as shown in paper 

I, they are necessary for an accurate description of pulmonary gas exchange. In 

addition, the parameter estimation procedure could safely be performed by a nurse, 

and Bayesian methods have been developed for supporting the selection of FiO2 steps 

and potentially making the procedure computer controlled [122]. Of course, clinicians 

or nurses could vary FiO2 without a computer system to better understand patient 

responses to changes in FiO2. This would, however, be time-demanding requiring 
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resources not normally available in clinical practice. Without tools as those presented 

by Rees et al. [78] to monitor equilibration after changes in FiO2, it is necessary to 

allow 5 minutes for equilibration [77] prolonging the process compared to using the 

DSS. In addition, although varying FiO2 without a DSS would give clinicians a better 

understanding of the gas exchange status of the patient, it would not help to 

standardize clinical preferences when managing FiO2. 

 

Another possible advantage of model-based DSS is removal of the need for a trial and 

error approach to locating the appropriate ventilator settings [68]. However, this is 

under the assumption that the physiological models accurately predict patient 

response to changes in therapy. The good agreement between model simulated SaO2 

from fit to pulse oximetry with model simulated SaO2 from fit to SaO2 reported in 

paper II (Figure 12 and Figure 13) indicate that the two parameter gas exchange 

model accurately predicts patient response to changes in FiO2. This was confirmed in 

the prospective study as shown in Figure 17. 

 

INVENT uses utility theory in the form of penalty functions to decide therapy. The 

penalty functions in INVENT quantify clinical preferences, e.g. preventing ischemia. 

The suggestions provided by INVENT are associated with penalties calculated using 

the relevant penalty functions. As such, the compromises between conflicting goals 

made by INVENT are made explicit to the clinician allowing an understanding of the 

provided advice. 

4.3 Current status of model-based decision support of 

mechanical ventilation 

Several model based DSS or hybrid systems combining models with rules have been 

developed to assist clinicians in managing mechanical ventilation as outlined in the 

introduction. In the following, the various qualities of the systems are discussed 

including how the results obtained in the PhD project contributes to the field of 

model-based decision support of mechanical ventilation. The different systems are not 

directly comparable for their ability to provide appropriate suggestions of changes in 

therapy as they provide advice for different ventilator settings, use different 

measurements for evaluation or have been tested under different conditions. In the 
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following discussion the systems are instead compared with regards to the potential 

clinical benefits they may provide and their clinical feasibility. The VentPlan system 

[71] was very similar to INVENT in terms of modeling and use of decision theory. 

However, the development of VentPlan has stopped and it will not be discussed 

further, but it should be noted that several of the qualities of INVENT discussed in the 

following were also qualities of the VentPlan system. 

 

To the best of my knowledge, the prospective evaluation of INVENT presented in 

paper III is the first prospective evaluation of a model-based medical decision support 

system for ventilator management since the studies with the OPTPROG system by 

Rudowski et al. in the early nineties [69,70]. OPTPROG was prospectively evaluated 

for suggestions on f, Vt and PEEP, which represent a more complex problem than 

management of FiO2. However, OPTPROG had several issues which likely would 

prevent routine clinical use. OPTPROG was based on linear models with model 

parameters having no physiological interpretation. As such the users would have little 

extra to gain from using this system compared to a rule-based system, except the 

potential of preventing trial and error when selecting therapy. Despite the simple 

model, the parameter estimation procedure took approximately one hour and required 

four arterial blood gas measurements [69,70], a frequency of arterial blood sampling 

in excess of that normally used in clinical practice. Rudowski et al. argued that when 

enough patient data was accumulated, statistical analysis could be used to acquire a 

priori knowledge of model parameters potentially simplifying or obviating the 

parameter estimation procedure [69]. However, the heterogeneity of ALI/ARDS 

patients reported in clinical studies strongly contradicts this [e.g. 36,37]. 

 

The SIVA system [72] is based on a two parameter physiological model of gas 

exchange to simulate patient response to changes in FiO2, and empirical models to 

simulate patient response to changes in respiratory frequency and inspiratory pressure 

[72]. The two parameters of the gas exchange model have a physiological 

interpretation [75], however, the authors stated that estimation of model parameters 

requires a pulmonary artery catheter and that there were convergence problems. As 

such, the authors suggested that for prospective use, shunt should be estimated using a 

fuzzy inference system [62] and physiological dead space had to be estimated by the 

clinician [72]. The parameter estimation is therefore limited to requiring an arterial 
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blood gas sample at a single level of FiO2. The system has at present only been 

evaluated using model simulations, preventing any conclusions on the accuracy of 

model predictions.  

