Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Custom Processor for AC-motor Control Implemented in Spartan 3E FPGA

Jakobsen, Uffe; Ahn, Jin-Woo

Published in:
Proceedings of the KIEE Annual Conference, 2009

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jakobsen, U., & Ahn, J-W. (2009). Custom Processor for AC-motor Control Implemented in Spartan 3E FPGA.
In Proceedings of the KIEE Annual Conference, 2009 (pp. 1-3)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 22, 2021

https://vbn.aau.dk/en/publications/8d8ee890-05ca-11df-9046-000ea68e967b

2000 OigtXY[efe] M7(717] H UX[HEAILEFZE] FA =03 ==& (2009. 10. 23)

Custom Processor for AC Motor Control implemented in Spartan 3E FPGA

Uffe Jakobsen, °7%:=
IET, Aalborg University, Denmark “34°1%2 ~Ix~t™stestja 2sge,

Custom Processor for AC Motor Control implemented in Spartan 3E FPGA

Uffe Jakobsen, Jin-Woo Ahnx
IET, Aalborg University, Denmark, EME., Kyungsung University, Korea*

Abstract - Motor control for small series some-
times requires specialized control logic, requiring
rewiring if new logic needs to be added. This
paper describes a different approach to hardware
and software co-design, namely designing a 32
bit softcore processor with an instruction set to
fit the purpose of control of drives.. The designer
can then choose between resource usage on the
FPGA and speed in new ways. The approach is
tested for two different motor types, synchronous
and hybrid switched reluctance motors, using a
Spartan 3E FPGA. The instruction set allows for
higher code density than Texas MSP430 and
Texas TMS320F2812 for field oriented control.

1. Introduction

To control an AC machine a DSP or a micro
controller is typically used. While they are
excellent, their architecture is not directly
targeted for motor control, since they do not
feature an instruction set dedicated to motor
control. For some applications even a fast DSP
may be too slow, an example can be to replace
an analog hysteresis controller as the inner
control loop with a digital implementation as is
the case in [1]. The FPGA has for some time
been used for signal processing and the use of
the FPGA for motor control has been explored
before. There seems to be at least two different
approaches are used: An approach based on
signal flow is used in [2], [3] and [4]. They
implemented the control loop by making custom
elements for each part. These elements are then
connected to form the closed loop. A general
purpose softcore connected to custom external
elements needed for the control of a PMSM is
shown in [5] and [6]. The signal flow approach,
also known as dataflow processing, has a
hardwired setup which requires design and
synthesis of a new processor if the control loop
is changed. This issue can be addressed by using
the more flexible approach of connecting external
blocks to a general purpose softcore. However a
general purpose softcore can be difficult to

modify, since most of them are either proprietary,
with closed source tied to a specific FPGA
vendor, or open source with a design not suited
for AC motor control. Having a simple method to
modify the softcore enables a more flexible
hardware-software co—design. This paper presents
a proposed new processor, which makes the
hardware-software co-design simpler by a simple
plug-in instruction set approach. Three different
implementations are presented: One processor
customized for a permanent magnet synchronous
machine (PMSM) without hardware support for
the external ADC, one customized for a PMSM
with hardware support for the external ADC, and
yvet another customized for a single phase hybrid
switched reluctance machine (HHSRM).

2. Softcore Architecture

2.1 Softcore Architecture

Control block
Mem_write alu_r
PC_out |
reg_write Slow_opx

Opcode Operand

Register block
Write_enable

- Writedata Register_1
ouput

Address
register (R3)

Read_registerl
Reer regaz QOutput vector
Write_register
e Register_2
output
Memory block
| Address b Opcode(31:16)
P Address.a Operand(15:0)
B Wiite_encble DOUDELO)
1—> Daain(31:0) Input vector

Fig. 1 The layout of the softcore processor

The softcore consists of four distinct modules
and two multiplexers, as it is shown on Fig 1. A
synchronous design is used for the softcore, with
two state machines governing the behavior. One
state machine is used for the control block (see
Fig. 2) and the other is for the algorithmic logic

1

unit (see Fig. 3). The major task for the control
block is to control the program counter and to
prohibit writes during compare Instructions.

