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Precision nutrition and nutrigenomics are emerging in the development of 
therapies for multiple diseases. The ketogenic diet (KD) is the most widely used 
clinical diet, providing high fat, low carbohydrate, and adequate protein. KD 
produces ketones and alters the metabolism of patients. Growing evidence 
suggests that KD has therapeutic effects in a wide range of neuronal diseases 
including epilepsy, neurodegeneration, cancer, and metabolic disorders. 
Although KD is considered to be a low-side-effect diet treatment, its therapeutic 
mechanism has not yet been fully elucidated. Also, its induced keto-response 
among different populations has not been elucidated. Understanding the 
ketone metabolism in health and disease is critical for the development of 
KD-associated therapeutics and synergistic therapy under any physiological 
background. Here, we review the current advances and known heterogeneity 
of the KD response and discuss the prospects for KD therapy from a precision 
nutrition perspective.
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1 Introduction

The ketogenic diet (KD) is a high-fat diet that also restricts carbohydrates, and triggers the 
body’s production of ketones for energy use. The change in these macronutrient ratios from 
the original diet to KD rewires human energy metabolism to utilize ketones, which are derived 
from fatty acids, as an energy source instead of glucose (1). KD is one of the most widely used 
clinical diets for disease treatment and has become an established non-pharmacological 
intervention for many neurological diseases. As early as 1921, Drs. Rollin Turner Woodyatt 
and Russell Morse Wilder at the Mayo Clinic coined the term “ketogenic diet” and proposed 
that dietary ketones were as effective as fasting for the management of epilepsy but with long-
lasting results  (2). KD has therefore been intensively studied for the treatment of epilepsy. 
After the discovery of diphenylhydantoin as a chemical drug for seizures in 1938, the attention 
of physicians and researchers shifted from KD to the new anti-epileptic drug. At that time, 
interest in KD for the treatment of this disease decreased and did not come to people’s attention 
again until the 1990s (2, 3), when its therapeutic effects were gradually found to be effective 
in a wide range of diseases and more therapeutic potentials of KD were proposed. To clinically 
apply KD as a nutritional aid, standardization and specialization are extremely important. The 
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“International Ketogenic Diet Expert Consensus Guidelines” were 
published in 2009 and have been frequently updated since then. Key 
milestones in KD therapy are summarized in Figure 1. In this review, 
our search strategy was designed by a multi-disciplinary team with 
backgrounds in nutrition, pharmacy, neurology, and clinical medicine; 
the goal was to ensure coverage of a wide range of issues and literature 
including and emphasizing the most classic publications screened by 
high citations or published by leading scholars. The most recent 
research was screened based on recent 5-year findings. We conducted 
an initial review via Google Scholar and PubMed and screened the 
available titles and abstracts. A further detailed review included highly 
relevant literature and cited references. Documents with less relevance 
were retrieved for further review.

2 Heterogeneity of KD therapy and the 
need for precision nutrition

The physiological function of KD is mainly triggered by ketones. 
Acetoacetate (AcAc), β-hydroxybutyrate (BHB), and acetone are 
collectively known as ketones or ketone bodies (4) (Figure 1), which 
can be generated from a series of biochemical reactions associated 
with fatty acid oxidation and are key mediators of KD therapy. Both 
BHB and AcAc are metabolizable and can be used as energy sources 
in different tissues. Ketogenesis is the term that describes the chemical 
reaction process that generates ketones. Fatty acid oxidation activated 
by starvation or diabetes triggers high levels of ketone production in 
the liver. This ketone-generating metabolic process is known as 

ketosis, which burns fat for fuel when the body lacks sufficient 
carbohydrates as an energy source.

