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WGIT*: Workspace-Guided Informed Tree for
Motion Planning in Restricted Environments
Zhixing Zhang, Yanjie Chen, Feng Han, Junwei Fan, Hongshan Yu, Hui Zhang, Yaonan Wang

Abstract—The motion planning of robots faces formidable
challenges in restricted environments, particularly in the as-
pects of rapidly searching feasible solutions and converging
towards optimal solutions. This paper proposes Workspace-
guided Informed Tree (WGIT*) to improve planning efficiency
and ensure high-quality solutions in restricted environments.
Specifically, WGIT* preprocesses the workspace by constructing
a hierarchical structure to obtain critical restricted regions and
connectivity information sequentially. The refined workspace
information guides the sampling and exploration of WGIT*,
increasing the sample density in restricted areas and prioritizing
the search tree exploration in promising directions, respectively.
Furthermore, WGIT* utilizes gradually enriched configuration
space information as feedback to rectify the guidance from the
workspace and balance the information of the two spaces, which
leads to efficient convergence toward the optimal solution. The
theoretical analysis highlights the valuable properties of the
proposed WGIT*. Finally, a series of simulations and experiments
verify the ability of WGIT* to quickly find initial solutions and
converge towards optimal solutions.

Index Terms—Motion planning, workspace-guided sampling,
workspace-guided exploration, restricted environments

I. INTRODUCTION

Motion planning is an essential component of robotics
that enables robots to navigate and perform tasks in various
environments. Representative planners commonly utilized in
practical applications include sampling-based planners (SBPs),
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such as rapidly-exploring random trees (RRT) [1], probabilistic
roadmaps (PRM) [2], and their variants [3], [4]. Although
SBPs are efficient and widely applicable, restricted config-
uration space (C-space) severely compromises the planning
efficiency of SBPs [5], as narrow regions in the C-space
create bottlenecks for the sampling and exploration [6]. Given
that various robotic applications involve environments with
restricted C-space, such as transportation [7], healthcare [8],
and manufacturing [9], it is imperative to mitigate the impact
of restricted environments on SBPs.

In light of that the constraints on planning in restricted
environments mainly depend on the distribution of obstacles
in the C-space, adapting the sampling and expansion strategies
based on the C-space information is a widely adopted approach
to enhance the efficiency of SBPs in restricted environments.
RRV [10] employed principal component analysis (PCA) to
investigate the restricted regions in C-space and adapted var-
ious exploration strategies to enhance the expansion speed of
the search tree within the restricted areas. LGM-BRRT* [11]
preprocessed the C-space to identify narrow regions and gener-
ated local trees within these regions to enable efficient traversal
of restricted areas. Besides, informed search is an effective
strategy for dealing with restricted environment problems. By
constructing an informed set to shrink the planning space,
the informed search can concentrate the search on critical re-
stricted regions, enhancing the sampling density and reducing
redundant expansions. Informed RRT* [12] incorporated the
informed set into RRT* to accelerate the convergence of RRT*
toward a high-quality solution in restricted environments. BIT*
[13] employed both the informed set and batch sampling
strategies to further enhance the speed of informed search and
then facilitate the integration with various sampling strategies.
The study in [14] incorporated a biased sampling strategy for
restricted regions based on BIT*, thereby improving the plan-
ning efficiency of BIT* in restricted environments. Although
the algorithms mentioned above effectively enhance the ability
of SBPs to handle problems in constrained environments, the
improvement may be compromised by redundant sampling and
exploration. Such redundancy is attributed primarily to a lack
of utilization of workspace information, which is essential for
guiding SBPs to focus the searches on critical areas in C-space
to find solutions efficiently.

Considering that workspace information is easily obtainable
and can help reduce redundant searches in C-space, many
approaches have attempted to enhance the performance of
SBPs in dealing with complex and restricted environments by
directly planning in the workspace. For example, TS-RRT [15]
dealt with planning problems in a high-dimensional C-space
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by planning in a low-dimensional workspace. However, due to
the lack of attention to the connection between the workspace
and C-space, TS-RRT may require additional movements with-
in the C-space for the same trajectory in the workspace, and
even potentially leading to the omission of feasible solutions.
To overcome the issue of TS-RRT failing to find a solution
due to multiple regions in C-space mapping to the same region
in the workspace, [16] proposed a hierarchical planner that
decomposed the workspace and generated a connected graph
to guide the planning. EET [17] integrated workspace pre-
processing methods into workspace planning by constructing
a sphere-tree in the workspace to obtain workspace infor-
mation. With the sphere-tree, EET adaptively adjusted the
sampling strategy in narrow areas, and then rapidly guided the
exploration. Notwithstanding, due to the reliance on greedy
search, the sphere-tree may provide inappropriate guidance
in complex environments. Consequently, EET may fail in
environments where the sphere tree connectivity differs from
the C-space connectivity, thus lacking the capability to achieve
probabilistic completeness. In general, workspace-based SBPs
directly utilize the informative low-dimensional workspace,
which partially solves the problem of inefficiency in restricted
areas. However, few workspace-based SBPs directly focus on
restricted areas and handle these areas accordingly. Moreover,
SBPs planning in the workspace generally rely on inverse
kinematics solutions, which may result in a significant compu-
tational burden for robotic systems and tasks with relatively
complex inverse kinematics. Furthermore, since planning is
carried out in the workspace with little consideration to the
C-space, ensuring asymptotic optimality remains a significant
challenge.

Given the complementary advantages of C-space planning
and workspace planning, this paper proposes a dual-space
planner called workspace-guided informed tree (WGIT*). The
main contributions of this paper can be summarized as:
• The proposed workspace preprocessing method trans-

forms implicit key information within workspace in-
to concise and precise guidance directly utilizable by
WGIT*. As a result, unnecessary workspace information
can be eliminated to reduce computational burdens in
complex restricted environments.

• The proposed workspace-guided planning strategy uti-
lizes workspace guidance information to enhance sam-
pling and exploration processes, thus preventing exces-
sive sampling and redundant exploration. Consequently,
WGIT* can rapidly obtain high-quality solutions in re-
stricted environments.

