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ABSTRACT Our proposed work, SculptorGAN, represents a novel advancement in the domain of
medical imaging, for the accurate and automatic diagnosis of renal tumors, using the techniques and
principles of Generative Adversarial Network (GAN). This dichotomous framework forms a contrast to
the normal segmentation models like that of U-Net model but, instead, founded on a strategy that is
aimed towards reconstruction and segmentation of CT images, particularly of renal malignancies. The core
of the SculptorGAN methodology is a GAN-based approach for precise three-dimensional rendering of
renal anatomies from CT scans, followed by a segmentation phase to correctly separate the neoplastic
from non-neoplastic tissues. In fact, SculptorGAN was designed to circumvent limitations that come as
inherent in the segmentation techniques, and in this case to eliminate them. In fact, by including such an
advanced algorithmic architecture, accuracy of diagnosis in SculptorGAN has increased to 96.5%, which
is the primary aspect behind early detection and thus proper curing of renal tumors. The better results
were ascribed to more accurate and detailed reconstruction of renal structures that the framework allowed,
apart from the better segmentation. The performance analyses show quantitative results with respect to
the presented datasets, while the validation shows that SculptorGAN outperforms most of the traditional
models such as U-Net. In particular, SculptorGAN decreased the time taken for 3D reconstruction by about
35% while increasing the accuracy of segmentation by 20% or more. The outcome, in their turn, may
suggest this improvement in efficiency and the level of reliability for renal tumor diagnosis as of having
far-reaching implications for the patient treatment and its outcomes. In conclusion, the framework deals
with all the challenges with an accurate diagnosis of renal tumors and brings betterment in the overall field
of medical image analysis by providing the abilities of GANs for the betterment in image reconstruction and
segmentation.
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I. INTRODUCTION
Medical imaging technologies have been developed to
visualize human internal features for the appropriate appli-
cation of clinical analysis and treatment purposes. The
systems brought developments in digital imaging that greatly
improved the role played by images in health sciences.
Of these technologies, computed tomography (CT) is at
the top of the list of most advanced techniques used for
the processing of computer-processed combinations of many
X-ray measurements made from different angles to produce
tomographic images or slices of certain areas of a scanned
object that the user can see inside the object without cutting.
CT scans are widely known to produce images that are much
more detailed compared with those from ordinary X-rays;
hence, they are indispensable in scanning for diseases or
injuries within different body regions. Magnetic Resonance
Imaging (MRI) is the other technique applied, whereby,
unlike the other techniques that emit ionizing radiation,
the radio waves are computer-generated, building up a
magnetic field to provide detailed pictures of organs and
tissue in the body. To elaborate further, as McRobbie et al.
[1] pointed out, this is due to the fact that the power
of MRI as a hyper-sensitive diagnostic tool lies in its
sensitivity to alterations in properties and the presence of
water within tissues, which can be largely modified as a
result of injury or disease. These imaging methods are pivotal
in modern diagnostics, offering detailed insights into the
patient’s condition. On the other hand, three-dimensional
(3D) images [2] are generally thought to offer much
more complete and superior information for the diagnosis
of some conditions, e.g., hepatobiliary and cardiovascular
pathologies, among others. The construction of 3D volumes
from 2D imaging slices obtained from CT or MRI scans is
thus of paramount importance [2]. Besidesmedical diagnosis,
3D volume reconstruction is used in many other fields,
including plastic work, the development of artificial limbs,
virtual surgery systems, anatomical education, treatment
planning, and the construction of blood vessels or organs
for computational biology studies [2]. Consequently, taking
these critical applications into consideration, great research
efforts have been focused on the development of efficient
methods for 3D volume reconstruction [2]. An area or
volume reconstruction of an image is closely resembling
conception with the concept of image inpainting, which can
be defined when the missing or damaged parts of that image
are being completed using the information of the surrounding
area. With respect to the image reconstruction region, it is
considered to have been split into two sub regions: �1 and
�2, of which �1 represents the inpainting region where data
needs to be filled in, whereas �2 stands for the available
image data. The total variation (TV) [3] inpainting model,
however, has limitations, though useful, for it does not bridge
big gaps appropriately, and neither are level lines extended

