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Abstract: Biomedical image segmentation is a vital task in the analysis of medical imaging, including the 

detection and delineation of pathological regions or anatomical structures within medical images. It has 

played a pivotal role in a variety of medical applications, involving diagnoses, monitoring of diseases, and 

treatment planning. Conventionally, clinicians or expert radiologists have manually conducted biomedical 

image segmentation, which is prone to human error, subjective, and time-consuming. With the 

advancement in computer vision and deep learning (DL) algorithms, automated and semi-automated 

segmentation techniques have attracted much research interest. DL approaches, particularly convolutional 

neural networks (CNN), have revolutionized biomedical image segmentation. With this motivation, we 

developed a novel equilibrium optimization algorithm with a deep learning-based biomedical image 

segmentation (EOADL-BIS) technique. The purpose of the EOADL-BIS technique is to integrate EOA 

with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. To 
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accomplish this, the EOADL-BIS technique involves Faster R-CNN architecture with ResNeXt as a 

backbone network for image segmentation. The region proposal network (RPN) proficiently creates a 

collection of a set of region proposals, which are then fed into the ResNeXt for classification and precise 

localization. During the training process of the Faster RCNN algorithm, the EOA was utilized to optimize 

the hyperparameter of the ResNeXt model which increased the segmentation results and reduced the loss 

function. The experimental outcome of the EOADL-BIS algorithm was tested on distinct benchmark 

medical image databases. The experimental results stated the greater efficiency of the EOADL-BIS 

algorithm compared to other DL-based segmentation approaches. 

Keywords: image processing; biomedical image segmentation; computer vision; deep learning; 

equilibrium optimizer 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

The Medical Imaging technique plays a crucial role in the current medical system to perform non-

invasive diagnostic processes, which includes the formation of functional and visual representations 

of the internal organs and human body for medical analysis [1]. It has various types comprised such as 

X-ray-based techniques, namely Computed Tomography (CT), traditional X-ray, mammography, 

ultrasound (US) imaging, molecular imaging method, and Magnetic Resonance Imaging (MRI). Other 

than these medical image methods, medical images can progressively be deployed to analyze different 

conditions, particularly those interrelated to the skin [2]. There exist 2 elements of medical images: 

One is image reconstruction and formation and the other is image processing and analysis [3]. Image 

formation includes a series of procedures whereby 2-D images of 3-D objects are designed. The 

reconstructions are dependent upon a group of iterative methods to construct 2-D and 3-D images 

usually in the object projection data. In contrast, image processing is used to improve image properties 

such as noise removal whereas image analysis extracts a group of features or quantitative information 

in the image for classification and detection of objects.  

Medical image segmentation is the process of labeling all the pixels of the object from medical 

images [4]. Generally, it is an important task for healthcare applications and is different from Computer 

Aided Diagnoses (CADx) to lesion diagnosis for the planning and guiding of treatment. Medical image 

segmentation supports a physician's concentration for a specific region of the disease and extracts the 

data for highly correct diagnoses. The primary concerns related to medical image segmentation are the 

inaccessibility of huge annotated counts, lack of conventional segmentation protocol, low-quality 

images, a huge variation of images between the patients, and lack of high-quality labeled images for 

training [5]. This specifies the need for generalizable, automatic, and effective semantic image 

segmentation techniques [6]. The application of a Machine Learning (ML) based image segmentation 

method was used for classifying the ROI, viz., healthy area or diseased area. 

On the other hand, the Deep Learning (DL) technique can able to process natural data in its raw 

procedure, so it no longer requires hand-crafted features [7]. These techniques are efficiently utilized 

for semantic segmentation on nature images and are created applications in biomedical image 

segmentation [8]. Extensive use of the DL technique can be assisted because rapid Graphic Processing 

Units (GPUs) and Central Processing Units (CPUs) can greatly decrease the training and implementation 
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time, access to vast amounts of data, and advances in learning methods [9]. Like traditional NN, 

Convolutional Neural Networks (CNNs) are extensively utilized among several DL architectures. CNN 

has demonstrated promising performance for automatic medical image segmentation. Furthermore, 

robustness, viz., the ability of the model to execute on complex images, and generalization viz., the ability 

of the model to carry out in an independent database are essential for the progress of Artificial Intelligence 

(AI) technology that is employed in medical tests [10]. Hence, there is a need for designing an effective 

architecture i.e., generalizable and robust across various biomedical applications. 

We focused on the design of a novel equilibrium optimization algorithm with deep learning-based 

biomedical image segmentation (EOADL-BIS) technique. The EOADL-BIS technique performs 

segmentation process using involves Faster R-CNN model with ResNeXt as a backbone network. 

Besides, the EOA can be applied as a hyperparameter optimization approach of the ResNeXt model to 

boost the segmentation results and reduce the loss function. The performance validation of the 

EOADL-BIS technique takes place on various benchmark medical image databases and the results are 

inspected in terms of different measures. 