• The proposed dual-space information updating method
dynamically balance two spatial information spaces, mit-
igates the issues of inconsistency information between
the two space and improper guidance from workspace.
Therefore, WGIT* can comprehensively utilize the in-
formation from both spaces and achieve balanced overall
performance.

II. PROBLEM FORMULATION

This section provides a necessary introduction to the critical
notions involved in this study and defines the path planning

problem to facilitate the subsequent introduction and theoret-
ical analysis of WGIT*.

A. Preliminaries
The workspace of a robot is denoted as W ⊂ Rn with

n ∈ {2, 3}. The region of space occupied by the obstacles in
the workspace is denoted as Wobs. Hence, the free workspace
is defined as Wfree = W \ Wobs. Let C ∈ Rm denote the
C-space, where m ∈ N∗. The configuration of the robot is
uniquely determined by a joint vector q ∈ Rm. Let A(q) ∈
Rn denote the space occupied by the robot body in W when
the robot is in configuration q. The space of obstacles in the
configuration space can be represented as Cobs, where ∀q ∈
Cobs : A(q)∪Wobs ̸= ∅. Thus, the free configuration space is
defined as Cfree = C \ Cobs.

WGIT* uses a search tree constructed in the C-space to
achieve motion planning. The search tree in the C-space is
represented as T = (V,E), where V ⊂ Cfree is the set of
nodes in the tree, and E is the set of edges constructed by the
nodes in V . The set Q comprises all samples in the C-space.
The set of samples that are not connected to T is denoted
as Quncon ⊂ Q. The set Vunexp ⊂ V comprises the nodes
in the tree that are not expanded. Two order queues EV and
EE are used to store the nodes to be expanded in T and the
edges to be added to T , respectively. The values of nodes
and edges are arranged according to their heuristic function
values, which will be described in detail in Section III-C. The
cost ĉ(qi, qj) and c(qi, qj) represent the estimated distance and
true distance between configurations qi, qj ∈ Q, respectively.
When the edge (qi, qj) is collision-free with Cobs, the value
of c(qi, qj) is infinity. The path found by WGIT* is denoted
as σWGIT∗ , which undergoes continuous improvement through
the planning. The cost of σWGIT∗ in the ith iteration is denoted
as ci. The informed set is denoted as Cinf .

Let fFK : Rm → Rn be the forward kinematics function
that computes the position p ∈ Rn of the reference point in
the workspace. The reference point is a point fixed in the
frame of a specific part of the robot. For serial manipulators,
the reference point is typically the working point of the end
effector. The reference points corresponding to qstart and
qgoal are pstart and pgoal, respectively. Based on the forward
kinematic mapping, T can be mapped to the workspace to
obtain the workspace search tree TW .

B. Problem Definitions
Definition 1. (Feasible motion planning) Let qstart and qgoal
denote the starting and goal configurations of the robot,
respectively. Let σ : [0, 1] → Cfree denote a feasible solution.
Feasible motion planning aims to find a path σ that satisfies
σ(0) = qstart, σ(1) = qgoal. If such a path does not exist, the
planner returns a failure.

Definition 2. (Optimal motion planning) Let Σ denote the set
of all feasible solutions. Let Lc : σ → R≥0 denote a cost
function. The cost of an infeasible solution is infinite, i.e., for
all σ /∈ Σ, Lc(σ) = ∞. Optimal motion planning aims to find
the optimal solution σ∗ that satisfies

σ∗ = argmin
σ∈Σ

{Lc(σ) | σ(0) = qstart , σ(1) = qgoal } . (1)
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Definition 3. (Cost function) To facilitate application in
practical robotic systems, a solution is represented by a set
of discrete path points denoted as σ = {σ(1), σ(2), ..., σ(n)},
while the specific representation of the cost function is defined
as

Lc(σ) =
n−1∑
i=1

∥(σ(i+ 1)− σ(i))∥ (2)

III. METHODOLOGY

In this section, WGIT* is presented in detail, starting with a
high-level overview of WGIT* in Section III-A. Subsequently,
Sections III-B through III-D delve into the detailed explanation
of the primary components of WGIT*. Finally, Section III-E
provides a theoretical analysis of WGIT*.

A. The Framework of WGIT*

The framework of the WGIT* is shown in Alg. 1, and Fig.
1 provides a flowchart of WGIT*. WGIT* consists of three
main modules: workspace preprocessing, workspace-guided
planning, and dual-space information updating.

1) Workspace preprocessing: To effectively leverage crit-
ical information in the workspace, WGIT* employs a series
of techniques during the initial planning phase (Alg. 1, lines
1∼4). Firstly, the workspace is decomposed into an octree
or a quadtree to facilitate the extraction of valuable infor-
mation in the workspace. Next, critical regions within the
workspace are identified based on the workspace decompo-
sition. Subsequently, the A* algorithm is used to obtain a
reference solution in the workspace, which captures essential
connectivity information and further refines critical regions.
By utilizing the information provided by the reference solution
and active critical regions, WGIT* can guide the planning
process effectively and exclude areas of low importance,
thereby reducing the computational burden.

2) Workspace-guided planning: With the guidance from the
workspace, WGIT* initiates the main planning process (Alg. 1,
line 5 ∼ 15), which includes workspace-guided sampling and
workspace-guided exploration. During the workspace-guided
sampling phase , WGIT* algorithm leverages the information
from active critical regions in the workspace to increase the
density of samples in restricted areas of the C-space. The
workspace-guided sampling leads to a balanced distribution of
samples, which in turn facilitates the detection of connectivity
in the C-space. During the workspace-guided exploration
phase, the workspace-guided heuristic function guides the
search tree toward promising directions based on the reference
solution and active critical regions. As a benefit, the number
of redundant explorations is reduced, and then the planning
efficiency is improved.