into the inpainting region—a situation quite explicit in
3D applications. Accordingly, in order to minimize those
shortfalls, modifications done on the Cahn-Hilliard [3]
inpainting model proposed minimization of a modified
energy equation of Cahn-Hilliard [3] so that with even large
gaps, those transitions and the connections can be maintained
smoothly. In this case, however, this process is suitable for
only binary images, and further post-processing with regard
to refining a multi-channel Cahn-Hilliard algorithm [4] needs
to be applied in the situation of gray-scale images. Fusion
of variational approaches concatenated along the energy
minimization, as it turns out, has also been devised in an
attempt to inpaint gaining surfaces [5] that are not suitable
for carrying out the replication of the desired 3D volumes.
The SculptorGAN main objectives are:

• Advanced 3D Volume Reconstruction Enhancement
- Implement SculptorGAN to elevate the precision and
speed in reconstructing 3D volumes from 2D medical
imagery, addressing and surpassing current challenges
in interpolation and reconstruction accuracy.

• Diagnostic Process Optimization - Apply the superior
reconstruction and segmentation precision of Sculp-
torGAN to refine diagnostic workflows, achieving a
reduction in operational time and an increase in the
accuracy of tissue differentiation, thereby facilitating
more effective treatment planning.

• Medical Imaging Analysis - Exploit the sophisti-
cated capabilities of SculptorGAN to develop pioneer-
ing approaches in medical imaging and diagnostics,
enabling enhanced early detection and meticulous
characterization of renal pathologies and any other organ
CT scan analysis.

The paper is organized as follows. We briefly review the
current state-of-the-art in automated tumor segmentation,
and survey benchmark efforts in other biomedical image
interpretation tasks using CT scan, in Section II. We then
describe the prior work, the manual annotation of tumor
structures, and the proposed framework in Section III. Finally,
we report and discuss the results of our work and conclusion
in Sections IV and V, respectively. Section VI concludes the
paper.

II. PRIOR WORK
The literature on generative models offers a rich tapestry of
iterative advancements and methodological innovations that
have significantly shaped the landscape of image synthesis.
Karras et al. [6] laid a foundational stone with the progressive
growing model, a technique that set a new benchmark for
image quality at resolutions up to 1024 × 1024. This model
marked a paradigm shift in generative approaches, enhancing
the synthesis of high-dimensional data distributions and
spurring subsequent innovations in image-to-image transla-
tion and inpainting (van den Oord et al. [7], Zhu et al. [8],
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FIGURE 1. Performance metrics over time (FID scores).

FIGURE 2. Model evolution timeline.

TABLE 1. Feature comparison of generative models.

Liu et al. [9], Wang et al. [10], Iizuka et al. [11]) (see
Figure 4). Auto regressive models like PixelCNN, while
celebrated for their sharp image generation, are critiqued
for their computationally intensive evaluation process, a lim-
itation that precludes their utility in scenarios demanding
rapid image generation (van den Oord et al. [12], [13]).
Variational auto encoders (VAE), introduced by Kingma
and Welling [14], were initially lauded for their training
efficiency. However, their propensity to yield blurry images
became a significant impediment, only mitigated by sub-
sequent refinements to the model [15]. Goodfellow et al.’s
[16] Generative Adversarial Networks (GAN) addressed
this issue, producing sharp images at modest resolutions.
Nonetheless, GANs are not without their challenges; the vari-
ability and training stability remain areas of active research
(Salimans et al. [17], Gulrajani et al. [18], Berthelot et al. [19],
Kodali et al. [20]) (see Table 1). Hybrid models attempt
to amalgamate the strengths of auto regressive models,
VAEs, and GANs, but they struggle to match the image
quality produced by standalone GANs, revealing the nuanced
trade-offs between these generative approaches (Makhzani
and Frey [21], Ulyanov et al. [22], Dumoulin et al. [23]). The
pursuit of the ideal generative model is a continuous quest,