2. Related works 

In [11], the authors present 3 distinct multiscale dense connections (MDC) for encoding, the 

decoding of U_shaped structures, and across them. According to 3 dense connections, the authors 

present an MDC with U_Net (MDU_Net) for bio-medical image segmentation. MDU_Net straight 

fuses the adjacent mapping feature with various scales in either lower or higher layers for strengthening 

feature propagation in the present layer. In [12], the authors utilized the attention-based Transformer 

under the encoded and decoded phases for improving feature discrimination at the spatial level details 

and semantic place by its multi-head-based self-attention. Finally, the author's present structure named 

EG-TransUNet comprises 3 component elements enhanced by transformers semantic guidance 

attention, progressive enhancement, and channel spatial attention.  

Tomar et al. [13] examined a new structure termed a feedback attention network (FANet), which 

unifies the preceding epoch mask with the mapping feature of the existing trained epoch. The preceding 

epoch mask is then utilized for providing hard attention to learn mapping features at distinct convolution 

layers. The authors [14] introduced a novel lightweight structure termed CNL-UNet for 2-D multi-modal 

bio-medical image segmentation. The presented CNL-UNet takes a pre-training encoded developed with 

TL approaches for learning suitably in fewer data counts. It takes adapted skip connections for reducing 

semantic gaps among the equivalent level of the encoded-decoded layer. Additionally, the presented 

structure was improved with a novel Classifier and Localizer (CNL) element.  

Srivastava et al. [15] introduced a new structure termed a Multi-Scale Residual Fusion Network 

(MSRF-Net), which can be particularly planned for biomedical image segmentation. The presented 

MSRF-Net was capable of exchanging multi-scale features of distinct receptive domains employing a 

DSDF block. Zhao et al. [16] developed a deep active semi-supervised learning structure, the DSAL 

containing semi-supervised learning and active learning approaches. In DSAL, a novel condition 

dependent upon a deep supervision process is presented for selecting informative instances with lower 

and higher uncertainties for weak and strong labelers correspondingly.  

Meng et al. [17] developed an easy, intuitive DL-based contour regression method. The authors 

establish a new multilevel, multistage aggregated network for regressing the control of the contour of 

samples directly in an endwise approach. The presented network seamlessly connects CNN with the 
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Attention Refinement module (AR) and GCN. Also, this method pays attention to object contours with 

the utilization of AR and GCN. Ibtehaz and Rahman [18] introduced a new structure, MultiResUNet, 

as the probable successor to the U-Net structure. The authors are tested and related to MultiResUNet 

with typical U-Net on the massive repertoire of multi-modal medical images.  

Ma et al. [19] developed a great new building block, the hyper-convolution, which discreetly 

signifies the convolution kernel as a role of kernel synchronizes. Hyper-convolutions allow decoupling 

of the kernel size, and therefore its receptive area, from the number of learnable parameters. Song et 

al. [20] presented an Outlined Attention U-networks (OAU-nets) with a bypass branching plan to 

resolve biomedical image segmentation tasks, which is proficient in detecting deep and shallow 

features. In [21], we classified annotation noise in image segmentation tasks, presented techniques to 

pretend annotation noise, and inspected the effect on the segmentation excellence. Dual new automatic 

models to recognize intra-annotator and inter-annotator discrepancies dependent upon uncertainty-

aware deep neural networks (DNNs) are projected. Mansour et al. [22] proposed a new AI-based fusion 

technique for CRC disease classification and diagnosis, called AIFM-CRC. Besides, a fusion-based 

feature removal procedure takes place where the Inception v4-based deep features and SIFT-based 

handcrafted features have been joined together. Also, the whale optimizer algorithm tuned deep support 

vector machine method is used as a classification model to define the reality of CRC. 

3. The proposed model 

In this study, we concentrated on the development and design of the EOADL-BIS technique for 

biomedical image segmentation. The main intention of the EOADL-BIS technique is to combine EOA 

with the Faster RCNN model for an accurate and efficient biomedical image segmentation process. 

The EOADL-BIS technique comprises two major phases of operations Faster RCNN-based image 

segmentation and EOA-based hyperparameter tuning. Figure 1 illustrates the workflow of the 

EOADL-BIS approach. 

 

Figure 1. Workflow of EOADL-BIS algorithm. 
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3.1. Image segmentation using Faster RCNN  

To segment the biomedical images, the Faster RCNN model is used. Fast RCNN combines region 

proposal network (RPN) and Fast RCNN. Fast RCNN consists of two modules namely, fast RCNN 

detector and RPN proposing regions. First, the entire images are inputted into ResNeXt for feature 

extraction. In this paper, the ResNeXt architecture adopted could stack deep network models to 

enhance the detection performance, but decrease the hyperparameter count [23]. 