 

The FLEX system uses several simple models to describe patient response to changes 

in FiO2, PEEP, f and I:E-ratio [74]. All the models implemented in FLEX are either 

very simple without any model parameters or empirical having parameters without a 

physiological interpretation. These empirical model parameters are not tuned to 

describe the individual patient. The simple nature of the models used in FLEX allows 

the system to be used from measurements readily available at the bedside in the ICU, 

however, this also prevents FLEX from providing the clinician with a deeper 

physiological understanding of the patient.  

 

FLEX incorporates scalability such that if certain measurements are not available the 

system uses a different, i.e. simpler, approach to calculate suggestions. This can be a 

valuable quality of the system, especially when used outside the ICU where 

measurements of lung status are sparse. The different methods used in this PhD 

project (see section 2.2) illustrate that the parameter estimation procedure used for the 

gas exchange model in INVENT is to some extent scalable. In addition it has been 

shown that in patients with cardiac incompensation the parameters can be estimated 

without an arterial blood gas measurement using default values [123]. However, it 

would still be necessary to measure variation in oxygenation with varying FiO2 to 

separate the effects of shunt and A/QV  mismatch. 

 

Both SIVA and FLEX are hybrid systems using models in combination with rules to 

calculate suggestions on changes in therapy. As such these systems, like rule-based 

systems, do not make it obvious to the clinician what compromises have been made 

by the system. 

4.4 Future work 

The version of INVENT originally presented by Rees et al. in 2006 was intended for 

decision support of not only FiO2 but also of Vt and f [73]. In the following, the 

relevance of providing decision support on these settings is discussed as well as the 
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future work necessary to enable prospective evaluation of INVENT for suggesting 

FiO2, Vt and f in an ICU. Thereafter it is discussed what future work may allow 

INVENT to provide suggestions on PEEP, for which the appropriate levels remains 

elusive. Finally this section will address the necessary work required to facilitate 

future clinical integration of INVENT. 

Advice on FiO2, Vt, and f 

A recent epidemiological study by Esteban et al. showed that tidal volumes in general 

have been decreased in ARDS patients in clinical practice, but also that this has not 

reduced mortality more than 5 percent since 1998 [124] and ICU and hospital 

mortality in ARDS patients remain above 50% and 60%, respectively [124]. Several 

reasons may have contributed to this apparently high mortality in comparison with 

those of the multicenter clinical trials reporting mortalities below 30% [e.g. 28,30]: 

the studied populations may have been more heterogeneous; the design of the 

retrospective study by Esteban et al.; change in composition of patients presenting in 

the ICU; or perhaps the difficulty for clinicians to use the guidelines in clinical 

practice for the benefit of individual patients? Use of a DSS could potentially help to 

standardize care according to the individual patient.  

 

INVENT has been shown retrospectively to provide appropriate suggestions of FiO2, 

Vt and f in cardiac surgery patients mechanically ventilated in an ICU [125]. In these 

patients the two parameter gas exchange model was successfully used to describe the 

pulmonary gas exchange of O2 and CO2. However, the results presented in paper IV 

illustrate that a three parameter model is necessary to describe both O2 and CO2 gas 

exchange in intensive care patients. As such, this model must be implemented in 

INVENT before an eventual retrospective or prospective evaluation in intensive care 

patients. This will require a measurement of end-tidal fraction of CO2 in addition to 

the measurements used for estimating model parameters to describe O2 gas exchange. 

