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1. Introduction

The Jaulent-Miodek model comprises coupled nonlinear partial differential equations (PDEs) that
have many practical applications in engineering and science, especially physical phenomena. This
model was proposed in 1988 by Jollint and Miodek [1] to theoretically represent a Josephson junction,
a nonlinear superconducting device. After that, these equations have been studied and developed by
many researchers to widely represent many physical applications, such as condensed matter physics,
dynamics of semiconductor devices, plasma physics, diffusion of electromagnetic waves in nonlinear
media, and the behavior of Bose-Einstein condensates (see e.g., [2–5]).

Fractional calculus (FC) is an arbitrary order of integrals and derivatives that are considered a
generalization of integer calculus. Moreover, the differential equations are ordinary or partial that
involve fractional order operators called fractional differential equations (FDEs). Recently, models
containing the FC have attracted many researchers, which have prompted them to explain a few
attractive several engineering and natural science problems in the form of fractional-order models
(FOMs). These FOMs have many characteristics that distinguish them from classical models, as they
have nonlocal operators, anomalous diffusion, nonlinearities, long-range interactions, and display
memory effects (see e.g., [6–13]).

Through research in previous studies, we found many numerical and analytical methods for
solving linear and non-linear PDEs. However, there is no unique method suitable for giving the best
solutions for all mathematical models described by these PDEs where some methods work well with
certain problems, but others do not work well with those problems. Each method has its advantages
and shortcomings, which is due to the type of problem, surrounding circumstances, and the
researcher’s experience. We mention here some methods used to solve PDEs such as residual power
series method [14–16], sine-Gordon expansion technique [17, 18], q-homotopy analysis transform
method [19], finite difference method [20], Homotopy perturbation method [21], Elzaki transform
decomposition method [22], Adams–Bashforth–Moulton method [23], Fourier spectral method [24],
and many more approaches [25–30].

Our motivation of this article is to implement a new analytical-approximate method (i.e.,
MGMLFM) to obtain general solutions for nonlinear FPDEs and solve the following
time-FJMM [31].
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V(x, 0) = V0 = λsech
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)
, (1.2)

where U and V are anonymous functions dependent on the variables of space x and time t, C
0Dα

t is CFD,
0 < α ≤ 1 and λ is an arbitrary constant.
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Our contribution is to exhibit the convenient analytical approximate solution of nonlinear FJMM
that characterizes the behavior of several phenomena, onset from electrical circuits to biological
processes, using a promising analytical method called MGMLFM. Furthermore, we offer a
comparison between obtained solutions with familiar exact solutions and solutions gained by other
methods in the literature, as well as evaluate the absolute error to prove the efficiency and eligibility of
MGMLFM. Through this research and the presented results, we found several advantages of the
proposed method that distinguish it from other conventional methods, including that it is easy, has
simple computations, and does not require excessive effort. Also, the obtained solutions from this
method are completely consistent with the exact solutions, and the value of absolute error is much
lower compared to the methods available in the literature that solved this model under the same
conditions.

This work is organized as follows. Section 2 supplies some basic concepts of FC that support
this work. Section 3 illustrated the fundamental algorithm of the MGMLFM to solve the general
nonlinear FPDEs. In Section 4, we implemented MGMLFM to determine the analytical approximate
solutions for the FJMM. The numerical simulation of obtained results is investigated in Section 5
through some 2D and 3D plots and a comparison with the known exact solution and other different
methods is presented in some tables to confirm the validation of our method. Section 6 shows the
conclusion and discussion.

2. Preliminaries

We introduce in this part some essential concepts, properties and useful definitions of FC to advance
this research [33–35].

Definition 2.1. The fractional integral of order α > 0 for function Φ(x, t) in t ∈ [0,T ] based on the
Riemann-Liouville sense is specified by

0Iαt Φ(x, t) =
1

Γ(α)

∫ t

0
(t − τ)α−1Φ(x, τ)dτ, t > 0,

0I0
t Φ(x, t) = Φ(x, t).