It changes the concept of the classical ResNet and VGG networks stacking, borrows the Inception 

network sequences division transformation aggregation approach, and transmits the single path 

convolutional to various convolutions of different branches with a similar topology strategy, 

facilitating transplantation, and decreasing the design of hyperparameters. The ResNeXt exploits a 

Block infrastructure with grouped convolution. Here, an input feature matrix endures dimensionality 

decrease using 1 × 1  convolution kernels, which reduces the channel count to half of its original 

values. Then, 32 convolution groups can be exploited, every comprising 3×3 convolution sizes, for 

feature extraction purposes. Consequently, the extracted feature was concatenated and aggregated. Last, 

the inputs and outputs are added after the convolution kernel is size and, the last output can be attained 

by activating the ReLu function.  

𝑦 = 𝑥 + ∑ 𝑇𝑖(𝑥)𝐶
𝑖=1          (1) 

where 𝑦 refers to the output; 𝑋 denotes the input; 𝐶shows the base number; and 𝑇𝑖(𝑥) indicates 

𝑖𝑡ℎ point mapping functions. 

Fast RCNN adapts RPN for candidate region generation, different Fast 𝑅 CCNN utilizing the 

selective search method, and around 300 candidate region proposal was produced for every image [24]. 

Then, the region proposal was mapped to the mapping feature of the final convolution layer of VGG-

16. The mapping feature is not of equal dimensions. Thus, the region proposal should be inputted to 

the RoI for processing. The features of the integrated size are eventually inputted to the FC layer for 

completing the task. Fast RCNN decreases the count of region proposals in the original 12000 to 300. 

It enhances the accuracy of detection and optimizes the quality of region proposals.  

The core of Fast RCNN is RPN which considerably decreases the generated count of regional 

proposals. RPN is used to find a pixel via a sliding window on the mapping feature. Next, the pixel 

can be utilized as the center point for extracting 9 rectangular regions with 3 aspect ratios (1:3, 1:2, 1: 

1) and three scales (1282,  2562, 5122) , which are named anchors. It resolves the problems of 

multiscale objects. There are several pixels on the feature map and one pixel is equivalent to 9 anchors 

that create a considerable number of anchors. Each anchor could not participate in the training, for 

screening a specific number of instances. The region proposal can be produced by input images as to 

the RPN network for the forward computation to attain the frame regression parameter of anchor and 

classification probability.  

The loss function can be evaluated using Eq (2): 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠

 

𝑖

(𝑝𝑖 , 𝑝𝑖
∗) 

+𝜆
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗ 
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖

∗)          (2) 
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In Eq (2), 𝑖 denotes the index of the anchor. 𝑝𝑖 indicates the probability of predicted anchor 𝑖. 

𝑝𝑖
∗ shows the groundCtruth label. 𝑡𝑖 represents the vector representing 4 parameterized coordinates of 

the forecasted box, and 𝑡𝑖
∗ denotes the ground truth box. 𝐿𝑐𝑙𝑠(𝑝𝑖 ,  𝑝𝑖

∗) and 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) characterize 

classification loss and regression loss, correspondingly. 

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) = −log[𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖)]    (3) 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗)        (4) 

where 𝑅 indicates the smooth L1 function. The term 𝑝𝑖
∗𝐿𝑟𝑒𝑔 implies the regression loss is activated 

only for positive anchor (𝑝𝑖
∗ = 1) and is restricted or else (𝑝𝑖

∗ = 0). {𝑝𝑖} and {𝑡𝑖} are outputs of 

regression and classification layers. The 2 terms can be normalized using  𝑁𝑟𝑒𝑔 and 𝑁𝑐𝑙𝑠 weighted 

by balancing parameter 𝜆. 𝑁𝑟𝑒𝑔 can be normalized by the number of anchor positions. 𝑁𝑐𝑙𝑠 can be 

normalized by the minibatch size. By default, it can be fixed to 𝜆 = 10, and thereby the 2 terms can 

be weighted equally. 

3.2. Hyperparameter Tuning using EOA 

To adjust the hyperparameter values of the ResNeXt model, the EOA is employed. EOA is a 

physical law-based metaheuristic technique newly established [25]. Based on the volume control, EOA 

makes use of the dynamic mass balancing method. The mathematical model is used for expressing 

mass balance to specify the concentration of non-reactive elements in the dynamic control volume 

(CV) environments. This equation can be described as a function with several procedures in different 

sink and source conditions. The 1st-order differential equation represents the common mass balance 

formula. It describes the mass quantity that enters the method plus the amount generated minus the 

amount which proceeds the method as a time function. 

𝑉
𝑑𝐶

𝑑𝑡
= 𝑄𝐶𝑒𝑞 − 𝑄𝐶 + 𝐺       (5) 

In Eq (5), 𝐶 shows the concentration of CV (𝑉), 𝑄 indicates the volumetric flow rate (in and 

out of CV), 𝑉
𝑑𝐶

𝑑𝑡
 indicates the rate of mass change from the CV, 𝑄𝐶𝑒𝑞 refers to concentration in the 

equilibrium state, 𝑉
𝑑𝐶

𝑑𝑡
 reaches zero for attaining the steady state equilibrium and 𝐺 shows the rate 

of mass generation from the CV.  