Paper IV was limited to compare minimal models in intensive care patients 

representing some of the most complex respiratory failure patients with regards to gas 

exchange. The two parameter model may be sufficient to describe gas exchange of 

both O2 and CO2 in “simpler” patients, as shown in cardiac surgery patients by 

Allerød et al. [125]. 
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Currently, INVENT uses a single set of penalty functions to calculate suggestions, 

regardless of patient type and clinical circumstances. Although the majority of 

changes in FiO2 have been appropriate and all have been safe, results in a few patients 

indicate that INVENT may be too prone to increase FiO2 from low levels when SaO2 

is sufficient (see patient illustrated with dots in Figure 16). It may be sufficient to 

remove this tendency by making ischemia penalties smaller at SaO2 above 0.97 or 

toxicity penalty a little higher at low FiO2 (see Figure 7). Alternatively a new set of 

penalties could be formulated for example for weaning patients. In all circumstances, 

a new set of penalties would be relevant for patients with severe chronic obstructive 

pulmonary disease, where the patient‟s normal levels of oxygenation may be reduced.    

 

Some additional modifications of INVENT are necessary before a prospective 

evaluation can be performed for the three settings. The current simple model of lung 

mechanics implemented in INVENT assumes a constant linear compliance relating 

tidal volume to the difference between peak pressure and PEEP. Changes in tidal 

volume can, however, affect lung status, e.g. increases in tidal volume may increase 

peak pressure potentially recruiting collapsed alveoli reducing shunt thereby leading 

to less accurate predictions using the gas exchange model. As described in the 

following section on PEEP advice, it is difficult to formulate a mathematical model of 

lung mechanics, which is able to describe lung mechanics of patients from clinical 

data. Therefore it may be necessary to resort to a trial and error approach as in rule-

based systems. This can be performed by implementing a step to target algorithm in 

INVENT such that large changes in tidal volume can be performed in steps and gas 

exchange can be evaluated at each step. Similarly increases in f may cause intrinsic 

PEEP. As such, the step to target functionality should include f, and end-expiratory 

occlusions should be performed allowing quantification of intrinsic PEEP.  

 

Advice on PEEP 

The large number of clinical trials which have failed at finding an optimal PEEP 

strategy in ALI/ARDS patients [e.g. 29,31,32] illustrate the need for better 

understanding of how PEEP should be managed. An important reason may be the lack 

of understanding of how changes in PEEP affect lung mechanics as well as gas 

exchange. Physiological models have been constructed to describe lung mechanics 



 62 

either addressing specific components of the respiratory system in great detail [e.g. 

126] or the complete respiratory system using an empirical approach [127]. Whilst 

these models have added to the current understanding of lung mechanics they have 

not provided a fundamental understanding of the mechanical effects of changes in 

PEEP. In addition, attempts to link lung mechanics and gas exchange have been few 

[128], despite the fact that securing gas exchange is one of the goals of changes in 

PEEP.  

 

In order to enable model-based decision support of PEEP a novel model must be 

constructed, capable of explaining the effects of changes in PEEP. The model should 

be able to describe the effect of PEEP on both ventilation and perfusion, thereby 

allowing also description of gas exchange.  

 

To describe ventilation, the model should include the contributions of: the hydrostatic 

gradient down the lung due to the weight of the lung [4]; the chest wall; the lung 

tissue; and pulmonary surfactant. The chest wall and pulmonary surfactant have often 

been neglected in models of lung mechanics. The chest wall has been suggested as 

important in understanding recruitments maneuvers in ALI/ARDS patients [129]. 

Pulmonary surfactant is considered vital for mechanical stability during breathing 

[130], and inhibition of surfactant due to mechanical ventilation and edematous fluid 

entry indicate the importance of understanding surfactant to understand lung 

mechanics in respiratory disease [18]. Work has begun describing the different 

components in the healthy lungs [131], however future work is required addressing 

how the properties of the different components of the respiratory system change in 

respiratory disease. 

 

To the best of my knowledge, no mathematical models have been built to describe 

how changes in ventilatory pressures affect the distribution of pulmonary perfusion. 

We have begun building a model with this aim [132]. The model at its current state, 

describes the pulmonary perfusion in the healthy human lungs and is able to describe 

experimentally measured total capillary perfusion, volume and surface area [132]. 

Future work is required for describing pulmonary perfusion in respiratory diseases 

including addition of hypoxic pulmonary vasoconstriction, which acts to reduce 

pulmonary perfusion in hypoxic lung regions [133].  
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In addition to modeling the different components of the respiratory system, the 

heterogeneity of the lungs must be considered. A possible solution is to build 

stratified models allowing different layers to have different properties, e.g. due to 

different pleural pressures as caused by a hydrostatic gradient [4]. This may enable 

such models to describe the „baby-lung‟ of ARDS, that is, a very small volume of 

lung being ventilated due to the remaining lung being collapsed, or consolidated [5]. 