The algorithmic and logic unit (ALU) performs
all calculations and access to custom instructions
and external blocks. The two multiplexers
determine the source of the operands for the
ALU. The register block contains control logic
and storage for the registers. The memory block
is a standard two port memory block, enabling a
modified Harvard structure for the processor.

Execute/wait
'. fast comy
h/ﬂags
If ALU ready

If ALU not ready

Fig. 2 The control block state machine

Reset
7 If no new command

(@

command If fast command
finished
Initiate Wait for
external '

Update flags

external

If external command not ready

Fig. 3 The algorithmic and logic unit block state machine

2.2. Instruction Set Design

A custom instruction set is implemented to
enable a simple mapping from the equations
needed in AC-motor control to the actual
machine code operations. The closer the
instruction set is to the task, the fewer
instructions are needed. The instruction set
consists of core instructions, performed by the
ALU, and external plug-in instructions.

2.2.1 Instruction Set

The used set of instructions is shown on table
I. There are eight different addressing modes for
all three operand instructions.

Table. 1 Instruction set of the proposed AC control processor

Instruction Meaning
ANG Calculates angle of a 2D-vector
ABS Calculates magnitude of a 2D-vector
COS Cosine
SIN Sine
PWM Set PWM-timers, wait and return rotor-pos.
SCL Fixed point multiplication
ADD Addition
SUB Subtraction

MUL Integer multiplication

SWP Swap upper and lower part of number
ORB Logical OR

AND Logical AND

XOR Logical XOR

CMP Compare two operands
Bxx Conditional branch

JMP Unconditional Jump

MOV Copy first operand

MVY Copy Second Operand
LTC Latch and roll from input vector
ouT Output masked value

INP Input masked value

2.2.2 Instruction Set Format

There is only one format for instructions,
which is shown on Fig. 4, where the upper 16 bit
determine what instruction it is, addressing mode
and if it is a plug-in or slow instruction (S).

Bit 31 Bit 16
[S| Command | Address mode |

Bit 15 Bit 0
\ Immediate operand |

Fig. 4 The instructions all follow a single format with some
bit patterns directly connected to e.g. multiplexers. Since no
exceptions exist to this format, the control logic can be kept
simple

2.2.3 Trigonometric Functions

To approximate the sine, cosine and the
rectangular to polar functions a coordinate
rotation digital computer (CORDIC) was
implemented.

2.2.4 Peripheral Functions

The peripheral blocks are arranged in a typical
system on a chip layout as shown in Fig. 5. To
control the three phase inverter three identical
PWM timers are instantiated. @The PWM
command sets the duty cycles for the three
timers. The rotor position was acquired by
implementing a quadrature interface. The PWM
command returns the current encoder value. Since
the FPGA wused has no ADC internally, an
external SPI interface was implemented. Finally
to make a simpler interface to the assembler an
UART for RS232 was implemented. The
assembled machine code program can be uploaded
to the softcore using the assembler RS232
interface on the PC-side and a simple download
program in the softcore.

2.3 Implementation Results

2.3.1 PMSM Instance with Software logic for ADC

For the PMSM the softcore is kept as presented in
the article, and the current loops are implemented using
field oriented control. The loop times for the current
loop is measured in a VHDL simulation is presented in

2

table 2. A loop time for a complete FOC of 71.1
microseconds, is more than 10 times slower than the
54 microseconds presented in [3]. The entire system

for a PMSM consumes 35% of the resources in a
Spartan 3E FPGA (xc3s500e-5fg320).

Table. 2 Times for a vector control loop (FOC). The times are
given using a 50 MHz clock

Time in nanoseconds
38178

Functional element
Get measurements from ADC
Transform to rotating dq

11277
reference frame

Control updates 8117
Transform to stationary alfa—

5246
beta reference frame

Space vector modulation calc. 8309
Complete FOC 71127

2.3.2 PMSM Instance with Hardware logic for
ADC

Except for the extra logic for the ADC interface
the implementation is the same. The initialization
of the ADC is still handled in software, but the
current measurements are reduced to two
instructions.. The effect on the loop time is
shown in table III. The entire system for a
PMSM consumes 37% of the FPGA resources.