Definition 2.2. Let Φ(x, t) be an absolutely continuous function, then the CFD of order n − 1 < α ≤

n ∈ N, t ∈ [0,T ] is given by

C
0Dα
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1
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∫ t

0
(t − τ)n−α−1∂

nΦ(x, τ)
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when 0 < α < 1, then we have
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0
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Theorem 2.1. let α ∈ (n − 1, n], t ∈ [0,T ] and θ > −1. Then, for a differentiable function Φ(x, t) we
get

C
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Also, we have

C
0Dα

t tθ =
Γ(θ + 1)

Γ(θ − α + 1)
tθ−α,

0Iαt tθ =
Γ(θ + 1)

Γ(θ + α + 1)
tθ+α.

Definition 2.3. The Mittag-Leffler function is defined as

Eα(z) =

∞∑
n=0

zn

Γ(nα + 1)
, α > 0, z ∈ C.

Lemma 2.1. The CFD of generalized Mittag-Leffler function is given by
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Theorem 2.2. [36] Suppose that Φ(x, t) =
∑∞
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.

3. Fundamental procedures for the MGMLFM

To demonstrate the procedure and algorithm of the MGMLFM, we consider the following general
nonlinear FPDEs

C
0Dα

t z(X, t) = L( z(X, t)) + N( z(X, t)) , (3.1)

subject to ICs

z(X, 0) = $(X), (3.2)

where L linear operator and N nonlinear operator, z =


z1
z2
...
zm

, X = [ x1 x2 ··· xn ], n,m ∈ N, and

$(X) =

 $1
$2
...

$m

.
The MGMLFM assume the solution of Eq (3.1) as

z1(X, t) = θ1(X)Eα(ℵ1tα) =

∞∑
k=0

θ1(X)ℵk
1

tkα

Γ(kα + 1)
,

z2(X, t) = θ2(X)Eα(ℵ2tα) =

∞∑
k=0

θ2(X)ℵk
2

tkα

Γ(kα + 1)
, (3.3)

...
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zm(X, t) = θm(X)Eα(ℵmtα) =

∞∑
k=0

θm(X)ℵk
m

tkα

Γ(kα + 1)
,

where ℵ1,ℵ2, · · · ,ℵm are anonymous coefficients. The auxiliary functions θ1, θ2, · · · , θm satisfies θ1 =

$1, θ2 = $2, · · · , θm = $m. Using assumptions (3.3) and Lemma 2.1 the FPDEs (3.1) satisfies

∞∑
k=0

$(X)ℵk+1
m

tkα

Γ(kα + 1)
= L(
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m

tkα
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) + N(

∞∑
k=0

$(X)ℵk
m

tkα

Γ(kα + 1)
),m = 1, 2, · · · . (3.4)

Consequently, we can write L as the following

L(z(X, t)) = L(
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k=0

$(X)ℵk
m

tkα

Γ(kα + 1)
) = L($(X))
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m
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(3.5)

= ε$(X)
∞∑

k=0

ℵk
m

tkα

Γ(kα + 1)
,

where ε is a constant. From the Theorem 2.2, N can be expanded as follows

N(z(X, t)) = N(
∞∑

k=0

$(X)ℵk
m

tkα

Γ(kα + 1)
) = N(

∞∑
k=0

$(X)z j(X, t))

(3.6)

= N($(X)) (N(z0(X, t)) +

∞∑
k=1

(N(
k∑

i=0

zi(X, t)) − N(
k−1∑
i=0

zi(X, t)) )).

By decomposing Eqs (3.5) and (3.6) into Eq (3.4), we obtain a general recurrence relations to
acquire ℵm. Consequently, we get a solution of Eq (3.1). For more details on the MGMLFM (see
e.g., [37–40]). Regarding the error estimator and convergence of the given algorithm, we offer the
following theorem.