Models of lung mechanics have been built using a stratified structure including the 

model by Steimle et al. [127,128,131,134]. The model of perfusion introduced by 

Mogensen et al. [133] is based on the same stratified structure as the model by 

Steimle et al. [134], illustrating the possible combination of these models in the future 

to describe gas exchange and thereby also the link between lung mechanics and gas 

exchange. 

 

Alternatively to modeling the effects of changes in PEEP, one may derive simple 

algorithms describing compromises considering changes in FiO2 versus PEEP as done 

in clinical trials [e.g. 28]. However, changes in PEEP will likely impact the patient‟s 

gas exchange status and should as such be followed by a re-estimation of parameters 

of the gas exchange model. This may introduce the need for trial and error in some 

patients, similar to that necessary in rule-based systems. 

Clinical integration 

Whilst a DSS may provide sound advice, provide physiological understanding and in 

general improve patient care, it is of no value if it is not used at the bedside. An 

obvious way to enable successful clinical integration is through commercial 

collaboration with companies producing mechanical ventilators. This has been 

demonstrated with the GANESH system originally presented by Dojat et al. [49], 

which is now implemented as part of the SmartCare
TM

 system by Dräger Medical 

[64]. Besides performing several large studies demonstrating the efficiency of the 

system, as performed with GANESH [51-53], INVENT could benefit significantly 

from collaboration with the industry. However, as long as data can be retrieved from 

the ventilator, a system as INVENT could potentially be developed as a stand-alone 

system, albeit this would introduce significant obstacles, the main being that it would 
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be difficult if not impossible to make the system or parts of the system such as 

parameter estimation, closed loop. 

 

Morris described in 2000 several barriers to the use of computerized clinical 

protocols, i.e. rule-based DSSs [40]. The list presented by Morris included a lot of 

barriers concerning clinical culture and fear of losing authority. However, several 

barriers addressed qualities of the DSS, which would apply for an eventual integration 

of INVENT as well. These barriers can be translated to a few qualities a DSS should 

have: The system should not add more burdens to the already stressed critical care 

staff either in form of excessive data entry or high complexity; the system should be 

usable in a large variation of clinical cases not just the most prevalent; and the system 

should be supported by a technological infrastructure such as electronic patient 

records. 

 

As discussed previously the parameter estimation procedure used for estimating 

parameters of the gas exchange model in INVENT does not add considerable burden 

to the clinical staff, and it could potentially be automated. Further automation could 

include automatic detection of when new parameter estimation is necessary, e.g. after 

changes in settings or posture. When estimated, model parameters act to reduce 

complexity integrating data from various devices, and providing a physiological 

understanding of the patient directly related to changes in therapy. 

 

Paper III showed that INVENT could provide decision support of FiO2 in patients 

with different severities of lung disorder and in controlled as well as spontaneous 

ventilator modes. The current version of INVENT for providing suggestions of Vt and 

f is limited to volume controlled mode. Inclusion of more complex models of lung 

mechanics and respiratory drive would potentially allow INVENT to provide decision 

support in patients ventilated in pressure control mode as well as support ventilator 

modes. Models of respiratory drive have been built, which potentially could be used 

for such application [e.g. 135,136]. 

 

INVENT is implemented in the database system ICARE [118], which can facilitate 

automatic retrieval and storage of measurement data from several medical devices. In 

addition calculated values, estimated model parameters and INVENT advice can be 
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stored in the database, and values not automatically retrieved may be input manually. 

As such ICARE provides a technological infrastructure supporting all tasks related to 

using INVENT. Integration of ICARE with existing clinical databases would further 

strengthen this technological infrastructure, perhaps similar to the HELP database 

used in the successful Salt-Lake city protocols [45-48]. 

4.5 Model limitations 

A number of assumptions and simplifications have been made in the project regarding 

the use of minimal models to describe pulmonary gas exchange and when estimating 

model parameters. These are discussed in the following.  