To achieve greater flexibility and adherence to metabolic switch 
with KD, different formulations have been developed over the past 
decades, with four main KD variants now widely accepted by 
researchers and physicians: Classic KD (CKD), Modified Atkins Diet 
(MAD), Medium Chain Triglyceride Diet (MCT), and Low Glycemic 
Index Therapy (LGIT) (5). Classic KD is a rigid diet in which fat 
provides 90% of calories and its main source is Long-Chain 
Triglycerides (LCT) from food intake (1). Classic KD is widely used 
in clinical practice and is recommended for children under the age of 
two (5). For adolescents and adults, the majority (72%) of the 
consensus group prefers MAD or LGIT, mainly due to better 
adherence (5). MAD is a low-glycemic index (GI < 50) diet; it does not 
restrict calories and fluids due to its high-fat content and supplies 
more protein than classic KD. MAD is increasingly used in adults due 
to its better availability and tolerability (6). Its formulation features 
approximately 65% fat, 25% protein, and 10% carbohydrates (7). 
Another low-GI formula, LGIT, is based on a macronutrient 
composition of 60% fat, 30% protein, and 10% carbohydrates (7, 8). 
Studies have demonstrated that LIGT has a good seizure control effect 
and fewer side effects, which makes it an effective option for managing 
seizures associated with Angelman syndrome (9). However, LGIT is 
not recommended for the treatment of glucose transporter-1 
deficiency syndrome (Glut1DS) or pyruvate dehydrogenase deficiency 
(PDHD) due to inadequate ketosis induction (5). Meanwhile MAD 
has shown good results in the treatment of Glut1DS (8). MCT is 
primarily composed of up to 60% medium-chain fatty acids from 

FIGURE 1

History and classification of the KD therapy. (A) Highlighted events in the development of ketogenic diet therapy. (B) Mechanistic hypothesis for KD 
treatments. (C) Structure of ketones, Acetoacetate (AcAc), β-hydroxybutyrate (BHB), and acetone. (D) Nutrient composition for the main KD variants. 
RCT, randomized clinical trial; CKD, classic ketogenic diet; MCTD, medium-chain triglyceride diet; HDACs, histone deacetylases.
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coconut or palm kernel oil used as a dietary supplement. MCT 
provides an option for people with carnitine deficiency, as carnitine is 
necessary for the processing of long-chain fatty acids provided by 
classic KD and it supplies more carbohydrates and protein for better 
compliance (10). It is also important to consider certain limitations 
when initiating MCT, as it may result in adverse effects such as 
diarrhea, nausea, and vomiting. Notably, the combination of MCT and 
valproic acid has been reported to be associated with liver failure; 
therefore, patients taking valproic acid should avoid MCT (11).

It is noteworthy that different types of KDs may have distinct 
effects on patient outcomes. A meta-analysis reviewed 12 studies that 
used CKD, MAD, and a combination of CKD and MCT for the 
treatment of anti-epileptic drug-resistant epilepsy in adults. Data from 
270 patients showed that CKD had a response rate of 52%, while MAD 
had a response rate of 34%, suggesting that CKD may be  more 
effective in some cases. However, compliance is lower with CKD 
(38%) compared to MAD (56%) in adult patients (12).

This evidence demonstrates wide variation in KD formula selections 
and corresponding treatment outcomes, which suggests that the selection 
of a specific KD treatment for patients should be based on the patient’s 
circumstances, and individual family genetic background, as well as the 
expertise guiding patient’s adherance. This is crucial to achieving 
optimized therapeutic efficacy and minimizing potential side effects. In 
addition, as a standard treatment, KD should be closely monitored and 
regulated to ensure its efficacy and promote dietary adherence. Currently, 
urine dipsticks (4), blood parameters, and breath sensors can be applied 
so as to monitor ketosis in clinics, and these points highlight the need for 
precision nutrition in clinical KD treatments.