Theorem 3.1. Let’s consider a Hilbert Space H defined as: H = L2((ε, η)× [0,T ]) with the associated
norm

∥∥∥z2
∥∥∥ =

∫
(ε,η)×[0,T ]

z2(x, λ) dλ dτ < +∞ and the following two hypothesesH1,H2 are satisfied

(H1) (ψ(z1) − ψ(z2), z1 − z2) ≥ K‖z1 − z2‖
2; K > 0, z1, z2 ∈ H,

(H2) whenever a constant % > 0, then there exist M(%) > 0, since ‖z1‖ ≤ %, ‖z2‖ ≤ %, ∀ z1, z2 ∈ H
and we have (ψ(z1) − ψ(z2), ω) ≤ M(%) ‖z1 − z2‖ ‖ω‖ for every ω ∈ H,

where the operator ψ(z1) following Eq (3.1) is given by ψ(z1) = CDα
t z1(x, t) = L(z1(x, t)) + N(z1(x, t));

L, N are linear and nonlinear differential operators in H. Then, the MGMLFM is convergence.

Proof. The proof of this theorem can be proceed in the same manner in [7, 32]. �
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4. Implementing MGMLFM on FJMM

In this section, we employ the above algorithm of the MGMLFM to solve the nonlinear coupled
time-FJMM as stated in Eq (1.1) subject to ICs (1.2). Furthermore, the validity of the MGMLFM is
proven by comparing acquired approximate solutions at α = 1 with the next known exact solution
[14, 31].

U(x, t) =
λ2

8

[
1 − 4sech2

(
λ

2
(x +

1
2
λ2t)

)]
,

(4.1)

V(x, t) = λsech
(
λ

2
(x +

1
2
λ2t)

)
.

To execute the MGMLFM on the FJMM model (1.1), the solution is assumed by the fractional
power series as follows

U(x, t) = Υ(x)Eα(Atα) =

∞∑
n=0

Υ(x)An tnα

Γ(nα + 1)
,

(4.2)

V(x, t) = Ψ(x)Eα(Btα) =

∞∑
n=0

Ψ(x)Bn tnα

Γ(nα + 1)
,

where A and B are anonymous coefficients. From Eq (1.2) the auxiliary functions yields Υ(x) = U0

and Ψ(x) = V0. Using Lemma (2.1) and Eq (4.2), we have

∞∑
n=0

[
U0An+1 +

∂3(U0An)
∂x3 +

(
3
2

V0Cn +
9
2

Mn − 6U0Ln − 6U0V0En −
3
2

V2
0 Pn

)
Γ(nα + 1)

]
tnα

Γ(nα + 1)
= 0,

(4.3)
∞∑

n=0

[
V0Bn+1 +

∂3(V0Bn)
∂x3 −

(
6V0Qn + 6U0Hn +

15
2

V2
0 Rn

)
Γ(nα + 1)

]
tnα

Γ(nα + 1)
= 0,

where

Cn =

n∑
k=0

Bk ∂3(V0B(n−k))
∂x3

Γ(kα + 1)Γ((n − k)α + 1)
, Mn =

n∑
k=0

∂(V0Bk)
∂x

∂2(V0B(n−k))
∂x2

Γ(kα + 1)Γ((n − k)α + 1)
,

Ln =

n∑
k=0

Ak ∂(U0A(n−k))
∂x

Γ(kα + 1)Γ((n − k)α + 1)
, Qn =

n∑
k=0

∂(U0Ak)
∂x B(n−k)

Γ(kα + 1)Γ((n − k)α + 1)
,

En =

n∑
k1=0

k1∑
k2=0

Ak2 B(n−k1) ∂(V0B(k1−k2))
∂x

Γ(αk2 + 1)Γ(α(k1 − k2) + 1)Γ(α(n − k1) + 1)
, Hn =

n∑
k=0

Ak ∂(V0B(n−k))
∂x

Γ(kα + 1)Γ((n − k)α + 1)
,

Pn =

n∑
k1=0

k1∑
k2=0

∂(U0Ak2 )
∂x B(n−k1)B(k1−k2)

Γ(αk2 + 1)Γ(α(k1 − k2) + 1)Γ(α(n − k1) + 1)
,
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Rn =

n∑
k1=0

k1∑
k2=0

∂(V0Bk2 )
∂x B(n−k1)B(k1−k2)

Γ(αk2 + 1)Γ(α(k1 − k2) + 1)Γ(α(n − k1) + 1)
.