The resulting equation is used to determine the concentration from the CV (𝐶) after reorganizing 

Eq (5) as a time function and integration is given below: 

𝐶 = 𝐶𝑒𝑞 + (𝐶0 − 𝐶𝑒𝑞) × 𝐹 +
𝐺

𝜆×𝑉
× (1 − 𝐹)   (6) 

Eq (6) calculates the concentration of CV with the identified rate of turnover or evaluates the 

average rate of turnover through linear regression with the recognized rate of generation and other 

parameters. Furthermore, 𝐹 is evaluated as follows: 

𝐹 = 𝑒𝑥𝑝[−𝜆 × (𝑡 − 𝑡)]       (7) 

In Eq (7), 𝑡0  and 𝐶0  in the prior equation represent the starting time and concentration, 

correspondingly that is reliant on the integration interval.  
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The main framework of EOA is composed of several equations. The concentration is the same as 

the position of the particle, and the word particle represents a proposed solution. Three terms available 

in Eq (6) are: 

• 𝐶𝑒𝑞  refers to the concentration of equilibrium, and it represents the most efficient options 

selected randomly in the pool of equilibrium. 

• (𝐶0 − 𝐶𝑒𝑞)  represent the difference in variance amongst the equilibrium state 𝐶𝑒𝑞  and 

particle 𝐶0. It is responsible to search the area for macroCsearches. 

• 
𝐺

𝜆×𝑉
 indicates the higher generation rate to hit notable exploitation that assists with exploration 

while staying away from a local minimum. 

Based on this concept, the explanation of EOA is discussed below: 

Within the specific search region, the arbitrary population (primary concentration) was initialized 

using the normal distribution based on the particle number and dimensional. 

𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐶min + 𝑟𝑎𝑛𝑑𝑖(𝐶max − 𝐶min ), 𝑖 = 1,2, … , 𝑛   (8) 

In Eq (8), 𝑛 indicates the population size, 𝐶𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial concentration vector of 

𝑖𝑡ℎ particles, 𝐶max and 𝐶min indicate the upper and lower bound, correspondingly, and 𝑟𝑎𝑛𝑑𝑖 refers 

to the uniform random number generated within [0,1]. Figure 2 depicts the steps involved in EOA. 

A pool of 4 capable candidates, involving another particle with a concentration corresponding to 

the arithmetical mean of 4 particles, should be found for establishing the global optima (equilibrium 

state). The pool vector is made using this particle as indicated in Eq (9). 

𝐶𝑒𝑞.𝑝𝑜𝑜𝑙 = {𝐶𝑒𝑞(1), 𝐶𝑒𝑞(2), 𝐶𝑒𝑞(3), 𝐶𝑒𝑞(4), 𝐶𝑒𝑞(𝑎𝑣𝑒)}    (9) 

 

Figure 2. Steps involved in EOA. 



5912 

AIMS Mathematics  Volume 9, Issue 3, 5905–5924. 

In the first generation, the initial particle adjusts the concentration based on 𝐶𝑒𝑞(1) during the 

evolution process; but improvement can occur on 𝐶𝑒𝑞(𝑎𝑣𝑒) in the second generation. Later, all the 

particles with each potential candidate were adapted the evolution procedure was completed. 

The exponential component 𝐹 in Eq. (7) assists EOA in accomplishing a proper balance between 

exploration and exploitation. 𝜆 must be an arbitrary integer within [0,1] to deal with the turnover 

rate in real-time CV. 

�⃗� = 𝑒−�⃗⃗⃗�(𝐼𝑡𝑟−𝐼𝑡𝑟0)           (10) 

In Eq (10), 𝐼𝑡𝑟 represents the number of iterations and is formulated as follows: 

𝐼𝑡𝑟 = (1 −
𝐼𝑡𝑟

Max−𝑖𝑡𝑟
) × (𝑎2 ×

𝐼𝑡𝑟

Max−𝑖𝑡𝑟
)      (11) 

In Eq (11), Max−𝑖𝑡𝑟 indicates the maximal iteration and 𝑎2 manages the EOA's exploitation 

capability. 

Also, the following statement guarantees convergence while increasing the global and local 

search abilities of the model: 

𝐼𝑡𝑟0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

1

�⃗⃗⃗�
× 𝐼𝑛 (−𝑎1 × 𝑠𝑖𝑔𝑛(𝑟 − 0.5) × [1 − 𝑒−�⃗⃗⃗�𝐼𝑡𝑟]) 𝐼𝑡𝑟   (12) 

In Eq (12), 𝑎1 and 𝑎2 are used for adjusting the global and local searching abilities of the EOA. 