3) Dual-space information updating: In order to enhance
the accuracy of workspace guidance and fully utilize the infor-
mation from both spaces, continuous exchange and updating
of information between the two spaces are necessary. The
updating of dual-space information is mainly achieved through
workspace guidance switching and dual-space information
balancing. Workspace guidance switching phase addresses
improper guidance through feedback from the C-space. The

Algorithm 1: WGIT*
Input: qstart, qgoal
Output: T
// Workspce preprocessing

1 S ← Decompose(W,Wobs);
2 N ← FindCriticalRegions(S);
3 P ← FindReferenceSol(flocate(qstart), flocate(qgoal),S);
4 NP ← {η ∈ N | η ∩ P ̸= ∅};
// Planner initialization

5 V ← qstart;E ← ∅; T ← (V,E);
6 Quncon ← qgoal;
7 EV ← V ; EE ← ∅;;
8 Vunexp ← V ;
// Workspace-guided planning

9 while not PTC do
10 if EE = ∅ and EV = ∅ then
11 Qreuse ← Prune(T , Quncon, ci);
12 Qsample ← GuidedSample(NP , n);
13 Quncon ← Qsample ∪Qreuse;

14 T = Explore(Q,P);

15 σWGIT∗ ← FindPath(T );
16 return σWGIT∗ ;

workspace information balancing phase dynamically adjusts
the weight of information from the two spaces during the
planning process, avoiding excessive reliance on a single space
and ensuring that WGIT* converges to the optimal solution.

Through the coordination between these three modules,
WGIT* utilizes workspace information to efficiently generat-
ing high-quality paths for robots to complete tasks in restricted
environments.

B. Workspace Preprocessing

The main objective of the workspace preprocessing module
is to simplify the workspace and extract information, such
as narrowness, connectivity and cost, providing guidance for
path planning in the C-space. The simplification and extraction
of workspace information are achieved through three phases:
quadtree/octree decomposition, critical region search, and ref-
erence solution search.

1) Octree/Quadtree decomposition: To tap the information
from the workspace, WGIT* decomposes the workspace W
into an octree (or quadtree) [18], denoted as S, as shown
in Fig. 2. The obtained octree (or quadtree) is composed
of cells in different sizes, presenting a hierarchical structure.
A cell at level k is represented as sk, and the set of all
cells at level k is denoted by Sk. The octree/quadtree can
approximate the workspace at different resolutions based on
the narrowness, which can be used to locate narrow areas in

Fig. 2: Workspace decomposition. (a) Decompose W ⊂ R3

into a octotree. (b) Decompose W ⊂ R2 into a quadtree.
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Fig. 1: Framework flowchart of WGIT*. The blue dashed box represents the workspace preprocessing module, the orange
dashed box represents the workspace-guided planning module, and the green dashed box represents the dual-space information
updating module.

the workspace and simplify information in open areas. Based
on the interference between the cells and the obstacles Wobs,
the status of a cell can be one of three types: empty (indicating
that the cell is obstacle-free), full (indicating that the cell is
completely occupied by obstacles), or mixed (indicating that
the cell is partially occupied by obstacles). For a given cell, the
variables φstate(s) ∈ {empty, full,mixed}, φsize(s) ∈ R+,
and φcenter(s) ∈ Rn denote its state, maximum edge length,
and center coordinates, respectively. The collection of cells
with a state of empty is designated as the set of free cells,
denoted by Sfree := {s ∈ S | φstate(s) = empty}. The
function flocate : q → Sfree locates the free cell containing the
given position fFK(q). The construction of the octree/quadtree
begins with the whole workspace W as the initial cell, and then
the mixed cells are recursively subdivided until each cell either
reaches a state of empty or full. Alternatively, the subdivision
process is terminated when the size of each mixed cell reaches
a predetermined resolution.

The constructed octree/quadtree contains information re-
garding the narrowness and connectivity of the workspace,
providing a foundation for extracting critical information from
the workspace.

2) Critical region search: The octree/quadtree contains
valuable implicit information of narrowness in the form of
critical regions, denoted as N ⊂ Sfree. These critical regions
refer to areas in the workspace that are significantly con-
strained by obstacles Wobs and are essential for establishing
connectivity. Due to the small clearance with obstacles Wobs,
the critical regions N often align with the restricted regions
in the C-space. Therefore, utilizing the critical regions N to
guide planning in the C-space is a practical strategy.

To identify the critical region N from S, a critical area
recognition method, denoted as FindCriticalRegions, is
developed based on watershed algorithm [19]. The algorithm
FindCriticalRegions performs a layer-by-layer search of
the free cells Sfree, assigning different labels to non-adjacent
regions. As the search depth increases, the regions with
different labels will gradually expand and eventually intersect.
The intersecting regions will be marked as watersheds. The
cells with suitable size near each watershed can be merged

Fig. 3: Identify critical regions in a R2 workspace. (a) The
process of identifying critical regions. (b) The critical regions
N in the workspace

to obtain the critical regions N . For instance, in the cluttered
environment as depicted in Fig. 3(a), the blue and red regions
continuously expand, meet in the narrow central passage, and
form one of the watersheds. Subsequently, this watershed
merges with other adjacent cells to form the critical region η1
in Fig. 3(a), and the remaining six critical regions are obtained
similarly.

Through the critical area search phase, workspace informa-
tion has been simplified into a set of critical regions, denoted
as N := {η1, η2, ..., ηn}. However, for specific planning
problems, not all of these critical areas are involved. Thus,
a search for a workspace reference solution is necessary to
eliminate the regions that are less significant for robot motion
and to furnish planning with additional crucial information.

3) Reference solution search: The reference solution, de-
noted as P , is a path of the reference point of robot in the
workspace, encompassing information such as connectivity
and cost within the workspace. According to the forward
kinematic mapping and Definition 1, collision-free continuous
paths in C-space correspond to collision-free continuous paths
in the workspace. Thus, the reference solution can be used
to assess the corresponding feasible path in C-space, which
guides the exploration phase of WGIT*.