3 Physiological benefits and 
therapeutic potential of the ketogenic 
diet in the nervous system

There is a consensus that an animal fat-centered diet contributed 
significantly to the evolution of a larger human brain  (13). Hunting, 
rather than scavenging, allows humans to consume more energy-
intense fatty meats, thus allowing more free energy to be redirected to 
fuel the brain (14). Ketosis may be the result of human evolution and 
may be strongly tied to a time when food scarcity occurred the majority 
of the time. The human body evolves to better utilize and conserve 
energy under such living conditions (15). Starvation results in global 
shifts in the body’s circulating metabolites. In particular, ketone bodies 
act as a substitute for glucose in providing energy to the brain. 
Specifically, the concentration of β-OHB can increase 13-fold when the 
human body is subjected to prolonged starvation. The level of ketones, 
which contribute to cerebral metabolism, also increases profoundly. The 
source of such ketone synthesis in the liver, when the body is under 
glucose starvation, is smart from the point of view that fatty acids 
themselves, originating from the body’s fat reserves, cannot cross the 
blood–brain barrier and thus satisfy the brain’s energy needs  (16, 17).

3.1 Essential role of ketone metabolism in 
the neonatal brain

Compared to the adult brain, the brain of neonates utilizes ketones 
and lactate to a much greater extent than glucose (18). In neonatal 

rats, BHB and AcAc are preferred to glucose as they are substrates for 
the synthesis of phospholipids and sphingolipids, which are required 
for brain growth and myelination (19, 20). To date, the ketone body 
content of the human neonatal brain is reported to be 40-fold higher 
than that of the adult brain (21). Ketone bodies are a necessary energy 
source for fetal neurodevelopment, and monocarboxylate transporters 
are considered responsible for ketone bodies across the blood–brain 
barrier (22). Ketones are present in the blood of neonates and pregnant 
women, and even a few days after birth, human infants remain in 
ketosis (23). With the capacity to freely cross the placenta, exogenous 
ketone treatment has been reported to preserve cerebral energy 
metabolism, ameliorate brain damage, and display effective 
neuroprotective potency during neonatal hypoxia-ischemia (24, 25). 
Data also suggest that 5 mM BHB in the circulation may improve the 
survival rate of brain cells (26). In a rodent model of neonatal hypoxia, 
induction of ketosis was reported to reduce brain damage after 
exposure to 3 h of hypoxia (27). Collectively, this evidence suggests a 
protective role for ketone bodies in the neonatal brain under 
extreme conditions.

3.2 Benefits of a ketogenic diet in the adult 
brain

Ketones also contribute uniquely to the maturation of the nervous 
system by promoting myelin formation. Studies have indicated that 
KD is useful in adult remyelination, during which axon damage is 
repaired and attenuated (28). The neuronal protective effects induced 
by KD also involved multiple pathways, such as modulation of 
ATP-sensitive potassium (K-ATP) channels, enhanced purinergic and 
GABAergic neurotransmission, increased expression of brain-derived 
neurotrophic factor (BDNF), attenuation of neuroinflammation, 
expansion of bioenergetic reserves, and stabilization of the neuronal 
membrane potential through improved mitochondrial function (29). 
The benefits associated with KD have been extensively reviewed  (30, 
31). As the key functional KD factor, BHB directly regulates 
inflammation and neurotrophic factors by inhibiting the activation of 
the innate immune sensor NLRP3 and inhibiting HDAC, thereby 
maintaining, restoring, and improving brain function (32). Studies 
also demonstrate that ketones, which are biomarkers of the brain’s 
aging response to fuel sources, increase the stability of brain networks, 
while decreasing glucose, affecting overall brain activity  (33).

3.3 The potential of a ketogenic diet to 
improve motor neuron function

In the peripheral nervous system, mice fed a KD diet show 
increased epidermal axon density and neurite outgrowth in sensory 
neurons (34), which implies that ketones may provide benefits to 
peripheral axons and sensory functional recovery. In an amyotrophic 
lateral sclerosis (ALS) mouse model (SOD1G93A), the administration 
of KD was able to promote ATP synthesis by bypassing the inhibited 
complex I  in the mitochondrial respiratory chain, increasing 
mitochondrial energy production and membrane stabilization, 
leading to increased motor neuron survival and improved motor 
function compared to normally fed mice. Although human trials are 
still insufficient and the survival time of treated mice was not 
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increased, researchers found both histological and functional 
improvement in the KD-treated ALS animal model, with higher 
motor neuron counts and less motor function impairment (35, 36). In 
line with this, motor function also showed improvement in rodent 
models on KD and/or MCT diets in neurodegenerative diseases and 
spinal cord injury (37, 38). Taken together, KD shows a broad 
spectrum of benefits to nervous system function through a variety 
of mechanisms.