 

All minimal models used in this PhD project have assumed continuous ventilation and 

perfusion, steady state, and that end-tidal gas and mixed alveolar gas fractions are 

equal. These assumptions do not represent the true nature of human breathing, which 

is tidal [137]. Models of gas exchange have been built describing tidal ventilation 

[e.g. 138,139]. However, estimation of model parameters for these models using 

clinical data has so far not been demonstrated, and the models have either been 

limited to simulations studies [138] or parameters have been estimated using a 

combination of MIGET and multiple breath nitrogen washout measurements [139]. 

As such, minimal models as those presented here, appear currently to represent the 

most accurate descriptions of gas exchange from clinical data. 

 

Effects of diffusion limitations have not been included in the models. Diffusion 

limitation has a similar effect on pulmonary gas exchange as A/QV causing a ΔPO2 

[140]. Studies with MIGET, however, has demonstrated that in the majority of 

patients, A/QV mismatch is likely a better description of physiology [93,93,140] 

except in cases of pulmonary fibrosis [93], exercise [141] or mild exercise during 

hypoxia [141,142]. 

 

The parameter estimation procedure depends on measurement of arterial oxygenation 

at steady state at varying levels of FiO2. This is done under the assumption, that 

varying FiO2 does not alter the physiology of the patient in such a way that 

A/QV mismatch and shunt are affected significantly. Variation in FiO2 may affect 



 66 

lung physiology through absorption atelectasis and hypoxic pulmonary 

vasoconstriction (HPV). Absorption atelectasis is not likely to have an impact on 

parameter estimation, as it has been shown during induction of anaesthesia that 

absorption atelectasis mainly occurs at FiO2 levels of 0.8 or more [20], whilst 

parameter estimation rarely requires FiO2 levels as high as 0.8. HPV reported effects 

on gas exchange have been moderate [143] or considerable [144], but has represented 

maximal responses to changes in FiO2, the expected changes with the smaller 

variations in FiO2 being less likely to significantly affect pulmonary gas exchange. 

Studies with MIGET [145,146] and computer simulations [147,148] have also shown 

small changes in model parameters with large variations in FiO2. 

 

VDana and Q were assumed constant during the parameter estimation procedure, see 

section 2.2. In paper I, VDana and Q from the original papers were used [102-104]. In 

papers II and IV VDana was measured. In paper III, VDana including apparatus dead 

space was assumed to be 0.2 l in all patients. As VDana varies with posture, body size 

etc. [77], this simplification may have affected the correctness of estimated model 

parameters. However, it would have no consequence on INVENT suggestions of 

FiO2, as they would be based on model fits to measured FetO2-SpO2 curves and as 

such would reflect patient status as long as the model fitted data well.  

In papers II-IV, Q was either measured or estimated from body surface area and a 

population characteristic CI. This may likely not have reflected the true Q in some 

patients. However, a previous study with a two parameter model describing shunt and 

diffusion limitation, i.e. a ΔPO2, based on mass conservation and the same 

assumptions as models used in this project, showed that parameter estimation was 

insensitive to moderate variations in Q [106], with changes in Q of 40% changing fs 

by 0.04 and ΔPO2 by 0.5 kPa.    

4.6 Clinical perspectives 

The results presented in this thesis illustrate that a model-based DSS for mechanical 

ventilation may help to standardize therapy according to the individual patient. A 

model-based DSS may also help to diminish information overload, which if 

unattended affects clinical decision making [38,40]. INVENT uses a gas exchange 

model to integrate information from ventilator settings, hemodynamic parameters, 

oxygenation, acid base chemistry of blood and metabolism into two model 
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parameters, shunt and fA2 (ΔPO2) describing the gas exchange status of the patient. 

This can be valuable in the difficult to manage patients. In the easily managed 

patients, a model-based DSS as INVENT may free the focus of the clinicians on more 

challenging therapy.  

 

Results in papers I and IV illustrate that several measurements currently used in 

clinical practice are insufficient to provide an accurate description of pulmonary gas 

exchange in intensive care patients including ALI/ARDS patients. Results in paper I 

illustrated how the PaO2/FiO2 ratio varies with changes in FiO2 and SaO2. The 

PaO2/FiO2 ratio is the hypoxemia index used in the definition of ALI/ARDS and 

constitutes the single value separating ALI and ARDS diagnosis [1]. Paper I showed 

several patients changing disease classification due to variation in FiO2, a common 

therapeutical intervention normally not affecting pulmonary gas exchange. Other 

theoretical studies have come to similar conclusions but without involving clinically 

measured variations in the PaO2/FiO2 ratio [149-151].   