The reference solution P is derived from S. As the
workspace is decomposed into cells, the connectivity of the
workspace can be conveniently represented as a graph, denoted
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as G. The nodes of G are the free cells Sfree. Two nodes are
adjacent if their corresponding cells share a common surface
(for octree) or edge (for quadtree). The edges of G represent
the adjacency between neighboring cells, and the cost of each
edge is defined as the distance between the centers of the
two corresponding cells. Based on the constructed graph, the
reference solution P can be obtained by applying the A*
algorithm with the start and end nodes set as flocate(qstart)
and flocate(qgoal), respectively. The reference solution P is
composed of a sequence of adjacent cells sP,i ∈ Sfree, as
shown in Fig. 4.

According to the relationship between the reference solution
and the feasible path in the C-space, the critical regions
traversed by the reference solution are likely to correspond to
the regions that are necessary to be traversed in the C-space.
These regions are referred to as key regions in the C-space and
denoted as RC . Consequently, the critical regions traversed by
the reference solution are designated as active critical regions,
denoted as NP ⊂ N , while the remaining critical regions are
classified as inactive critical regions. Inactive critical regions
are not passed on to the next module as workspace guidance,
thereby effectively reducing computational burden, especially
in environments with many restricted areas.

Through workspace preprocessing, the workspace infor-
mation is simplified into a reference solution and active
critical regions. The reference solution contains connectivity
and distance information of the workspace, while the active
critical regions contain information about narrow regions of
the workspace. Due to the close relationship between the
workspace and the C-space, the workspace information can
effectively guide planning in the C-space.

C. Workspace-Guided planning

The objective of workspace-guided planning is to utilize
critical information from the workspace to provide appropriate
guidance for sampling and exploration. The first step in
workspace-guided planning is to initialize the planner and
establish the required data structures for planning (Alg. 1, line
5∼8). Once the planner is initialized, the planning process
alternates between the workspace-guided sampling phase and
the workspace-guided expansion phase until the planning

Fig. 4: Workspace reference solution. The green cells represent
the workspace reference solution P . (a) The reference solution
for a five-joints manipulator. (b) The reference solution for a
two-joints manipulator.

termination condition (PTC) is satisfied, such as available
planning time or expected path cost.

1) Workspace-guided sampling: The information from
the active critical regions includes the narrowness of the
workspace, which can assist in quickly identifying narrow re-
gions in the C-space. To leverage this information and improve
the efficiency of sampling, WIGT* employs a workspace-
guided sampling strategy, as depicted in Alg. 2.

In the sampling phase, WGIT* first uniformly sample in the
informed set Cinf (Alg. 2 line 3). Any uniform sample quni
satisfying flocate(quni) ∈ NP is likely to be located in the
key region in C-space. Such samples are referred to as critical
samples. For each critical sample, ngau samples following a
Gaussian distribution N(quni, σ), denoted as gaussian samples
Qgau, are taken (Alg. 2, line 7). The deviation δ is proportional
to φsize(quni) with a proportionality constant of Fdev (Alg. 2,
line 6).

Workspace-guided sampling increases the density of sam-
ples in restricted regions, thereby achieving a balanced dis-
tribution of samples. Furthermore, this approach prevents
excessive sampling in environments with abundant restricted
regions, thereby reducing the computational burden.

Algorithm 2: GuidedSample
Input: NP , n
Output: Qsample

1 Qsample ← ∅;
2 while |Qsample| < n do
3 quni ← UniformSample(Cinf );

4 Qsample
+← quni;

5 if flocate(quni) ∈ NP then
6 δ = Fdev · φsize(flocate(quni)) ;
7 Qgau ← GaussianSample(quni, δ, ngau);
8 for qgau ∈ Qgau do
9 if qgau ∈ Cinf then

10 Qsample
+← qgau;

11 return Qsample

2) Workspace-guided exploration: By utilizing information
from the reference solution in the workspace and active critical
regions, the search tree can be guided efficiently toward di-
rections anticipated to yield high-quality paths, while avoiding
redundant expansions.

During the expansion phase, the utilization of workspace
information is mainly achieved through heuristic functions.
Compared to the commonly used heuristic functions, f(q) =
g(q) + h(q) [20], WGIT* incorporates a workspace heuristic
term hW to formulate a workspace-guided heuristic function.
The term hW is expressed as follows:

hW(q) = Fdwd(q) + Fsws(q) + Fnwn(q) (3)

where Fd, Fs, and Fn are constant parameters, while ωd, ωs,
and ωn are cost factors defined as follows:

wd(q) = ∥fFK(q)− sn(q)∥/dW · dC
ws(q) = φsize(sn(q))[φsize(sn(q)) > lsize]/DW · dC
wn(q) = [sn(q) ∈ NP ] · dC
sn(q) = argmin

s∈P
{∥fFK(q)− φcenter(s)∥}

(4)
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where dW = ∥pstart − pgoal∥, dC = ∥qstart − qgoal∥ and DW

represents the maximum scale of W . The incorporation of
dW , dC, and DW is intended to transform the metrics from the
workspace into C-space. The symbol [·] is the Iverson bracket,
which takes the value 1 for which the statement is true and
takes the value 0 otherwise.

The cost factor ωd depends on the deviation of the reference
solution P . This deviation is evaluated through the distance
between the reference point p = fFK(q) and the nearest
reference solution cell, represented as sn(q). Particularly, as
this distance increases, the estimated additional cost also
increases. With the incorporation of ωd, the search tree in
C-space expands preferentially in the regions mapping to the
vicinity of the reference solution. Then, in the workspace, the
reference point moves along the path close to the reference
solution P .

The value of ωs(q) depends on the openness of the cor-
responding region, which is measured by the size of sn(q).
When this size exceeds a specified threshold, denoted as lsize,
an additional estimated cost is added in proportion to the size.
Through the introduction of ωs(q), the search tree reduces
excessive expansion in open regions.

The value of ωn(q) is determined by the proximity to the
active critical regions NP . This proximity is measured by
whether sn(q) falls within the active critical region NP . An
additional estimation cost is imposed if sn(q) is not in NP .
This measure biases the search tree exploration towards the
key regions RC to quickly establish connectivity.