From Eq (4.3) the term tnα , 0, but their coefficients = 0. Therefore, the recurrence relation is set
as

An+1 =
−
∂3(U0An)
∂x3 −

(
3
2V0Cn + 9

2 Mn − 6U0Ln − 6U0V0En − 3
2V2

0 Pn
)
Γ(nα + 1)

U0
,

(4.4)

Bn+1 =
−
∂3(V0Bn)
∂x3 +

(
6V0Qn + 6U0Hn + 15

2 V2
0 Rn

)
Γ(nα + 1)

V0
.

For n = 0, we have

A1 =
−
∂3(U0A0)
∂x3 −

3V0C0

2 − 9M0

2 + 6U0L0 + 6U0V0E0 + 3
2V2

0 P0

U0
=

4λ3 tanh
(
λx
2

)
cosh(λx) − 7

,

B1 =
−
∂3(V0B0)
∂x3 + 6V0Q0 + 6U0H0 + 15

2 V2
0 R0

V0
= −

1
4
λ3 tanh

(
λx
2

)
,

where A0 = 1 and B0 = 1. When n = 1 we have

A2 =
−
∂3(U0A1)
∂x3 −

3V0C1

2 − 9M1

2 + 6U0L1 + 6U0V0E1 + 3
2V2

0 P1

U0
,

= −
λ6(cosh(λx) − 2)sech2(λx

2 )
cosh(λx) − 7

,

B2 =
−
∂3(V0B1)
∂x3 + 6V0Q1 + 6U0H1 + 15

2 V2
0 R1

V0
,

=
1

32
λ6(cosh(λx) − 3)sech2(

λx
2

).

Similarly, by replacing diverse values for n we procure other coefficients of A and B. After that, we
replace these gained coefficients in the next power series, leading to the approximation solutions of the
nonlinear coupled FJMM that in Eq (4.2).

U(x, t) = U0(A0 + A1 tα

Γ(α + 1)
+ A2 t2α

Γ(2α + 1)
+ A3 t3α

Γ(3α + 1)
+ · · · ),

V(x, t) = V0(B0 + B1 tα

Γ(α + 1)
+ B2 t2α

Γ(2α + 1)
+ B3 t3α

Γ(3α + 1)
+ · · · ).
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5. Numerical simulation and discussion

Here, we present graphical representations and tabled values of the obtained solutions through
MGMLFM for nonlinear coupled FJMM Eq (1.1). A qualitative comparison between our analytical
approximate solution with the given exact solution in Eq (4.1) is displayed in both 3D and 2D graphs.
Also, we reported in some tables a quantitative comparison between our results and the known exact
solutions. In addition, we evaluated the absolute error associated with the obtained solutions and
compared it with some other methods found in the literature such as the Hermite wavelet method
(HWM) [31], modified Laplace decomposition method (MLDM) [32], Laplace residual power series
method (LRPSM) [16], and optimal auxiliary function method (OAFM) [1].

Figures 1 and 3 present the behavior of the obtained results from MGMLFM for U and V at α = 1,
respectively, compared with the given exact solution in Eq (4.1), in addition to displaying the absolute
error between them. In Figures 2 and 4, we illustrate the influence of changing α on the behavior of
solutions for the system dynamics.