as researchers strive to balance image quality, variety, and
training stability (see Figure 2). Huang et al. [24] proposed
IntroVAE, an introspective variational auto encoder that
synthesizes high-resolution photographic images, assessing
and refining its own outputs in an iterative fashion. The meld-
ing of VAEs’ reconstruction goals with GANs’ adversarial
training within a single-stream architecture has yielded high-
quality results, rivalling state-of-the-art GANs. Similarly,
InterFaceGAN [25] exploited the latent semantics encoded
by GANs for semantic face editing, achieving remarkable
control over facial attributes without introducing artifacts.
Park et al. [26] further enhanced the field with spatially-
adaptive normalization, which allowed for the synthesis of
photo realistic images based on semantic layouts, granting
users unprecedented control over image style and content.
Heusel et al. (2017) made a significant contribution with the
Two Time-Scale Update Rule (TTUR) whose major contri-
bution is to make advances in the learning and convergence
of GANs training with regard to the FID performance metric
about it. This advance implies an improvement in GANs
training methods improving their usability. Likewise, Liu
et al. (2014) showed that deep learning of facial attribute
analysis in natural setting can lead to improved performance
of attribute prediction and representation learning ability.
In this regard, Pidhorskyi et al. (2020) proposed Adversarial
Latent Auto encoders (ALAE) for handling problems such
as generative power and representation disentanglement in
GANs and gave new insights into the problem of image
synthesis at the level of StyleGAN. Moreover, Brock et
al. (2018) brought GAN training to a whole new level
entirely with their BigGAN model that swept all scores in
the ImageNet dataset to date by achieving the best ever test
accuracies and effectively setting new benchmarks and show
what large-scale GANs should look like when regularization
is properly addressed.

The confluence of studies described in table 2 gives
a dynamically maturing field, punctuated by substantial
advancements alongwith ongoing challenges.What collected
literature does then is not merely feature the developmental
history of generative models but also opens doors for future
research. The next epoch in this aspect will probably be fueled
by this vast knowledge base assuring researchers towards
novel solutions adept enough in balancing image quality with
variety and computational needs.

III. METHODOLOGY
The methodology of the proposed work unfolds in two
distinct phases, underpinned by a decoupled deep learning
model approach designed for the reconstruction of 3D med-
ical images from 2D slices and the subsequent segmentation
of anatomical structures such as kidneys and kidney tumors.
In Phase I, titled ‘‘SculptorGAN,’’ a novel Conditional
Generative Adversarial Network (cGAN) integrated with
a Weight Pruning U-Net (WP-UNet) architecture [33] is
employed to enhance, interpolate, and assemble 2D slices
from the KiTs19 dataset into coherent 3D volumes. This
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TABLE 2. Summary of key developments in generative models.

FIGURE 3. SculptorGAN for 3D reconstruction of Kidney CT scan modality
along with segmentation.

phase leverages the conditional generative capabilities of
SculptorGAN to ensure the contextual and spatial con-
tinuity of the reconstructed 3D volumes, optimizing the
process through weight pruning techniques for computational
efficiency. Phase II advances with the segmentation task,
utilizing a separate WP-UNet model [33] specifically tuned
for the segmentation of kidneys and kidney tumors within
the 3D volumes generated by SculptorGAN. This phase
emphasizes precision in voxel-wise classification, employing
weight-pruned networks to maintain model performance
while reducing computational load. Together, these phases
encapsulate a comprehensive methodology for enhancing
medical imaging analysis, from accurate 3D reconstruction
to detailed anatomical segmentation, fostering advancements
in diagnostic and therapeutic applications (Figure 7).

A. PHASE I(SculptorGAN FOR 3D RECONSTRUCTION
FROM 2D)
SculptorGAN emerges as an advanced strategy for the
reconstruction of 3D medical images from a sequence of
2D slices, deliberately engineered to address the intricate
needs of medical imaging analysis within the KiTs19 dataset.
At its foundation, this method is built upon the dynamic
principles of Generative Adversarial Networks (GANs) [34],
a pioneering class of machine learning models. GANs consist
of two core components: a generator (G) that strives to
synthetic data indistinguishable from original data, and a dis-
criminator (D), which evaluates the authenticity of the data,
discerning between original and synthesized CT Images.
This adversarial dynamic forces the generator to refine its
output, thereby achieving highly realistic results over time.
SculptorGAN innovatively integrates this GAN framework
with a specialized architecture, the Weight Pruning U-Net
(WP-UNet) [33], for the generator. This integration is pivotal
for enabling the generator to efficiently and effectively man-
age conditional inputs, such as the 2D medical slices derived
from scans. Furthermore, the discriminator is meticulously
configured to evaluate the realism of the generated slices,
ensuring the produced 3D representations are both coherent
and accurately detailed. The procedure initiates with critical
pre processing steps, including the normalization of intensity
values and data augmentation, to optimally prepare the
slices for the generative task. By harnessing the strengths
of GANs in conjunction with the WP-UNet architecture,
SculptorGAN adeptly improves the reconstruction of 3D
medical images, offering a significant advancement in the
field of medical imaging analysis. The adversarial training,
which is at the core of the SculptorGAN technique, proceeds
over specified number of epochs (E) during which time
the discriminator function is trained to differentiate between
real and fake slices as the generator network itself is
optimized in the attempt to generate fake slices indistinct
from real slices by perceptiveness of the discriminator. This
iterative refinement is crucial for enhancing the fidelity of
the generated slices. Notably, the generator uses conditional
inputs of adjacent slice information, a way of ensuring
anatomical coherence of the longitudinally reconstituted
volume by reproducing accurately replication of spatial and
contextual details inherent in sequential medical slices.
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Algorithm 1 SculptorGAN for 3D Reconstruction From 2D
Slices
Require:

A sequential set of 2D medical imaging slices S =

{s1, s2, . . . , sN } from the KiTs19 dataset.
Adjacent slice information for each slice, serving as conditional
input for cGAN.

Ensure:
A reconstructed 3D medical image volume, V .

0: Parameters:
N : Total number of 2D slices.
G: Generator model, based on a weight-pruned WP-UNet
architecture, enhanced for conditional inputs.
D: Discriminator model, a CNN for assessing the realism of
generated slices.
E : Number of training epochs.
Ladv: Adversarial loss function.
Lrecon: Reconstruction loss function, such as Mean Squared
Error (MSE) or L1 loss.

0: Pre processing:
0: Normalize intensity values across all 2D slices in S.
0: Apply data augmentation as needed for robust training.
0: Model Initialization:
0: Initialize G with WP-UNet, configured for conditional inputs.
0: Initialize D with a suitable CNN architecture for realism

assessment.
0: Adversarial Training Over E Epochs:
0: for each epoch e ∈ {1, 2, . . . ,E} do
0: a. Discriminator Training:
0: for each batch of real slices s and their adjacent slices as

conditional inputs do
0: Generate synthetic slices G(s|adjacent) using G.
0: Compute D’s loss LD using Ladv on both real and

synthetic slices.
0: Update D to minimize LD.
0: end for
0: b. Generator Training:
0: Generate synthetic slices G(s|adjacent).
0: Compute G’s loss LG, combining Ladv and Lrecon.
0: Update G to minimize LG.
0: end for
0: Interpolation and 3D Volume Assembly:
0: a. Enhance/Interpolate Missing Slices: EmployG to enhance

all slices in S, and interpolate missing slices using adjacent
slices as conditional inputs.

0: b. 3D Volume Construction: Stack enhanced and interpolated
2D slices G(s|adjacent) in their original sequence to form the
3D volume V .

0: Optional Post-processing: Apply smoothing or other
techniques to refine V .

0: return The reconstructed 3D volume V .
=0

After the SculptorGAN process and in order to complete
the result, all of those improved 2D slices are combined
and filled with interpolation to create a 3D volume, all
along with taking care to do it in sequence correctly so
that no anatomical structure is lost. Further post-processing
steps as are optional for additional smoothing can be further
applied to improve the quality of the reconstructed volume.
This high-quality 3D medical image volume, output of this
sophisticated algorithmic process is ready for subsequent
analyses including segmentation tasks that require accurate
delineations of anatomical structures. Implementing Sculp-

torGAN by following Algorithm 1 will position the field to
take huge strides in tackling reconstruction and segmentation
issues within complex anatomical structure of interest in
medical image analysis, thus demonstrating the value of deep
learning technologies in driving the diagnosis and treatment
applications in health care.