Algorithm 3: Explore
Input: Q, P
Output: T

1 while BestQueueValue(EV ) ≤ BestQueueValue(EE) do
2 ExpandNextVertex(EV , EE , ci);

3 (qhead, qend)← PopBestInQueue(EE);
4 if g(qhead) + ĉ(qhead, qend) + h(qend) + hW(qend) < ci then
5 if g(qhead) + ĉ(qhead, qend) < g(qend) then
6 cedge ← c(qhead, qend);
7 if g(qhead) + cedge + h(qend) + hW(qend) < ci then
8 if g(qhead) + cedge < g(qend) then
9 if qend ∈ V then

10 vparent ← Parent(qend);

11 E
−← (vparent, qend);

12 else
13 Quncon

−← qend;

14 V
+← qend;

15 EV
+← qend;

16 Vunexp
+← qend;

17 E
+← (qhead, qend);

18 nexp ← nexp + 1;

19 if ∥fFK(qend)− sn(qend)∥ < rP(sn(qend)) and
Indix(sn(qend)) > Icon then

20 Icon ← Indix(sn(qend));
21 nexp ← 0;

22 else if nexp > Nexp then
23 P ← UpdateReferenceSol(P, Sblock);
24 NP ← {η ∈ N | η ∩ P ̸= ∅};

25 return T

To illustrate the impact of the workspace-guided heuristic
function on the exploration phase, an example of planning a
two-link manipulator arm shown in Fig. 4(b) is considered,

Fig. 5: The heuristics and searching tree in the C-space
corresponding to the two-joint manipulator in Fig. 4(b). The
first and second columns correspond to the search results of
BIT* and WGIT*, respectively. The black area indicates Cobs
and the blue lines indicate the search tree T . (a) The value
distribution map of samples using heuristic h(q). (b) The value
distribution map of samples using heuristic h(q) + hW(q). (c)
The search tree of BIT*. (d) The search tree of WGIT*.

with its C-space depicted in Fig. 5. The values of h(q) for
all samples, depicted in Fig. 5(a), are solely dependent on the
distance to qgoal and then cannot be adjusted based on Cobs.
Upon incorporating the workspace guidance term hW(q), the
heuristic guidance for each sample is closely aligned with the
shape of Cobs, as demonstrated in Fig. 5(b). The exploration of
the search tree under the two heuristics is depicted in Fig. 5(c)
and 5(d), respectively. The figures indicate that the search
tree with workspace guidance finds a feasible path with fewer
explorations.

Thus, the workspace-guided heuristic function involving hW

effectively leverages the available workspace information and
optimizes the exploration sequence of the search tree. This
approach enables the search tree to pass through the restricted
region efficiently, resulting in comprehensive exploration.

In summary, the workspace-guided planning module flexi-
bly transfers the key information from the workspace to the C-
space, providing important guidance for planning in complex
and restricted C-spaces. As a benefit, WGIT* is able to avoid
redundant searches and achieve rapid convergence to high-
quality paths.

D. Dual-space Information Updating

The workspace information, while convenient to obtain
and process, cannot fully reflect the spatial properties of the
C-space due to the lower dimensionality of the workspace
compared to the C-space and the lack of consideration for
kinematic constraints. To enhance the guidance, continuous
updates of both the workspace information and C-space infor-
mation are required during the planning process. The update
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of the dual space consists of two main phases: workspace
guidance switching and dual-space information balancing.

1) Workspace guidance switching: In cases where the
connectivity of the workspace is not aligned with that of
the C-space, following the reference solution may result in
decreased planning efficiency. To address the decrease from
the mismatch of dual-space, a workspace guidance switching
strategy is developed, which utilizes feedback from the C-
space information during the exploration process to correct the
workspace reference solution P , providing proper guidance, as
shown in Alg.3, lines 19∼24.

The misaligned connectivity leads to a significant deviation
between the workspace search tree TW and reference solution
P . To measure this deviation and detect inappropriate guid-
ance, each cell in P is assigned a neighboring region, which is
a spherical region with a center of φcenter(sP,i) and a radius
of rP(sP,i). To improve measurement accuracy, rP(sP,i) is
appropriately increased when φsize(sP,i) > lsize and is ap-
propriately reduced when sP,i ∈ NP . The connectivity index
Icon records the expansion of TW . When TW expands to an
unvisited neighboring region, Icon is updated to the index of
the corresponding cell, i.e., its order in P . If Icon remains
unchanged after Nexp expansions, The corresponding region
in the C-space for P is likely discontinuous and cannot provide
adequate guidance for sampling and exploration. In such cases,
a reference solution switching strategy is employed to update
the reference solution, as shown in Alg. 4.

The procedure for updating the reference solution is illus-
trated in Fig. 6. The cells along the initial reference solution
are inflated until their boundaries come into contact with Wobs

(Alg. 4, line 3), as shown in Fig. 6(2). The resulting inflated
region is referred to as Sblock, whose bounds are achieved
through binary search. To obtain a new reference solution,
the A* algorithm is re-invoked, with the cells passing through
Sblock incurring additional costs. Ultimately, a new reference
solution for the workspace is identified, and then the active
critical regions NP are updated accordingly.

2) Dual-Space Information balancing: Since planning is
directly conducted in C-space, C-space information is more
accurate and complete than workspace information. Moreover,
the workspace-guided heuristic function is inadmissible, which
may affect the convergence toward the optimal path. Therefore,
a proper balance between workspace and C-space information
is necessary to ensure the efficiency of the planning process
and the quality of the solution.