In Tables 1 and 2, we show a comparison between the obtained numerical values of U(x, t) and
V(x, t), respectively, with the given exact solution at α = 1 and various values of t. Furthermore,
the absolute errors associated with these approximate solutions are estimated and compared with other
methods such as HWM and MLDM in Tables 1 and 2, as well as LRPSM in Tables 3 and 4. In addition,
a comparison between absolute errors caused by MGMLFM with those resulting from the OAFM is
presented in Tables 5 and 6.

We conclude from the presented tables that the obtained approximate values when α = 1 are closely
aligned with the known exact solutions and the analysis errors are very small and better than those
obtained in other presented methods.

Figure 1. Comparison between the approximate solution for U(x, t) at α = 1 with exact
solution for the FJMM.
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(a) (b)

Figure 2. The influence of the fractional order on the MGMLFM approximate solution for
U(x, t) when λ = 0.2 and x = 0.2. (a) α = 1, 0.9, 0.8, 0.7, 0.6. (b) α = 0.5, 0.4, 0.3, 0.2.

Figure 3. Comparison between the approximate solution for V(x, t) at α = 1 with exact
solution for the FJMM.
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(a) (b)

Figure 4. The influence of the fractional order on the MGMLFM approximate solution for
V(x, t) when λ = 0.2 and x = 0.2. (a) α = 1, 0.9, 0.8, 0.7, 0.6. (b) α = 0.5, 0.4, 0.3, 0.2.

Table 1. The MGMLFM and exact solutions for U(x, t) with the absolute error provided by
other methods in [31, 32] when λ = 0.5 and α = 1.

x t Exact MGMFM Error MGMFM Error HWM [31] Error MLDM [32]
0.2 -0.0933553 -0.0933553 4.16463×10−9 1.3360 ×10−5 4.16463 ×10−9

0.2 0.4 -0.093263 -0.093263 3.43094×10−8 6.3236×10−5 3.43094×10−8

0.6 -0.093161 -0.0931609 1.19136×10−7 1.6141 ×10−4 1.19136 ×10−7

0.8 -0.0930495 -0.0930492 2.90296 ×10−7 2.8892 ×10−4 2.90296 ×10−7

Table 2. The MGMLFM and exact solutions for V(x, t) with the absolute error provided by
other methods in [31, 32] when λ = 0.5 and α = 1.

x t Exact MGMFM Error MGMFM Error HWM [31] Error MLDM [32]
0.2 0.49921 0.49921 5.21689×10−9 6.3948 ×10−5 5.2168 ×10−9

0.2 0.4 0.499025 0.499025 4.29844×10−8 4.0998 ×10−5 4.2984×10−8

0.6 0.498821 0.498821 1.49281×10−7 1.4804 ×10−4 1.4928 ×10−7

0.8 0.498597 0.498597 3.6381 ×10−7 1.3136 ×10−4 3.6381 ×10−7

Table 3. The MGMLFM and exact solutions for U(x, t) with the absolute error provided by
LRPSM [16] when λ = 0.02 and α = 1.

x t Exact MGMFM Error MGMFM Error LRPSM [16]

0.1 -0.00014999999803187204 -0.00014999999803187202 2.7105054312 ×10−20 8.67132 ×10−8

0.0099 0.3 -0.00014999999801596804 -0.00014999999801596802 2.7105054312 ×10−20 2.51868 ×10−7

0.5 -0.00014999999800000002 -0.00014999999800000000 2.7105054300 ×10−20 4.1395 ×10−7

0.7 -0.00014999999798396803 -0.00014999999798396800 2.7105054312 ×10−20 5.71027 ×10−7

0.9 -0. 0001499999979678720 -0. 0001499999979678720 2.71050543120 ×10−20 7.21256 ×10−7

1 -0.00014999999795980000 -0.00014999999795980000 0.00000000000 ×1000 8.62914 ×10−7
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Table 4. The MGMLFM and exact solutions for V(x, t) with the absolute error provided by
LRPSM [16] when λ = 0.02 and α = 1.