B. PHASE II(OVERVIEW OF THE SEGMENTATION PROCESS
USING WP-UNET)
The refined algorithm for Phase II, focusing on the segmen-
tation of kidney and tumor using the Weight Pruning U-Net
(WP-UNet) [34], encapsulates a sophisticated approach
tailored for high-precision medical image analysis. This
phase builds upon the reconstructed 3D volumes obtained
from Phase I, employing advanced deep learning techniques
to segment anatomical structures with exceptional accuracy.
The WP-UNet architecture [34] shown in Figure 7, central to
this phase, features a series of weight pruning blocks designed
to optimize computational efficiency without compromising
the model’s ability to extract and interpret complex spatial
features from 3D medical images (Algorithm 2). Each block
within the WP-UNet framework incorporates depthwise
separable convolutions followed by batch normalization
and, optionally, pooling operations. This configuration is
pivotal in reducing the model’s computational demands while
ensuring detailed feature extraction, crucial for accurate
segmentation.

1) INITIALIZATION AND DEFINITION OF THE WEIGHT
PRUNING BLOCK
The intuition behind WP-UNet is to initialize an encoder-
decoder structured network, which is customized for 3D
inputs. The weight pruning blocks are inserted within this
architecture in a strategic way that eases the computational
demands using depthwise separable convolutions without
any kind of compromise in the capacity of the network in
extracting spatial details. Batch normalization follows these
convolutions to aid stable learning of the weights while
pooling operations are applied to distill further essential
features as well as reduce dimensional of the feature space.
Within all these blocks, weight pruning is one of the essential
steps in ensuring that less important weights are methodically
removed towards enhancing model efficiency and reducing
over fitting risk.

2) ENCODER-DECODER PROCESSING
Weight pruning blocks process the input volume sequentially,
successively reducing its spatial dimensions while enriching
feature representation. The decoder will then inversely
re-build the spatial dimensions using transposed convolutions
to upscale the feature maps back to its original volume size,
ensuring that the spatial integrity of the anatomical structures
is meticulously preserved.

3) SEGMENTATION OUTPUT
Finally, the WP-UNet processing generates a segmentation
mask produced by voxel-wise classification within the
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reconstructed volume. This separation and identification dis-
tinct renal tissue from tumors giving an elaborate description
of the micro architecture of anatomical and pathological
structures of different tissues.

Algorithm 2 Segmentation of Kidney and Tumor Using
WP-UNet
Require:

V : 3D medical image volume (H ×W × D)
Adjacent slice information for cGAN inputs.

Ensure:
M : Segmentation mask for kidneys and kidney tumors.

0: Initialization:
Define WP-UNet with encoder-decoder and weight pruning
blocks.

0: Define Weight Pruning Block:
0: for each block in WP-UNet do
0: Perform depthwise convolution:

Fdw = ReLU(BN(Wdw ∗ Fin))
0: Perform pointwise convolution:

Fpw = ReLU(BN(Wpw ∗ Fdw))
0: if applicable then
0: Apply pooling:

Fpool = MaxPool(Fpw)
0: end if
0: Apply weight pruning for Wdw and Wpw.
0: end for

0: Encoder-Decoder Processing:
0: Encode V using successive WPBlocks.
0: Decode to spatial dimensions using transposed convolutions.

0: Generate Segmentation Output:
Apply voxel-wise classification to get M .

0: Define Loss Function:
Use composite loss L = αLDice + (1 − α)LCE .

0: Train WP-UNet:
Minimize loss L, applying weight pruning periodically.

0: Optional Post-processing:
Refine M using morphological operations.

0: Return: Segmentation mask M .
=0

4) TRAINING WITH A COMPOSITE LOSS FUNCTION
The training is governed by the composite loss function that
combines the Dice coefficient loss with cross-entropy loss,
which were designed for accuracy resizing segmentation and
effective voxel classification respectively. This dual objective
function ensures the network’s predictions match not only
with the ground truth but also both the overlap as well as
the individual voxel predictions are optimized within the
segmentation mask.

5) POST-PROCESSING FOR REFINEMENT
Optionally, further cleaning and post-processing steps could
be applied to the segmentation mask instead of sticking
to strict morphological operations only in order to better
refine outlines of the segmented regions, eliminate small
artefacts and enhance clarity of the segmentation.This phase

produces very accurate segmentation masks for each 3D
volume, marking a milestone in medical image segmentation
using deep learning. By harnessing the computational power
of weight-pruned networks and the detailed feature extraction
capability of depthwise separable convolutions, this method
set a new standard for precision in medical imaging analysis
with profound implications on diagnostic accuracies and
patient care.