4 Hypothetical functional mechanisms 
for ketogenic diet therapy

During diet-induced glucose deficiency, ketone bodies are 
generated in the liver and circulated in the bloodstream to 
metabolically active tissues for processing as energy substrates. In 
particular, BHB, in addition to its role as an energy source, also has a 
variety of molecular signaling and regulatory functions in a wide 
range of human diseases (39). BHB is considered to be  the main 
efficacy factor in KD treatment. In addition to influencing the process 
of oxidative metabolism, BHB also plays a direct role as an endogenous 
ligand of the hydroxycarboxylic acid receptor 2 (HCA2), whose 
activation by nutritional or pharmacological approaches could 
ameliorate neuroinflammation (40). Moreover, ketone bodies are also 
important in the synaptic vesicular cycle (41), KD can also affect 
neurotransmitter levels in the synaptic cleft and increase GABA levels 
in addition to altering glutamate metabolism (42). BHB may well play 
its neuroprotective role through the above mechanisms.

4.1 Epigenetic regulation

BHB has been reported as a Class I histone deacetylase (HDAC) 
inhibitor and an endogenous neuroprotective epigenetic modifier 
(43). As an HDAC inhibitor, BHB is involved in histone regulation 
through acetylation. Through local histone acetylation induction at 
the promoter of oxidative stress resistance genes such as forkhead box 
O3 (Foxo3a) and metallothionein2 (Mt2) (44), BHB has bridged the 
connection between metabolic and epigenetic modifications and gene 
expression. Studies have also shown a more direct epigenetic effect of 
BHB, defining a novel histone modification as β-hydroxybutyrylation 
at H3K9 (45). KD can also reportedly increase the levels of lysine 
acetylation and p53 acetylation, which are some of the most important 
cell cycle regulators and tumor suppressors (46).

4.2 Gut microbiome

Gut microbes are also known to be involved in the development 
of many diseases. The dietary influence of KD on gut microbes is 
easily presumed. One study reported that KD significantly reduced the 
diversity of the intestinal flora, but at the same time, Parabacteroides 
and Akkermansia muciniphila increased during KD intake (47). 
Researchers found that a shift in the microbiome led to changes in the 
intestinal metabolome of the colon, resulting in a decrease in gamma-
glutamyl amino acids, which may be beneficial for seizure protection 
(48). The influence of the gut microbiome on disease is still largely 
unknown, and the underlying mechanism requires further 

investigation. Moreover, significant changes in microbial communities 
combined with different dietary compositions may drive different 
molecular inputs to neuroendocrine signaling pathways, and these 
altered inputs (e.g., short-chain fatty acid response) combined with 
changes in the gut-brain axis may drive different systemic responses 
at the level of hormones and gene expression (49).

4.3 Oxidative stress and inflammatory 
pathways

Disturbances in mitochondrial energy metabolism and reactive 
oxygen species (ROS) production are key players in many diseases. 
KD significantly affects mitochondrial energy metabolism. For 
instance, studies have shown that KD increases the antioxidant 
glutathione levels, and activates the transcription factor Nrf2 (nuclear 
factor erythroid-2 related factor) detoxification pathway (50, 51). Both 
glutathione and Nrf2 are crucial for balancing ROS levels (52). 
Furthermore, in a glioma mouse model, KD induces anti-tumor 
effects and reduces ROS production in tumor cells by regulating 
ROS-associated gene expression (53).

Moreover, KD showed a powerful anti-inflammatory effect. 
Ketones, especially BHB, have been reported to reduce cardiac 
inflammation, decrease the development of heart failure (54), and 
ameliorate the inflammation after spinal cord injury (55). KD also has 
a promising role in inhibiting NOD-like receptor protein 3 (NLRP3) 
inflammasome assembly, reducing oxidative damage, and attenuating 
inflammatory mediators produced by infiltrating macrophages (56). 
Although evidence has been found and several hypotheses have been 
proposed, the clear mechanism for the benefit of KD still needs to 
be further explored.