The portion sign (𝑟 − 0.5) is responsible for the exploration and exploitation strategies. The 𝑎1 and 

𝑎2 values in EOA are fixed as 2 and 1, correspondingly. The expression is changed as follows by 

replacing Eq (12) in Eq (10): 

�⃗� = 𝑎1 × 𝑠𝑖𝑔𝑛(𝑟 − 0.5) × [𝑒−�⃗⃗⃗�𝐼𝑡𝑟 − 1]     (13) 

The rate of generation (G) of EOA is used for improving the exploitation that is utilized as a time 

function. The 𝐺 of the multi-functional model's 1st-order exponential decay method is formulated as 

follows: 

�⃗� = 𝐺0
⃗⃗⃗⃗⃗ × 𝑒−�⃗⃗�(𝐼𝑡𝑟−𝐼𝑡𝑟0)         (14) 

In Eq (14), 𝐺0 denotes the initial value and 𝑘 shows the decay parameter. 

Finally, assume 𝑘 = 𝜆, the following expression is used for the generation rate: 

�⃗� = 𝐺0
⃗⃗⃗⃗⃗ × 𝑒−�⃗⃗⃗�(𝐼𝑡𝑟−𝐼𝑡𝑟0) = 𝐺0

⃗⃗⃗⃗⃗ × 𝐹0
⃗⃗ ⃗⃗         (15) 

𝐺0 is calculated using the following expression: 

𝐺0
⃗⃗⃗⃗⃗ = 𝐺𝐶𝑃 × (𝐶𝑒𝑞 − 𝜆 × 𝐶)         (16) 

𝐺𝐶𝑃 = {
0.5 × 𝑟1, 𝑟2 ≥ 0
0, 𝑟2 < 0

        (17) 
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where parameters 𝑟1  and 𝑟2  are randomly generated values within [0,1]  and 𝐺𝐶𝑃  is used for 

regulating the generation rate. 

Based on the prior formula, the final concentration updating equation can be described as follows: 

𝐶 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞) × �⃗� +
�⃗�

�⃗⃗⃗�𝑉
× (1 − �⃗�)     (18) 

There are three terms in updating equation: 

• At the first term, the equilibrium concentration is accessible. 

• In the second term, the global search is accessible. 

The third one is responsible for doing a local search process to obtain accurate solutions. 

4. Results and discussion 

In this section, the experimental outcome of the EOADL-BIS system was tested utilizing four 

datasets namely Kvasir-SEG [26], ISIC 2018 [27], DRIVE [28], and CHASE-DB1 [29] dataset. Figure 

3 depicts the images of the original and masked region. There are 4 datasets namely ISIC 2018, Kvasir-

SEG, DRIVE, and CHASE-DB1, selected for testing in the Results and Discussion section, which 

signify varied medical imaging states. Kvasir-SEG possibly includes gastrointestinal endoscopy 

pictures, offering an exclusive task in segmenting structures within the digestive method. ISIC 2018 is 

concentrated on dermatology, connecting the segmentation of skin lesions vital for melanoma 

recognition. DRIVE, personalized for retinal image study, demands the exact delineation of retinal 

vessels. CHASE-DB1, devoted to visual coherence tomography scans, offers challenges in segmenting 

retina and choroid layers. The presence of these datasets safeguards a complete assessment, evaluating 

the EOADL-BIS system's flexibility across different medical imaging modalities and segmentation 

tasks, emphasizing its robustness and effectiveness in varied clinical scenarios. 

 

Figure 3. a) Original Images b) Masked Regions. 
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Table 1 represents the comparative segmentation outcomes of the EOADL-BIS technique on the 

Kvasir-SEG dataset [13]. Figure 4 represents the 𝐹1𝑠𝑐𝑜𝑟𝑒  and mIoU results of the EOADL-BIS 

technique with other segmentation approaches on the Kvasir-SEG dataset. The outcomes indicate that 

the ResUNet++ approach has exposed ineffectual segmentation outcomes with the 𝐹1𝑠𝑐𝑜𝑟𝑒 of 71.43% 

and mIoU of 61.26%. Moreover, the U-Net++, FCN8, HRNet, DeepLabv3+, and PSPNet models have 

obtained moderately closer segmentation results. However, the EOADL-BIS system reaches an 

effectual solution with 𝐹1𝑠𝑐𝑜𝑟𝑒 of 94.28% and mIoU of 94.35%. 

Table 1. Comparative outcome of the EOADL-BIS system with recent methods on the 

Kvasir-SEG database. 

Kvasir-SEG Dataset 

Method F1-Score mIoU Recall Precision 

U-Net++ 80.02 70.00 87.16 79.92 

ResUNe ++ 71.43 61.26 74.19 78.36 

FCN8 Model 83.10 73.65 83.46 88.17 

HRNet Model 84.46 75.92 85.88 87.78 

PSPNet Model 84.06 74.44 83.57 89.01 

DeepLabv3+ 86.43 78.62 85.92 90.64 

EOADL-BIS 94.28 94.35 93.89 93.91 

 

Figure 4. 𝐹1𝑠𝑐𝑜𝑟𝑒 and mIoU outcome of EOADL-BIS algorithm on Kvasir-SEG dataset. 