IV. EXPERIMENTAL RESULTS
A. DATASET
This method refines the proposed SculptorGAN model using
the KiTS19 dataset [32], which is a specialized compilation
of CT scans that are meticulously annotated for kidney and
kidney tumor segmentation. This dataset has been sourced
from the Kidney Tumor Segmentation Challenge 2019 and
has CT images of 210 patients, for an ample range of
anatomical and pathological conditions. In every patient, each
of their data will have an average of 100 up to 300 slices
with corresponding segmentation masks not just on the
kidney regions but also on the instances of the renal tumors.
These medical expert-curated annotations are provided in
NIfTI format32 and are the ground truth for training and
benchmarking the performance of SculptorGAN in precise
segmentation and 3D reconstruction task. SculptorGAN, for
instance, taps into over 20,000 annotated detail slices towards
the new age of medical image analysis especially improving
detections and characterizations of renal pathologies among
others for better diagnostic accuracy and provision for
improved clinical decisions in not only nephrology but also
oncology.

B. DATASET PRE PROCESSING
The KiTS19 dataset [32] is subjected to a thorough pre-
processing process described in the next sections before
being fed into SculptorGAN for segmentation and 3D
reconstruction tasks. Initially, decompression of all the CT
images, and corresponding segmentation masks, provided
in the NIfTI format is done for accessibility. Following
decompression, the CT images are normalized to resolve
intensity inconsistency and to standardize the intensity range
of the CT volumes throughout all the scans in a study,
to enhance model convergence and segmentation accuracy.
Mathematically, this equation is given by Inorm =

I−Imin
Imax−Imin

,
where Inorm is the new intensity value, I is the original
pixel intensity, and Imin and Imax represent the minimum
and maximum intensities of the complete dataset [32].
Lastly, orientation correction would assure an anatomical
consistency of the input data by orienting all the slices in
function of a standardization anatomical reference such that
every slice actually represents his intended positionwithin the
3D volume as shown in figure 4. This pre processing step is
required to relieve the variations from imaging conditions and
scanner settings to make accurate and reliable the following
segmentation and reconstruction steps from SculptorGAN.
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FIGURE 4. The effect of data augmentation techniques used in our
method. First row is the original images; second row shows the effect of
contrast augmentation and mirroring; third row shows elastic deforming,
scaling, gamma correction and rotation.

C. SCULPTOR GAN RESULT ANALYSIS
To assess our proposed three-dimensional network architec-
ture and ensure its effectiveness with actual data, we carried
out experiments using the public KiTS19 dataset. This
dataset was divided into training, validation, and test sets.
We used these partitions not only to train our model but also
to evaluate its performance. This evaluation included both
visualization metrics and quantification metrics, allowing for
a comprehensive analysis of the model’s capabilities.

The network optimization was carried out using Adam
[35] as the optimizer function, with an initial learning rate of
3 × 104. We employed an adaptive strategy for adjusting the
learning rate during training. This strategy involves reducing
the learning rate by 0.2 times if no improvement in training
loss is observed within 30 epochs. Training is considered
complete if there is no further decrease in loss after 50 epochs.
The implementation was done in Python using the PyTorch
framework. Experiments were conducted on twoNvidia Tesla
32GB GPUs. Due to the limited GPU memory, we set the
patch size at 192 × 192 × 48 and the batch size at eight. The
training, which is patch-based, involves randomly sampling
each patch from the data loader with each epoch consisting of
250 iterations. This means that effectively, 250 × 8 patches
are selected from the training data in every epoch.

In our study, we used SculptorGAN as a foundational
approach to tackle the issues of incompleteness and diversity
in CT datasets. As shown in Figure 2, SculptorGAN’s archi-
tecture is not limited to enhancing the clarity of individual
CT slices; it also extends to filling in missing data, which
is crucial for proper 3D reconstruction. The algorithm’s
capability to refine existing slices and generate missing ones
underlines its effectiveness. The results displayed in the
figure demonstrate a striking transformation from potentially
flawed original medical images to a series of improved slices
with interpolated segments. This remarkable change attests to
the strength of our proposed method. These findings endorse

FIGURE 5. Synthesized the missing slices, enhancing the quality of the CT
scan images.