5 Ketogenic therapy for precision 
medicine

5.1 Public need for precision nutrition and 
nutrigenomics

Precision medicine is a term that describes new therapeutic 
strategies with more precise targeting, focusing on subgroups of 
diseases with individual backgrounds, and is the new trend for a broad 
spectrum of disease treatment (57). The ultimate aim of precision 
medicine is to maximize the outcome by individualizing a broad range 
of patient features, including genome profiling, drug response, disease 
development period, physiological states, and causal inference. 
Formalized precision medicine treatment consists of a series of 
decision-making points with recommended actions, such as drug and 
dose selection, timing of administration, specific dietary or exercise 
recommendations, and other aspects of treatment that can be made 
following up-to-date patient information (58).

Despite clear evidence of the impact of nutrients on health, diet as 
an environmental exposure is not fully highlighted in clinical practice 
and research. Recently, there has been an emerging awareness of 
“precision nutrition,” and more pieces of evidence have concluded that 
nutrient intake affects therapeutic outcomes (59). Thus more precision 
nutrition is being proposed to replace or augment drugs to some 
extent (60). The importance of nutrition to individual health makes 
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nutrigenomics emerge as a hot discipline. Nutrigenomics investigates 
the impact of diet/nutrition on gene expression at the epigenomic, 
transcriptomic, proteomic, metabolomic, and microbiome levels (61). 
Conversely, the discipline of nutrigenomics is the study of how genes 
affect the body’s response to food (62). All of these new disciplines aim 
to clarify the interaction of health, genes, and diet. Heterogeneity in 
patient-made precision nutrition and nutrigenomics is extremely 
important in KD therapy (Figure 2).

5.2 The ketogenic diet is beneficial for 
neuronal diseases and could be greatly 
influenced by precision medicine

KD has been recommended for the treatment of certain epileptic 
and genetic syndromes including Dravet syndrome (63), myoclonic-
atonic seizures (Doose syndrome) (64), West syndrome (infantile 
spasms) (65), febrile infection-related epilepsy syndrome (FIRES) 
(66), Ohtahara syndrome (67), and super-refractory focal and 
myoclonic status epilepticus (68). Case reports have also indicated 
beneficial effects of KD in epileptic encephalopathies such as Lafora 
body disease (69), early infantile epileptic encephalopathy (70), 
Landau–Kleffner syndrome (71), subacute sclerosing panencephalitis 
(72), adenylosuccinate lyase deficiency (73), juvenile myoclonic 
epilepsy (74), CDKL5 encephalopathy (75), infantile epilepsy with 
migrating focal seizures (76), childhood absence epilepsy (77), and 
epileptic encephalopathy with continuous spike-and-wave during 
sleep (78). Metabolic-to-epigenetic modulation is considered to 
be  one of the main reasons for the therapeutic effect of KD in 
neurodevelopmental disorders. Although KD has shown therapeutic 
potential in these diseases, heterogeneity has shown varied results in 
KD therapy for specific disease subtypes, the clear mechanisms of 
which are still largely unknown. Some examples of KD therapeutic 
effects and exceptions are summarized below.

Epilepsy is a common neurological disorder affecting more than 
70 million people worldwide with genetic mutation as one of the 

leading causes (79). Dietary therapy for epilepsy has a long history and 
was recorded in the Hippocratic Collection (7, 80). KD has now 
become an important alternative treatment for patients with refractory 
epilepsy, both in children and adults (81–83). Numerous evidence 
have shown control of epilepsy incidence, but its cure is still extremely 
challenging as many refractory epilepsies are caused by genetic 
mutations. Some studies also concluded the failure of KD therapy. For 
example, patients with epilepsy with GLUT1 deficiency syndrome 
show non-sensitivity to KD despite adequate ketosis (84). The genetic 
background of patients also showed differences in keto response and 
keto-drug interaction, making precision medicine even more 
important (85, 86).