WGIT* balances the information between the workspace
and C-space by gradually reducing the weight of the
workspace-guided information. The gradual detachment of

Algorithm 4: UpdateReferenceSol
Input: P, Sblock

Output: P
1 for s ∈ P do
2 if s /∈ Sblock then
3 sexp = ExpandCell(s);

4 Sblock
+← sexp;

5 P ← AstarPlan(pstart, pgoal,S, Sblock);
6 return P

Fig. 6: Workspace guidance switching. (a) Initial workspace
reference solution. (b) Expanded cells along the initial refer-
ence solution. (c) New workspace reference solution.

workspace information is achieved through the incorporation
of a balancing factor into the workspace-guided heuristic
function. The balancing factor is defined as e−αi, where
α ∈ R+ is a constant and i represents the iteration number of
WGIT*. Ultimately, the heuristic function of the algorithm is
formulated as:

fW(q) = g(q) + h(q) + e−αihW(q). (5)

As the algorithm iterates, the balance factor decreases,
thereby diminishing the workspace guidance. When the bal-
ance factor eventually reaches zero, the workspace-guided
heuristic function fW(q) reverts back to its original form
f(q). This approach gradually transforms the heuristics into
admissible to enhance the efficiency of searching for high-
quality solutions.

Dual-space information updating module enables bidirec-
tional information exchange instead of unidirectional infor-
mation flow from the workspace to the C-space. As a result,
the planner can fully utilize the information from both spaces
in different planning stages, reducing misleading guidance
and improving planning efficiency. More importantly, it can
guarantee convergence to the optimal path.

E. Theoretical Analysis of WGIT*

In this section, the properties of the WGIT* are analyzed
theoretically as follows.

Theorem 1. (Probabilistic completeness) For a given plan-
ning problem (qstart, qgoal), if a feasible solution exists, the
probability of WGIT* finding a feasible solution is unity as
the number of samples approaches to infinity,

P
(

lim
N→∞

σWGIT∗ ∈ Σ, σ(0) = qstart, σ(1) = qgoal

)
= 1 (6)

where N is the number of samples, Σ is the set of all feasible
solutions.

Proof: The proof of Theorem 1 can be derived from the
proof of Theorem 2, which concerns almost-sure asymptotic
optimality of WGIT*.

Theorem 2. (Almost-surely asymptotic optimality) For a
given planning problem (qstart, qgoal), if an optimal solution
σ∗ exists, the probability of WGIT* asymptotically converging
to the optimal solution is unity as the number of samples
approaches to infinity,

P
(

lim
N→∞

Lc(σWGIT∗) = Lc (σ
∗)
)
= 1 (7)
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Proof: In [21], a sufficient but not necessary condition is
presented for SBPs to guarantee almost-surely asymptotically
optimal. The condition consists of two parts: (1) The ap-
proximation almost-surely contains an asymptotically optimal
solution. (2) The graph-search algorithm is resolution-optimal.

Firstly, for each batch of samples, WGIT* consider edges
EE consist of samples with their neighbors within a radius
r∗ that scales as in PRM* [23] to construct an implicit
random geometric graph (RGG). The samples are connected
in ascending order according to eq. (5). This process only
alters the order of connection while preserving the structure of
the implicit RRG. Therefore, WGIT* implicitly encompasses
all edges of PRM*. As the approximation of PRM* almost-
surely contains an asymptotically optimal solution [23], the
approximation of WGIT* guarantees to contain the same
solution. Hence, WGIT* satisfies the part (1) of the condition.

Secondly, when the number of samples approaches infinity,
the iteration of WGIT* tends towards infinity since each batch
of samples is finite. Consequently, as the balance factor e−αi

approaches 0, the heuristic function tends to fW(q) = g(q) +
h(q) according to eq. (5). Hence, the graph search process of
WGIT* ultimately converges to that of A*, which is resolution
optimal [20]. Consequently, WGIT* satisfies part (2) of the
condition as the number of samples approaches infinity.

In conclusion, WGIT* satisfies both part of the conditions
simultaneously, thereby establishing its almost-surely asymp-
totic optimality. Furthermore, since probability completeness
is a necessary but not sufficient condition for asymptotic
optimality, Theorem 1 is proven.

IV. SIMULATIONS AND EXPERIMENTS

In this section, simulations and experiments are designed
and performed to verify the effectiveness of WGIT*.

A. Simulation Setup

To verify the effectiveness of WGIT*, a series of simula-
tions were performed. The algorithms are coded and simulated
based on MATLAB R2021b and CoppeliaSim Edu V4.4.0 on
a computer running Microsoft Windows 10 with Intel Core
i5-7300HQ and 16 GB of RAM. For the simulations in R2

workspace, a three-joint and a five-joint manipulator are uti-
lized, while for the simulations in R3 workspace, a UR5 robot
with six degrees of freedom is employed. The simulations
compare four algorithms: WGIT*, BIT* [13], GuILD [24],
TS-RRT [15], and EET [17]. BIT* solely utilizes C-space
information for collision checking. GuILD reduces the plan-
ning space to improves efficiency in restricted environments
by introducing local informed subsets. TS-RRT plans directly
in the workspace via inverse kinematics. Similar to TS-RRT,
EET conducts searches directly in the workspace. However,
EET features a workspace preprocessing. The comparison of
the five algorithms aims to investigate the effectiveness of
combining C-space and workspace information in WGIT*.

The critical parameters of WGIT* are set as follows:
Fd = 5.0, Fs = 7.0, Fn = 0.1, α = 1. The values
of these parameters are selected through trial and error in

various scenarios. Fd is the weight of the reference solution
deviation factor ωd. An increase in Fd will align the planned
solution more with the reference solution. However, it may
excessively rely on the reference path and increase the number
of workspace guidance switching. Fs is the weight of the open
area factor ωs. While a larger Fs guides the search tree to
swiftly pass through open areas and focus the search more
on narrow regions, an excessively large Fs might lead the
search to avoid necessary open areas. Fn is the weight of the
critical areas proximity factor ωn. A larger Fn can concentrate
the search on active critical areas, while a smaller value can
provide higher efficiency when updates are required in active
critical areas. α is the decay factor of the workspace heuristic
function, used to balance dual-space information during the
planning process. A large α causes the workspace heuristic
to vanish rapidly, reducing the guidance from workspace.
Conversely, a too small α slows down the convergence towards
the optimal solution.