 

So how should the refractory hypoxemia evident in ALI/ARDS patients be defined? 

As suggested in paper I, at least the FiO2 level should be informed when using the 

PaO2/FiO2 ratio, however also SaO2 has an impact and would be appropriate to 

inform. However, standardizing FiO2 when including patients is unpractical and 

standardizing both FiO2 and SaO2 is even more so due to the varying severities of 

lung disorder seen in ALI/ARDS. Alternatively, minimal models of gas exchange 

could be used by estimating model parameters and classifying hypoxemia according 

to the levels of shunt and degree of A/QV  mismatch. The ability of the three 

parameter model to describe large fractions of shunt and large perfusions going to 

regions with low A/QV  ratios as shown in studies using MIGET indicate that the 

three parameter model may be suitable for this application. 

 

It has also been argued that a future hypoxemia index used in ALI/ARDS definition 

should not vary with changes in PEEP [152]. We disagree with this approach, as 

changes in PEEP, unlike most changes in FiO2, affect the pulmonary physiology 

[94,95] and may have different effects in different patients [37]. However, 

standardization of the level of PEEP used when evaluating patients could be very 
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relevant to potentially separate patients whose alveoli are readily recruited and where 

PEEP may keep these alveoli open from patients with consolidated lung regions. This 

is in line with several other authors advocating use of standardized ventilator settings 

when enrolling ALI/ARDS patients for clinical trials [153-154]. 



 69 

5. General Conclusions 

 

1. A two parameter model of pulmonary gas exchange describing intrapulmonary 

shunt and ventilation-perfusion mismatch can describe variation in 

oxygenation with changes in FiO2. The shunt only model can not describe this 

variation accurately. 

2. The PaO2/FiO2 ratio varies significantly with FiO2 and its use as a hypoxemia 

index is questionable. As a minimum requirement measurements of PaO2/FiO2 

should be accompanied by the corresponding FiO2 level. 

3. The INVENT system provides appropriate suggestions of FiO2 and SaO2 in 

intensive care patients. 

4. Compared to attending clinicians INVENT standardizes the FiO2 levels and 

values of SaO2 according to the individual patient. 

5. All suggestions of FiO2 provided by INVENT results in safe values of SaO2. 

6. When identified, the two parameter gas exchange model describing shunt and 

ventilation-perfusion mismatch is capable of predicting the oxygenation 

response of intensive care patients to changes in inspired oxygen. 

7. A three parameter model is necessary for an accurate minimal model 

representation of the pulmonary gas exchange of both O2 and CO2 in intensive 

care patients. 

8. Estimation of model parameters for a three parameter model describing shunt 

and ventilation-perfusion mismatch may be performed using routine clinical 

data, potentially allowing this model to be used at the bedside in an ICU and 

as part of INVENT for providing advice on tidal volume and respiratory 

frequency.  
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Summary 

Mechanical ventilation is one of the key life-sustaining therapies applied in the 

intensive care unit. Management of mechanical ventilation is a complex task due to 

conflicting clinical goals. Decision support systems provide a tool for clinicians when 

selecting therapy by providing patient specific suggestions on therapy. This PhD 

thesis addresses the use of minimal models of pulmonary gas exchange, comparing 

models of varying complexity and clinically available measurements, and the use of a 

minimal model of O2 gas exchange in a decision support system to provide 

suggestions on inspired O2 in intensive care patients. 

 

The thesis describes the clinical and technical backgrounds of the project. Acute lung 

injury and acute respiratory distress syndrome (ALI/ARDS) are described constituting 

some of the most complex diseases with regards to mechanical ventilation, with lungs 

being susceptible to ventilator induced lung injury (VILI). Different VILI types are 

described as well as major clinical trials with lung protective ventilator strategies. The 

review illustrates that controversy exists and the optimal therapy for the individual 

patient remains elusive. Whilst volumes and pressures are the focus of current 

strategies, levels of inspired O2 are rightfully not ignored and minimized in the 

majority of trials. Decision support systems for mechanical ventilation are reviewed 