Figure 5 denotes the 𝑟𝑒𝑐𝑎𝑙  and 𝑝𝑟𝑒𝑐𝑛  results of the EOADL-BIS method with other 

segmentation techniques on the Kvasir-SEG database. The outcomes indicate that the ResUNet++ 

system has demonstrated ineffectual segmentation outcomes with the 𝑟𝑒𝑐𝑎𝑙 of 74.19% and 𝑝𝑟𝑒𝑐𝑛 
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of 79.36%. Furthermore, the U-Net++, FCN8, HRNet, DeepLabv3+, and PSPNet techniques have 

obtained moderately closer segmentation outcomes. However, the EOADL-BIS system achieves 

efficient performance with a 𝑟𝑒𝑐𝑎𝑙 of 93.89% and 𝑝𝑟𝑒𝑐𝑛 of 93.91%. 

 

Figure 5. 𝑅𝑒𝑐𝑎𝑙 and 𝑝𝑟𝑒𝑐𝑛 outcome of EOADL-BIS algorithm on Kvasir-SEG dataset. 

Table 2 represents the comparative segmentation analysis of the EOADL-BIS system on the 

ISIC2018 database. Figure 6 shows the 𝐹1𝑠𝑐𝑜𝑟𝑒 , mIoU, and 𝑝𝑟𝑒𝑐𝑛  analysis of the EOADL-BIS 

approach with other segmentation algorithms on the ISIC2018 datasets. The outcomes indicate that 

the U-Net system has demonstrated ineffectual segmentation results with a 𝐹1𝑠𝑐𝑜𝑟𝑒 of 67.40%, mIoU 

of 54.90%, and 𝑝𝑟𝑒𝑐𝑛 of 86.71%. Furthermore, the R2U-Net, Attention R2U-Net, BCDU-Net (d=l), 

U-Net++, and Attention U-Net methods have obtained moderately closer segmentation results. 

However, the EOADL-BIS technique achieves effective performance with 𝑎 𝐹1𝑠𝑐𝑜𝑟𝑒  of 94.11%, 

mIoU of 94.65%, and 𝑝𝑟𝑒𝑐𝑛 of 94.33%. 

Table 2. Comparative outcome of the EOADL-BIS system with recent methodologies on 

the ISIC2018 database. 

ISIC 2018 Dataset 

Method F1-Score mIoU Precision Sensitivity Specificity 

U-Net Model 67.40 54.90 86.71 70.80 96.40 

R2U-Net Model 67.90 58.10 88.36 79.20 92.80 

Attention R2U-Net 69.10 59.20 88.89 72.60 97.00 

BCDU-Net (d=l) 84.70 68.03 88.66 78.30 98.00 

U-Net++ 80.88 73.19 86.48 84.50 91.10 

Attention U-Net 82.05 73.46 86.45 85.16 91.35 

EOADL-BIS 94.11 94.65 94.33 93.60 98.46 
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Figure 6. 𝐹1𝑠𝑐𝑜𝑟𝑒, mIoU, and 𝑝𝑟𝑒𝑐𝑛 outcome of EOADL-BIS algorithm on ISIC2018 dataset. 

Figure 7 signifies the 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦  results of the EOADL-BIS approach with other 

segmentation techniques on the ISIC2018 dataset. The outcomes indicate that the U-Net system has 

demonstrated ineffectual segmentation outcomes with a 𝑠𝑒𝑛𝑠𝑦  of 70.80% and 𝑠𝑝𝑒𝑐𝑦  of 96.40%. 

Additionally, the R2U-Net, Attention R2U-Net, BCDU-Net (d=l), U-Net++, and Attention U-Net 

systems have acquired moderately closer segmentation results. However, the EOADL-BIS method 

attains efficient performance with 𝑎 𝑠𝑒𝑛𝑠𝑦 of 93.60% and 𝑠𝑝𝑒𝑐𝑦 of 98.46%. 

 

Figure 7. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 outcome of EOADL-BIS algorithm on ISIC2018 dataset. 
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Table 3 represents the comparative segmentation studies of the EOADL-BIS method on the 

DRIVE database. Figure 8 shows the 𝐹1𝑠𝑐𝑜𝑟𝑒 , mIoU, and 𝑝𝑟𝑒𝑐𝑛  analysis of the EOADL-BIS 

approach with other segmentation algorithms on the DRIVE database. The outcomes indicate that the 

DenseBlock-UNet model has demonstrated weak segmentation outcomes with the 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

81.46%, mIoU of 69.48%, and 𝑝𝑟𝑒𝑐𝑛 of 81.46%. Moreover, the U-Net, Residual U-Net, Recurrent 

U-Net, R2U-Net, and lterNet systems have achieved moderately closer segmentation outcomes. 