Kabuki syndrome is an intellectual disability caused by mutations 
in either the KMT2D or KDM6A genes, which are involved in histone 
acetylation and chromatin accessibility (87). In the Kmt2d+/βGeo mouse 
model, treatment with KD for 2 weeks normalizes the global histone 
modification state corrects the neurogenesis deficiency in the granule 
cell layer of the dentate gyrus, and rescues the hippocampal memory 
defects (88). These could also be achieved by administering exogenous 
BHB (89). The mechanism behind this may be  due to improved 
chromatin accessibility and the transcriptional regulatory network.

Rett syndrome is most often caused by a mutation in the key 
epigenetic regulator gene that encodes the methyl-CpG binding 
protein. This mutation leads to seizures and intellectual disability (90). 
Patients with Rett syndrome treated with KD show reduced seizures 
and great improvements in social and behavioral functioning  (91).

Angelman syndrome is a genomic imprinting disorder associated 
with multiple anomalies and intellectual disability. In a mouse model 
of Angelman syndrome, dietary supplementation with ketones has 
been shown to significantly reduce the frequency of seizures and 
improve overall neural function including behavior, learning, and 
memory (92). Clinical trials in children with Angelman syndrome are 
currently testing ketone supplementation for seizure control  (93).

Psychiatric disorders and comorbidity with epilepsy. KD has also 
been proven to be useful in the treatment of psychiatric disorders in 
comorbidity with epilepsy in children and adolescents (94), as well as 

FIGURE 2

The need for precision medicine and precision nutrition in disease therapy. The emerging understanding of precision nutrition and nutrigenomics 
enables a more focused study of ketone-triggered metabolic and epigenetic crosstalk and keto-drug interactions.
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in psychiatric disorders such as anxiety disorder (95), bipolar disorder 
(96), schizophrenia (97), depression (98), autism spectrum disorder 
and attention-deficit/hyperactivity disorder (ADHD) (99). The 
positive outcome may be attributed to the profound impact of ketones 
on multiple targets, including but not limited to glutamate/GABA 
transmission, monoamine levels, mitochondrial function and 
biogenesis, neurotrophism, oxidative stress, insulin dysfunction, and 
inflammation, and demonstrates mood-stabilizing and antidepressant 
effects (100).

Alzheimer’s disease (AD) is the most common neurodegenerative 
disease and the leading cause of dementia in the elderly population 
(101). The brains of AD patients show decreased glucose uptake (102). 
As a backup fuel for the brain, ketone bodies can cross the blood–
brain barrier, thereby improving the function of energy-starved 
neurons. It has been proven that KD intervention results in increased 
ketone utilization and brain network stabilization, which could 
be beneficial for the aging brain  (33). The mechanism behind this may 
be  that KD alleviates energy starvation and neurotransmitter 
imbalance in the AD brain, as the brain metabolism of ketones can 
support up to 30% of glutamate and glutamine carbon (48) through 
the glutamate decarboxylase reaction (103). In animal models, 
8 months of KD feeding in middle-aged mice (8.5 months old) 
improved cognition and ameliorated Aβ and tau pathology (104). In 
the 3xTg mouse model of AD, ketone metabolism can restore TCA 
cycle metabolites, thereby enhancing amino acid biosynthesis and 
contributing to behavioral performance (105). Increased ketone levels 
also reduce the brain’s usage of glucose; as ketones are used 
preferentially over glucose by brain cells, Alzheimer’s brains are even 
more efficient at taking up ketones (106). KD has also shown the 
potential to prevent AD in high-risk populations (107, 108). AC-1202, 
an oral ketogenic compound that can induce a mild state of ketosis 
without modifying normal diets, was developed to improve cognitive 
performance and resulted in significant differences in the AD 
Assessment Scale-Cognitive subscale scores compared to the 
placebo (109).

Exceptions: It should be noted that KD shows variable outcomes 
for different genetic backgrounds. In this case, the oral ketogenic agent 
AC-1202 resulted in a statistically significant improvement in 
cognitive performance in patients who were APOE4 negative, but not 
APOE4 positive (109). In this case, precision nutrition is extremely 
important in the treatment of the disease.