x t Exact MGMFM Error MGMFM Error LRPSM [16]

0.1 0.019999999901593603 0.0199999999015936 3.46944695195×10−18 1.00061 ×10−8

0.0099 0.3 0.019999999900798402 0.019999999900798402 0.00000000000×1000 9.00175×10−8

0.5 0.019999999900000003 0.0199999999 3.46944695195×10−18 2.50025 ×10−7

0.7 0.0199999998991984 0.0199999998991984 0.00000000000×1000 4.9002110 ×10−7

0.9 0.0199999998983936 0.0199999998983936 0.00000000000×1000 8.09995 ×10−7

1 0.01999999989799 0.019999999897990003 3.46944695195 ×10−18 9.99969 ×10−7

Table 5. The MGMLFM and exact solutions for U(x, t) with the absolute error provided by
OAFM [1] when λ = 0.2 and α = 1.

t x Exact MGMFM Error MGMFM Error OAFM [1]

0.1 -0.014997580195199953 -0.014997580199784956 4.585002516543923×10−12 2.05729 ×10−7

0.5 0.2 -0.014991182592432142 -0.01499118260160548 9.173337436885198 ×10−12 2.252×10−7

0.3 -0.014980792306911109 -0.014980792320652778 1.374166926082498×10−11 2.44461 ×10−7

0.4 -0.014966417640955071 -0.014966417659235152 1.828008057425112×10−11 2.82237 ×10−7

0.5 -0.014948070069910207 -0.014948070092688998 2.277879100620605 ×10−11 7.21256 ×10−7

0.6 -0.014925764222701553 -0.014925764249929696 2.722814335109902×10−11 3.00695 ×10−7

0.7 -0.014899517857080208 -0.014899517888698881 3.161867295764509×10−11 3.18831 ×10−7

Table 6. The MGMLFM and exact solutions for V(x, t) with the absolute error provided by
OAFM [1] when λ = 0.2 and α = 1.

t x Exact MGMFM Error MGMFM Error OAFM [1]

0.1 0.19998790061001168 0.1999879006399615 2.994982040149807×10−11 1.0 ×10−5

0.5 0.2 0.19995590810192201 0.19995590816181252 5.98905092186186×10−11 3.99×10−5

0.3 0.19990393846500928 0.19990393855473867 8.9729390584381×10−11 8.98 ×10−5

0.4 0.19983201765960865 0.19983201777902473 1.194160881290429×10−10 1.6 ×10−4

0.5 0.19974018158552978 0.19974018173443045 1.489006695720718 ×10−10 2.49 ×10−4

0.6 0.1996284760383726 0.1996284762165063 1.781337022332962×10−10 3.58 ×10−4

0.7 0.19949695665388084 0.1994969568609475 2.070666693665401×10−10 4. 87 ×10−4

6. Conclusions

In this study, we successfully approached the convenient approximate solution for the nonlinear
time-FJMM by utilizing a new analytical technique called MGMLFM. The Caputo fractional operator
is used to extend the proposed model into the FPDEs form. The fundamental analysis for the
proposed method is investigated to acquire the analytical approximate solution of the general
nonlinear FPDEs. We depicted a numerical simulation for gained results through two and
three-dimensional plots and tabled data. We found excellent agreement between our results when
compared with given exact solutions (4.1) as indicated in Figures 1 and 3. Also, we demonstrated the

AIMS Mathematics Volume 9, Issue 3, 5671–5685.
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impact of fractional order α on the behavior of the approximate solutions in Figures 2 and 4.
Moreover, a comparison between the absolute error resulting from the used method and some other
methods in the literature is generated in the Tables 1–6 at various points of x and t when α = 1. The
findings of this research indicated the validity and efficiency of the MGMLFM for solving such
models. Hence, MGMLFM is considered a promising method for handling real-life applications in
various fields and an additive instrument for FC area and computational analysis methods.
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