However, the EOADL-BIS technique reaches efficacious performance with 𝐹1𝑠𝑐𝑜𝑟𝑒  of 95.32%, 

mIoU of 94.77%, and 𝑝𝑟𝑒𝑐𝑛 of 95.54%. 

Table 3. Comparative outcome of EOADL-BIS system with recent methods on DRIVE database. 

DRIVE Dataset 

Method F1-Score mIoU Precision Sensitivity Specificity 

U-Net Model 81.74 80.42 80.86 78.22 98.08 

Residual U Net 81.49 81.16 79.47 76.26 98.20 

Recurrent U-Net 81.55 80.00 83.04 75.51 98.16 

R2U-Net Model 81.71 84.86 81.83 77.92 98.13 

DenseBlock-UNet 81.46 69.48 81.46 79.28 97.76 

lterNet Model 82.18 68.98 81.56 77.91 98.31 

EOADL-BIS 95.32 94.77 95.54 93.32 98.99 

 

Figure 8. 𝐹1𝑠𝑐𝑜𝑟𝑒, mIoU, and 𝑝𝑟𝑒𝑐𝑛 outcome of EOADL-BIS algorithm on DRIVE dataset. 

Figure 9 denotes the 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦  results of the EOADL-BIS approach with other 

segmentation systems on the DRIVE database. The outcomes specify that the DenseBlock-UNet 
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technique has demonstrated ineffectual segmentation outcomes with a 𝑠𝑒𝑛𝑠𝑦 of 79.28% and 𝑠𝑝𝑒𝑐𝑦 

of 97.76%. Furthermore, the U-Net, Residual U-Net, Recurrent U-Net, R2U-Net, and lterNet 

algorithms have attained moderately closer segmentation outcomes. Nevertheless, the EOADL-BIS 

methodology gains effectual outcomes with 𝑎 𝑠𝑒𝑛𝑠𝑦 of 93.32% and 𝑠𝑝𝑒𝑐𝑦 of 98.99%. 

 

Figure 9. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 outcome of EOADL-BIS algorithm on DRIVE dataset. 

Table 4 represents the comparative segmentation outcome of the EOADL-BIS technique on the 

CHASE-DB1 database. Figure 10 denotes the 𝐹1𝑠𝑐𝑜𝑟𝑒, mIoU, and 𝑝𝑟𝑒𝑐𝑛 analysis of the EOADL-

BIS approach with other segmentation systems on the CHASE-DB1 database. The outcomes indicated 

that the Attention U-Net system has demonstrated ineffectual segmentation outcomes with the 𝐹1𝑠𝑐𝑜𝑟𝑒 

of 79.41%, mIoU of 69.25%, and 𝑝𝑟𝑒𝑐𝑛  of 78.88%. Additionally, the U-Net, DenseBlock-UNet, 

IterNet, U-Net++, and FANet algorithms have acquired moderately closer segmentation results. 

However, the EOADL-BIS approach reaches effectual performance with 𝐹1𝑠𝑐𝑜𝑟𝑒 of 94.94%, mIoU 

of 94.58%, and 𝑝𝑟𝑒𝑐𝑛 of 94.29%. 

Table 4. Comparative outcome of the EOADL-BIS system with recent methodologies on 

the CHASE-DB1 database. 

CHASE-DB1 Dataset 

Method F1-Score mIoU Precision Sensitivity Specificity 

U-Net Model 79.93 71.66 79.64 78.40 98.21 

DenseBlock-UNet 80.05 70.22 78.81 81.77 96.48 

IterNet Model 80.72 72.35 79.96 79.69 97.74 

U-Net++ 79.54 69.25 78.88 81.14 97.47 

Attention U-Net 79.41 65.89 78.52 80.49 98.52 

FANet Model 81.08 68.20 77.22 85.44 98.30 

EOADL-BIS 94.94 94.58 94.29 94.25 98.97 
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Figure 10. 𝐹1𝑠𝑐𝑜𝑟𝑒, mIoU, and 𝑝𝑟𝑒𝑐𝑛 outcome of EOADL-BIS algorithm on CHASE-DB1dataset. 

Figure 11 signifies the 𝑠𝑒𝑛𝑠𝑦  and 𝑠𝑝𝑒𝑐𝑦  results of the EOADL-BIS technique with other 

segmentation methodologies on the CHASE-DB1 datasets. The outcomes indicated that the Attention 

U-Net model has demonstrated ineffectual segmentation results with a 𝑠𝑒𝑛𝑠𝑦 of 80.49% and 𝑠𝑝𝑒𝑐𝑦 

of 98.52%. Moreover, the U U-Net, DenseBlock-UNet, IterNet, U-Net++, and FANet algorithms have 

obtained moderately closer segmentation results. However, the EOADL-BIS approach reaches 

efficacious performance with 𝑎 𝑠𝑒𝑛𝑠𝑦 of 94.25% and a 𝑠𝑝𝑒𝑐𝑦 of 98.97%. 