The key comparison metrics include the time to find the
initial solution tinit, the cost of the initial solution cinit, the
number of collision checks performed when finding the initial
solution ncheck, the cost of the solution when the planning
process is complete cfinal, the success rate of the planning
ϕs and the CPU load during algorithm execution ϕCPU. Each
simulation runs 100 times, and the average value of each
metric is taken, excluding failed planning results. The available
planning time is 20 seconds. For WGIT* and BIT*, the
number of samples per batch is 500.

B. Sumulation Verification & Analysis

Two simulation scenarios W ∈ R2 are constructed to
investigate the planning performance of WGIT* in planer
robots. In scenario 1, two planning tasks are performed by
a three-joint manipulator and a five-joint manipulator, as
depicted in Fig. 7(a) and 7(c), respectively. The manipulators
are required to navigate through a restricted area and place the
end effector within another restricted area. Scenario 2 involves
two planning tasks carried out by a three-joint manipulator
and a five-joint manipulator, as depicted in Fig. 7(e) and
7(g), respectively. The manipulators need to navigate through
cluttered obstacles and pass through a challenging narrow
passage. Upon reaching the target pose, a significant portion
of the robotic arm is located within the passage, with very
little clearance from the obstacles. It is noteworthy that the
initial reference solution in scenario 2 is not entirely within the
reachable areas of the manipulator, as the red path illustrated
in Fig 7(f). Therefore, a workspace guidance switching needs
to be executed to change the path from the red one to the
green one in Fig 7(f). The planning results of the three-joint
manipulator and five-joint manipulator in simulation scenario
1 and scenario 2 are shown in Table I, and the search trees in
the workspace are illustrated in Fig 7.

In Scenario 1, WGIT* achieves initial solution search speed-
s 23.70% and 52.50% faster than BIT*, with initial solution
costs of 94.38% and 89.63% of the counterpart from BIT*, in
C ∈ R3 and C ∈ R5, respectively. Besides, In the two tasks,
WGIT* finds initial solution 17.20% and 31.33% faster than
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Fig. 7: Comparative simulation results in scenarios 1 and 2. The first column represents four planning tasks, namely three-
joint manipulator in scenarios 1, five-joint manipulator in scenarios 1, three-joint manipulator in scenarios 2, and five-joint
manipulator in scenarios 2, respectively. The red and green colors in the first column represent the initial and target configurations
of the manipulator, respectively. The second column shows the distribution of critical regions and workspace reference solutions
by proposed method, respectively. The planning results of WGIT*, BIT*, GuILD, TS-RRT, and EET are presented in columns
3-7, respectively, where the blue lines represent the end-effector trajectories corresponding to the search tree branches, while
the red lines represent the end-effector trajectories corresponding to the initial paths.

GuILD, while the initial solution costs of WGIT* are 96.59%
and 94.22% of the counterpart from GuILD, respectively.
The workspace searching tree illustrated in Fig. 7 and the
number of edge collision checks indicate that WGIT* performs
fewer explorations than BIT* and GuILD under the guidance
of workspace information. As a benefit, WGIT* finds initial
solutions faster. Moreover, when the planning time is reached,
WGIT*, BIT* and GuILD converge to paths with almost the
same cost, indicating that WGIT*, BIT* and GuILD have
similar abilities to quickly converge to high-quality paths (with
a difference of no more than 3%). In C ∈ R3, both TS-
RRT and EET take longer to find initial solutions than WGIT,
BIT* and GuILD, but perform fewer edge collision checks.
This is mainly because the algorithms that directly plan in the
workspace have difficulty finding collision-free inverse solu-
tions in restricted environments. Consequently, even though
inverse kinematic sampling can reduce exploration, the plan-
ning remains time-consuming. The challenges associated with
inverse kinematics sampling and the issue of getting trapped
in particular configurations contribute to lower success rates
of TS-RRT and EET. In C ∈ R5, EET has the second fastest
initial solution search speed after WGIT*, primarily due to
workspace pre-processing that reduces redundant explorations.

In Scenario 2, WGIT* outperforms the other four competi-
tors in terms of both initial solution search time and initial

solution cost. Furthermore, the final converged solutions are
comparable to BIT* and GuILD. However, TS-RRT and EET
have significantly lower success rates in this environment. This
is mainly due to the large number of obstacles and narrow
space, making inverse kinematics sampling more difficult
than in Scenario 1. It is worth noting that for EET, the
decrease in initial solution search speed and success rate is
significant. This is mainly due to the inconsistency between the
constructed workspace guidance and the connectivity of the C-
space, resulting in inefficient workspace sampling. However,
WGIT* is not significantly affected due to the presence of
workspace path switching.

To investigate the efficacy of WGIT* in W ∈ R3, simulation
scenario 3 is developed, as depicted in Fig. 8. In simulation
scenario 3, a six-joint UR5 robot needs to navigate between
two adjacent shelves while avoiding collisions. The planning
results are shown in Table I.

It can be observed from Table I that WGIT* requires
83.76%, 87.16%, 35.05%, and 45.91% of the initial solution
time of BIT*, GuILD, TS-RRT, and EET, respectively. The
cost of the initial path generated by WGIT* is approximately
6.11% and 11.29% lower than that of BIT* and GuILD,
respectively. As non-optimal algorithms, TS-RRT and EET
produce significantly higher initial solution costs than WGIT*.