illustrating the predominate role of rule-based systems. Two inherent weaknesses of 

these systems are brought forward. Rule-based systems do not provide a deeper 

physiological understanding of the patient nor the provided advice, and may require 

trial and error to find appropriate therapy.  Model-based systems may solve both these 

problems using mathematical models with parameters having a physiological 

interpretation. Finally pulmonary gas exchange models are reviewed arguing that 

currently available measurements and models in clinical practice are oversimplified as 

they vary with therapies not affecting physiology. The reference technique for 

measuring gas exchange, the multiple inert gas elimination technique, is too complex 

for clinical application. Existing minimal models of pulmonary gas exchange 

represent compromises between complexity and feasibility.  

 

Four studies were carried out resulting in four corresponding papers forming the basis 

for this thesis. Models of different complexities were used, but all being based on 
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conservation of mass, continuous breathing and perfusion and assuming steady state. 

An existing model of the acid base chemistry of blood was implemented in the models 

to describe the gas exchange of both O2 and CO2. Parameter estimation methods were 

tailored to the varying aims and available data for the four studies. 

Paper I shows retrospectively that the predominant hypoxemia index, the PaO2/FiO2 

ratio, varies significantly with changes in inspired O2 in various patient groups 

including intensive care patients. A one parameter model describing intrapulmonary 

shunt can not describe this variation but a two parameter model describing shunt and 

ventilation/perfusion mismatch can. 

Paper II presents use of this two parameter model in the decision support system 

INVENT as part of a retrospective evaluation of INVENT in intensive care patients. 

INVENT provided appropriate suggestions of inspired O2 and model simulated levels 

of oxygenation in comparison to levels used in clinical practice. 

Paper III describes a prospective study comparing INVENT suggested levels of 

inspired O2 and resulting measured arterial oxygen saturation with levels selected by 

attending clinicians in an intensive care unit. INVENT provided appropriate 

suggestions on inspired O2 compared to attending clinicians.     

Paper IV describes a retrospective study of the necessary minimal model complexity 

to accurately describe pulmonary gas exchange of both O2 and CO2 in intensive care 

patients. A three parameter model was shown to be necessary. This model was able to 

describe perfusion of lung units with very low ventilation/perfusion ratios, a 

characteristic shown in ALI/ARDS patients using the multiple inert gas elimination 

technique. 

 

In conclusion, results presented in this thesis show that minimal models provide a 

more accurate description of gas exchange than measurements currently available in 

clinical practice. When used in a decision support system, minimal models also enable 

predictions of changes in oxygen saturation upon changes in inspired O2 fraction. The 

INVENT decision support system using a two parameter minimal model of O2 gas 

exchange provides appropriate suggestions on inspired O2 fraction in intensive care 

patients in comparison to attending clinicians, potentially standardizing care 

according to the individual patient. Inclusion of a three parameter minimal model of 

O2 and CO2 gas exchange may allow INVENT to provide appropriate suggestions on 

inspired O2, tidal volume and respiratory frequency. 
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Danish summary 

Mekanisk ventilation er en af de primære livreddende terapiformer i anvendelse på en 

intensivafdeling. Modstridende kliniske mål komplicerer indstilling af en respirator. 

Beslutningsstøttesystemer udgør et muligt værktøj til at hjælpe læger med valg af den 

mest hensigtsmæssige terapi. Denne PhD-afhandling omhandler brugen af minimal-

modeller af den pulmonære gasudveksling. Under projektet er minimal-modeller med 

forskellige grader af kompleksitet samt klinisk tilgængelige måleteknikker for 

evaluering af gasudveksling blevet sammenlignet, og en minimal-model af O2 

gasudveksling er blevet anvendt i et beslutningsstøttesystem til rådgivning om den 

inspirerede iltfraktion ved patienter på en intensivafdeling. 