 

Figure 11. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 outcome of EOADL-BIS algorithm on CHASE-DB1dataset. 
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In Table 5, the EOADL-BIS technique is compared with other DL models concerning distinct 

measures. The simulation values indicate that the EOADL-BIS algorithm exhibits better performance 

than other models. 

Table 5. Result analysis of the EOADL-BIS algorithm with DL methods.  

Method Params. (million) Flops (GMac) Inf. Time (in ms.) Image size (pixels) 

U Net Model 3l.04 219.01 3.14 512 × 512 

ResU-Net 8.22 181.68 2.93 512 × 512 

U-Net++ 09.16 138.6 4.07 512 × 512 

Attention U-Net 34.88 266.54 4.47 512 × 512 

EOADL-BIS 06.92 93.45 9.23 512 × 512 

Table 6 and Figure 12 represent the F1-score results of the EOADL-BIS technique on different 

iterations. The results stated that the EOADL-BIS technique reaches enhanced 𝐹1𝑠𝑐𝑜𝑟𝑒 values under all 

iterations. For instance, on the Kvasir-SEG dataset, the EOADL-BIS technique offers 𝑎 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

82.44%, 91.60%, 94.05%, 94.18%, and 94.57% under iterations 1–5, respectively. Also, on the DRIVE 

dataset, the EOADL-BIS algorithm offers a 𝐹1𝑠𝑐𝑜𝑟𝑒 of 80.12%, 82.44%, 82.44, 82.44%, and 82.70% 

under iterations 1–5, respectively. Finally, on the CHASE-DB1 dataset, the EOADL-BIS approach offers 

a 𝐹1𝑠𝑐𝑜𝑟𝑒 of 67.35%, 81.67%, 82.18%, 82.06%, and 82.18% under iterations 1–5, correspondingly. 

Table 6. 𝐹1𝑠𝑐𝑜𝑟𝑒 analysis of the EOADL-BIS approach with distinct iterations on four datasets. 

Iterations Kvasir-SEG DRIVE ISIC 2018 CHASE-DB1 

1 82.44 80.12 91.73 67.35 

2 91.60 82.44 92.89 81.67 

3 94.05 82.44 92.76 82.18 

4 94.18 82.44 92.50 82.06 

5 94.57 82.70 92.63 82.18 

 

Figure 12. 𝐹1𝑠𝑐𝑜𝑟𝑒 analysis of the EOADL-BIS approach with distinct iterations on four datasets. 
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These results stated the enhanced outcome of the EOADL-BIS technique over other existing 

approaches concerning different measures. The superior performance of the EOADL-BIS approach 

can be recognized by its new combination of the EOA with the Faster RCNN method and ResNeXt 

design. Unlike customary DL-based biomedical image segmentation techniques, the EOADL-BIS 

model influences the power of EOA throughout the training procedure of the Faster RCNN method. 

This unique mixture enhances the hyperparameters of the ResNeXt system, foremost to improve 

feature removal, enhanced classification accurateness, and exact localization of regions of interest. The 

use of Faster RCNN with ResNeXt as a backbone system permits effectual region proposal generation 

over the RPN. This, in turn, enables correct segmentation by leveraging the innovative abilities of 

ResNeXt for localization and classification. The combination of EOA enhances the model’s 

hyperparameters, safeguarding a modified and well-balanced outline that donates to the complete 

superior performance of the EOADL-BIS approach. Furthermore, the experimental outcomes across 

various benchmark datasets, with Kvasir-SEG, ISIC 2018, DRIVE, and CHASE-DB1, reliably 

establish the efficiency of the EOADL-BIS method. Its strong performance showcases its aptitude to 

manage diverse medical imaging modalities and segmentation tasks, emphasizing its flexibility and 

efficacy in contrast to other DL-based segmentation techniques. This new model not only expands 

accuracy but also finds the tasks of biomedical image segmentation, making the EOADL-BIS model 

a modern solution in the field. 

5. Conclusions 

In this study, we have concentrated on the development and design of the EOADL-BIS approach 

for biomedical image segmentation. The main intention of the EOADL-BIS technique is to combine 

EOA with the Faster RCNN model for an accurate and efficient biomedical image segmentation 

process. The EOADL-BIS technique comprises two major phases of operations Faster RCNN-based 

image segmentation and EOA-based hyperparameter tuning. Primarily, the EOADL-BIS technique has 

employed Faster R-CNN architecture with ResNeXt as a backbone network for image segmentation. 

Next, the EOA is used to optimize the hyperparameter of the ResNeXt model, which increases the 

segmentation results and reduces the loss function. The experimental outcome of the EOADL-BIS 

system was tested on distinct benchmark medical image databases. The simulation results stated the 

greater outcome of the EOADL-BIS system is related to other DL-based segmentation approaches. 
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