A series of simulation results for robots with different de-
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TABLE I: Statistical results in simulations

Scenario Algorithm tinit cinit ncheck cfinal ϕs ϕCPU

(s) (rad) (rad) (%) (%)
WGIT* 1.01 4.53 248.50 3.78 100 33.80

Scenario 1 BIT* 1.25 4.80 286.14 3.79 100 36.23
njoint = 3 GuILD 1.22 4.69 245.20 3.82 100 32.34

TS-RRT 2.03 16.10 231.05 16.10 92 27.38
EET 1.63 9.89 149.68 9.89 94 28.36

WGIT* 1.60 7.01 263.00 4.69 100 33.53
Scenario 1 BIT* 2.44 7.81 405.73 4.63 100 35.41
njoint = 5 GuILD 2.33 7.44 255.11 4.58 100 33.95

TS-RRT 3.08 29.65 266.44 29.65 74 25.13
EET 1.98 22.70 165.00 22.70 84 25.44

WGIT* 1.20 6.02 256.79 5.58 100 30.56
Scenario 2 BIT* 1.33 6.13 302.00 5.779 100 32.41
njoint = 3 GuILD 1.34 6.18 273.00 5.56 100 31.31

TS-RRT 2.66 11.78 221.48 11.78 86 28.48
EET 4.73 14.80 538.95 14.80 67 26.62

WGIT* 3.96 9.92 352.81 6.95 100 31.68
Scenario 2 BIT* 4.75 10.33 561.62 7.67 100 32.68
njoint = 5 GuILD 4.54 10.29 498.40 7.17 100 30.82

TS-RRT 9.64 24.51 406.61 27.89 70 27.95
EET 6.77 21.29 829.41 21.29 54 26.83

WGIT* 1.29 3.38 449.10 2.46 100 42.12
Scenario 3 BIT* 1.54 3.60 541.20 2.56 100 47.49
njoint = 6 GuILD 1.48 3.81 489.10 2.38 100 42.17

TS-RRT 3.68 6.69 286.54 6.69 92 44.10
EET 2.81 5.28 100.30 5.28 96 43.22

Fig. 8: Simulation scenario 3: a six-joint UR5 manipulator
operating within a 3-dimensional workspace. (a) Start config-
uration and goal configuration. (b) The active critical regions
NP , depicted in orange cells. (c) The reference solution P ,
depicted in green cells.

grees of freedom in W ⊂ R2 and W ⊂ R3 show that WGIT*
is efficient at finding the initial solution under workspace
guidance. Moreover, WGIT* quickly converges to high-quality
paths without introducing excessive computational burden.
These results highlight the effectiveness and universality of
WGIT* in planning within restricted environments.

C. Experiment Verification & Analysis

To further validate the effectiveness of WGIT*, experiments
are designed using the Fetch robot with a seven-degree-of-
freedom arm to perform grasping and placing tasks in two
restricted environments, as shown in Fig. 9. The robot is
required to pick up the target object from the restricted
area and place it at the location in another restricted area
while avoiding obstacles and self-collision. In order to obtain
high-quality paths, BIT* and WGIT* are utilized to plan
motions for the Fetch. As optimizing planners, both BIT* and
WGIT* algorithms minimize unnecessary motion, allowing
the Fetch robot to efficiently complete tasks. Each algorithm
runs 20 times, and the key parameters are consistent with the
simulation. Taking into account a comprehensive consideration
of safety and efficiency, the operational speed is set at 60%

Fig. 9: Experiment scenarios. (a) Experimental scenario 1.
(b) Simulation scenario for (a). (c) Real-world experimental
scenario 2. (d) Simulation scenario for (c).

TABLE II: Statistical results in experiments

Scenario Algorithm tinit(s) cinit ncheck cfinal ϕs(%) ϕCPU

(s) (rad) ncheck (rad) (%) (%)

Scenario 1 WGIT* 7.47 5.68 325.40 4.55 100 45.12
njoint = 7 BIT* 9.05 5.89 559.00 4.59 100 43.22
Scenario 2 WGIT* 3.15 3.79 498.10 2.51 100 49.83
njoint = 7 BIT* 4.72 3.85 639.65 2.71 100 47.20

of the Fetch robot’s velocity limit. The specific values for
joints 1 to 7 (unit: rad/s) are listed as follows: 0.75, 0.87, 0.94,
0.91, 0.94, 1.35, 1.35. The experimental results are shown in
Table II.

Table II demonstrates that WGIT* can find the initial
solution 21.15% and 33.26% more rapidly than BIT* in
experimental scenario 1 and 2, respectively, while achieving
superior quality initial solutions. From the perspective of
robotic arm motion, this result is supported by the observation
that the robot employing WGIT* is capable of executing
grasping and placing tasks with simpler movements, as illus-
trated in Fig. 10. Furthermore, during the process of obtaining
the initial solution, WGIT* performs fewer edge collision
checks, reducing collision checks by 41.86% and 22.13%
respectively, resulting in a reduction of redundant explorations
and mitigation of the computational burden. Upon exhausting
the planning time, the solutions obtained by WGIT* have
costs that are respectively 0.87% and 7.38% lower than those
obtained by BIT*. The similarity of their final solutions
suggests that both WGIT* and BIT* can rapidly converge to
high-quality paths. The conformity between the experimental
and simulation results validates that the proposed WGIT*
algorithm effectively enhances the performance of robots in
realistic restricted environments.

Combining a series of simulations and experiments, it is
demonstrated that WGIT* can reduce redundant sampling
and exploration under the guidance of workspace informa-
tion, thereby finding feasible solutions rapidly. Furthermore,
WGIT* can rapidly converge to a high-quality solution. In
summary, WGIT* can effectively assist robots in completing
tasks within restricted environments.
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Fig. 10: Grasping and placing task path planning. Columns 1-
4 are initial solution from BIT*, initial solution from WGIT*,
final solution from BIT*, and Final solution from WGIT*,
respectively.

V. CONCLUSION

This paper has proposed a robot motion planning algorithm
for restricted environments, namely the workspace-guided
informed tree (WGIT*). WGIT* refines key information in the
workspace, such as workspace reference solutions and critical
regions, to guide the sampling and exploration processes.
Active critical regions help focus the sampling process on
the restricted areas in C-space, resulting in a more balanced
distribution of samples. Guidance from the workspace refer-
ence solution enables the search tree to explore in promising
directions, reducing redundant expansions and improving the
efficiency of finding feasible solutions. Furthermore, WGIT*
incorporates a balanced strategy between workspace and C-
space information to guarantee high-quality solutions. Various
challenging simulations and experiments have demonstrated
the satisfactory performance of WGIT* in restricted environ-
ments.

In future research, a wider range of workspace informa-
tion decomposition methods and heuristic functions will be
integrated into WGIT* to address challenges in different
environments and tasks. Moreover, WGIT* will be applied
to a broader range of robotic applications.
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