Table. 3 Times for a vector control loop (FOC). The times are
given using a 50 MHz clock

Functional element Time in nanoseconds

Get measurements from ADC 120
Transform to rotating dq reference

frame 11277

Control updates 8117

Transform to stationary alfa—beta 5246

reference frame

Space vector modulation calc. 8309

Complete FOC 33249

2.3.3 HSRM Instance with Software logic for ADC

For the single phase HSRM only a very simple
voltage control is implemented. The loop time of
981 ns is therefore also much lower. The
commands COS, SIN, ABS and ANG are
removed from the softcore and the resource
usage drops to 14% in the same spartan 3E
FPGA (xc3s500e-5fg320).

24 Comparison between different versions
and DSP and microcontroller

To compare the FPGA PMSM implementations two
implementations of FOC PMSM control are considered.
A Texas TMS320F2812 DSP implementation map file
indicates that 4431 bytes of RAM are used, and a
MSP430 implementation cnsumed 52342 bytes of which
48kbytes are used for look-up tables to speed up the
control loop, but still the full FOC is limited to 8kHz.

The resource use for the FPGA implementations is
shown on Table 4.

Table. 4 Comparative table regarding resource usage, for a
Spartan-3E XC3S500E-5 FPGA at 50 MHz, with 20 blocks of
on-chip memory, 4656 slices of logic in total, and 20 Hardware

-multipliers (Hw-mul.). All implementations were compiled using
Xilinx ISE 9.11 VHDL-compiler with a mixture of behavioural and
register transfer logic.

FPGA Memory Hw-

Type Slices used mul.
FPGA/PMSM,SW-ADC 1629 1368 bytes 4
FPGA/PMSM,HW-ADC 1718 1128 bytes 4
FPGA/HSRM,SW-ADC 691 112 bytes 1

3. Conclusion

This paper presents a processor for motor
control and discusses the design and
implementation of such a processor in three

different forms. To verify that the instruction set
is close the application it is compared against
FOC implemented in a DSP and in a
microcontroller. The code density for the FPGA
softcore compares quite well against both a DSP and a
microcontroller, and still obtains a 20kHz FOC. The
plug-in instruction set approach allows for easy
updates of a FPGA design for different tasks.

[References]

[11 Frede Blaabjerg, Philip C. Kjaer, Peter Omand
Rasmussen, and Callum Cossar Improved Digital
Current Control Methods in Switched Reluctance
Motor Drives, IEEE Transactions on Power
Electronics, Volume 14, No. 3 , Page(s): 563 - 572,
1999

[21 Vincenzo Delli Colli Robert Di Stefano, Fabrizio
Marignetti, Maurizio Scarano Design of System-On-Chip
PMSM Drive Sensorless Control, 2007 IEEE Symposium
on Indstrial Electronics, Vigo

[3] T. Takahashi and J. Goetz Implementation of complete AC
servo control in a low cost FPGA and subsequent ASSP
conversion, Nineteenth Annual IEEE Applied Power
Electronics Conference and Exposition, Volume 1, Page(s):
565 - 570, 2004

[4] Zhaoyong Zhou, Tiecai Li, T. Takahashi, and E. Ho,
FPGA realization of a high-performance servo
controller for PMSM, Nineteenth Annual IEEE
Applied Power Electronics Conference and
Exposition, Volume: 3, pages 1604-1609, 2004

[5] Ying-Shieh Rung and Pin-Ging Huang and
Chien-Wu Chen , Development of a SOPC for
PMSM drives, 47th Midwest Symposium on Circuits
and Systems, 2004.

[6] Ying-Shiech Kung, Chia-Sheng Chen, Kiing-Ing
Wong, and Ming-Hung Tsai, Development of a
FPGA-based control IC for PMSM drive with
adaptive fuzzy control, 31st Annual Conference of
IEEE Industrial Electronics Society, 2005. 6 pp.-

3