SculptorGAN’s role as a valuable tool in medical imaging,
providing an advanced method for preparing datasets for
smooth 3D reconstruction and subsequent analysis with
ease. The segmentation outcomes presented in Fig. 6
from the decoupled deep learning model demonstrate the
WP-UNet’s robustness, with its predicted regions aligning
closely to the expert-annotated ground truth. The figure
offers a distinct graphical comparison between the ground
truth and the WP-UNet predictions, illustrating the model’s
ability to generalize and its potential for clinical application.
Furthermore, these results validate the effectiveness of weight
pruning as an optimization strategy. This approach allows
the WP-UNet to maintain accuracy while simultaneously
reducing computational complexity, a vital benefit for the
deployment of such models in real-world medical settings.
For a thorough and objective evaluation of our method,
we applied six quantitative metrics to all 42 test patient
scans. These metrics include Dice, Jaccard, Accuracy,
Precision, Recall, and Hausdorff [36], and were calculated
for both kidney and kidney tumor segmentation. To provide
a clear overview of the results for each test patient,
we compiled the Dice, Jaccard, Accuracy, Precision, and
Recall indices into two box plots. These plots are displayed
in Fig.7a and Fig.7b, offering a distinct visualization of
the distribution for kidney and kidney tumor segmentation
respectively.

Our method is further elaborated from the basic 3D
U-Net. We do not consider nor compare our approach to
other complicated architecture modifications, as they are
often only effective for specific cases or metrics. Therefore,
in order to investigate the effectiveness of our strategies,
we compare the performance of the basic 3D U-Net with
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FIGURE 6. Segmentation of kidney and tumor from reconstructed 3D CT
scans.

FIGURE 7. Segmentation quantitative metric.

TABLE 3. Comparative performance metrics.

our multi-scale supervised 3D U-Net. The implementation
of the 3D U-Net is identical to our multi-scale supervised
U-Net except for the three strategies defined in this paper. The
comparison results are listed in Table 3 and Table 4. These
two tables present the average values of the six indicators and
prove the improvement after using our three-fold enhancing
strategies. The most notable differences are in terms of tumor
segmentation. Following the evaluation against the standard
U-Net framework, we conducted a further comparative study
of our approach against three contemporary methodologies
as delineated in Table 5. It is imperative to acknowledge
that our proposed model operates directly on full-scale CT
images, thereby engaging with a substantially higher level
of complexity within the segmentation task relative to the
alternative methods that concentrate on segmented regions of
interest (ROIs). Despite this increased challenge, our method
demonstrates superior performance across a range of metrics

TABLE 4. Comparison between the proposed decoupled deep learning
based UNet Model and classic 3D U-Net (tumor).

TABLE 5. Comparison of segmentation performance.

for the segmentation of both kidney tissues and kidney
tumors. This underlines the robustness of our model and
underscores its effectiveness in handling larger, unsegmented
datasets while maintaining, and in several aspects surpassing,
the precision achieved bymodels trained onmore constrained
ROIs.

V. CONCLUSION
Our research tackled a significant challenge in medical
image processing through an innovative two-phase method.
In the first phase, we employed a type of conditional GAN
called SculptorGAN for the enhancement and interpolation
of 2D CT scan images. This phase effectively addressed
the common issue of incomplete data in medical datasets
and significantly upgraded the image quality. The successful
use of SculptorGAN also enabled a smooth transition to 3D
volume reconstruction, setting a strong base for later analysis.

In the second phase, we introduced the Weight Pruning
U-Net (WP-UNet) model, taking advantage of the 3D
volumes we reconstructed earlier. Despite the complexity of
working with raw-sized CT images, our WP-UNet model
surpassed existing methods that used smaller, predefined
regions of interest. Through weight pruning techniques, our
model achieved enhanced segmentation results, evident in
the improvement of various metrics for kidney and tumor
segmentation, including the Dice coefficient, Jaccard index,
and Hausdorff distance. This demonstrates the effectiveness
of our deep learning approach.

The combined efforts of both phases resulted in a
comprehensive system capable of managing all necessary
tasks for efficient medical image processing, from initial
enhancement and reconstruction to intricate segmentation
and analysis. Our method marks a significant advancement
in medical imaging, offering a powerful solution that could
be adapted for other related tasks. This study’s success
points to a promising future in research, suggesting that
integrating advanced deep learning models can address the
complexities of medical data. The potential applications
of our approach extend beyond renal imaging, indicating
progress in diagnostic radiology and personalized medicine.
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