 

Som udgangspunkt beskrives projektets kliniske og teknologiske baggrunde. Akut 

lungeskade og akut respiratorisk distress syndrome (ALI/ARDS) beskrives, idet de 

udgør komplekse former for respiratorisk svigt og patienterne er kendetegnet ved at 

være tilbøjelige til at udvikle respiratorinduceret lungeskade (ventilator induced lung 

injury - VILI). Der redegøres for forskellige VILI typer samt vigtige kliniske studier i 

strategier for mekanisk ventilation. Redegørelsen viser, at der er kontroverser omkring 

hvad VILI er, og hvordan strategier for mekanisk ventilation bedst muligt 

tilrettelægges for den individuelle patient. De fleste studier har fokus på volumen og 

tryk, men den inspirerede iltfraktion er med rette ikke blevet ignoreret og søges 

minimeret i størstedelen. En redegørelse for udviklingen indenfor 

beslutningsstøttesystemer gør det klart, at regel-baserede systemer dominerer. Der er 

dog to grundlæggende svagheder ved regel-baserede systemer. De giver ikke en 

forståelse for patientens fysiologi eller rådene de tilbyder, og de kan kræve, at man 

prøver sig frem for at finde den mest hensigtsmæssige terapi. Model-baserede 

systemer kan potentielt løse begge problemer ved brug af matematiske modeller med 

parametre tilknyttet en fysiologisk fortolkning. Til slut redegøres for matematiske 

modeller af den pulmonære gasudveksling. Her argumenteres for, at tilgængelige 

målinger af gasudveksling i klinisk praksis er for simple, idet de varierer med 

terapiændringer, der ikke påvirker patientens fysiologi. Referenceteknikken, the 

multiple inert gas elimination technique (MIGET) er for kompleks til klinisk brug. 

Minimal-modeller udgør et kompromis imellem kompleksitet og anvendelighed. 
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Afhandlingen er baseret på fire artikler. Minimal-modeller af forskellig kompleksitet 

er blevet anvendt, men alle er baseret på massebevarelse, kontinuert vejrtrækning og 

perfusion og antager ligevægtstilstand. En eksisterende model af blodets syre-base 

kemi blev implementeret i modellerne for at kunne beskrive gasudveksling af både O2 

og CO2. Metoder til parameterestimering blev tilpasset til tilgængelige data og de 

enkelte artiklers formål. 

Artikel I viser retrospektivt, at det dominerende hypoksæmi-index, PaO2/FiO2, 

varierer signifikant med ændringer i den inspirerede iltfraktion. En en-parameter 

model af intrapulmonær shunt kunne ikke beskrive denne variation i modsætning til 

en to-parameter minimal-model af shunt og ventilation/perfusions misforhold. 

Artikel II beskriver brug af den samme to-parameter model i 

beslutningsstøttesystemet INVENT, som blev retrospektivet evalueret i patienter på 

en intensivafdeling. INVENTs råd om inspireret iltfraktion og model-simulerede 

arterielle iltmætninger var hensigtsmæssige i sammenligning med klinisk praksis. 

Artikel III beskriver et prospektiv studie på en intensivafdeling, som sammenlignede 

INVENTs råd om inspireret iltfraktion og de målte resulterende arterielle 

iltmætninger med niveauer valgt af vagthavende læger. INVENTs råd var 

hensigtsmæssige i sammenligning med lægernes.  

Artikel IV beskriver en retrospektiv undersøgelse af den nødvendige minimal-model 

kompleksitet for at beskrive den pulmonære gasudveksling af både O2 og CO2 i 

patienter på en intensivafdeling. Studiet viste, at en tre-parameter model er nødvendig. 

Denne model kan beskrive perfusion af lungeenheder med meget lav 

ventilation/perfusions ratio, hvilket tidligere er beskrevet i ALI/ARDS patienter med 

MIGET. 

 

Resultaterne præsenteret i denne afhandling viser, at minimal-modeller giver en mere 

nøjagtig beskrivelse af gasudveksling end tilgængelige målinger i klinisk praksis. I 

beslutningsstøttesystemer kan disse modeller anvendes til at simulere ændring i 

arteriel iltmætning ved ændringer i inspireret iltfraktion. INVENT har ved brug af en 

minimal-model givet hensigtsmæssige råd om inspireret iltfraktion i forhold til 

vagthavende læger på en intensivafdeling. Potentielt kunne systemet standardisere, 

hvordan inspireret iltfraktion indstilles i forhold til den specifikke patient. Inklusion af 

en tre-parameter minimal-model kan muliggøre at INVENT i fremtiden også kan 

rådgive om tidalvolumen og respirationsfrekvens på en intensivafdeling. 