Parkinson’s disease also benefits from KD (110). In animal models, 
1-methyl-4-phenol-1,2,5,6-tetrahydropyridine (MPTP) is used to 
induce destruction of dopaminergic neurons in the substantia nigra, 
mimicking human Parkinson’s-like syndrome (111), while the 
infusion of BHB was found to have a protective role in dopaminergic 
neurodegeneration and motor deficits induced by MPTP (112). 
Ketones also protect substantia nigra dopaminergic neurons against 
6-hydroxydopamine neurotoxicity in a rat model of Parkinson’s 
disease (113). In Parkinson’s disease patients, studies have revealed 
that high ketones are associated with improvements in Unified 
Parkinson’s Disease Rating Scale (UPDRS) scores (114).

Brain cancer cells showed significant metabolic alterations with 
increased glucose and hydroperoxide metabolism compared to 
normal cells (115). There is evidence that cancer cells are intolerant to 
ketones both in vitro and in vivo (116). Preclinical studies have shown 
promising results for KD in reducing tumor growth and extending 

survival in the brain (117), breast (118), prostate (119), and gastric 
cancer models (120).

Exceptions: Despite KD showing a general benefit in many 
diseases, KD is not suitable for all diseases and even the formula of KD 
varies in different cases, raising the need for precision nutrition and 
nutrigenomic research.

For instance, not all cancer subtypes are amenable to KD. Some 
studies showed the absence of positive effects on tumor progression 
and survival with a 3:1 ratio of fatty acids to carbohydrates in a KD 
regimen in glioblastoma mouse models but changed to positive when 
the ratio increased to 4:1 or 6:1 (117). On the contrary, in 
medulloblastoma mouse models, no change in survival or tumor 
progression was found even when the ratio of fatty acids to 
carbohydrates ratio was increased to 4:1 or 6:1 (117). This also 
highlighted the need for precision nutrition in clinical practice.

5.3 Concerns raised for ketogenic therapy 
call for personalized medicine

Notably, KD is used as a standard therapy for specific diseases 
and is not recommended for daily use by healthy people. Some case 
reports have even raised concerns about long-term KD use and 
under the background of some diseases. Despite its efficacy in the 
treatment of epilepsy from different causes, the benefits of KD rely 
on the integrity of the ketone body synthesis pathway. Inborn genetic 
errors in lipid metabolism such as membrane long-chain fatty acid 
transport, β-oxidation, and the Krebs cycle could be  fatal when 
implementing fasting or KD (121). Researchers highlighted that 
carnitine deficiency, carnitine palmitoyl-transferase I  or II 
deficiency, carnitine translocase deficiency (122), β-oxidation 
defects (123), pyruvate carboxylase deficiency (124) should 
be screened before KD treatments. Also, KD is not entirely free of 
side effects, with fatigue, muscle cramps, hypotension, constipation, 
and unwanted weight loss being the most commonly reported (125). 
Although KD has been used by healthy people for weight loss, severe 
obesity is often driven or accompanied by a variety of metabolic 
disorders. The crosstalk for different metabolic pathological 
conditions should be emphasized, and fortunately the safety of long-
term KD for weight loss is gradually being noticed (49, 126). Thus, 
though KD is generally considered a safe treatment, there are 
limitations in current KD treatments and one should always weigh 
its long-term pros and cons before initiation (127). A summary of 
concerns regarding KD treatment is provided below.

 • Contraindications: liver failure, pancreatitis, inborn disorders of 
fat metabolism, primary carnitine deficiency, carnitine 
palmitoyltransferase deficiency, carnitine translocase deficiency, 
porphyria, and pyruvate kinase deficiency (127).

 • Potential long-term side effects: hepatic steatosis, kidney stones, 
hypoproteinemia, and vitamin deficiency (127).

 • Potential short-term side effects: keto breathiness and “keto flu,” 
which include fatigue, headache, dizziness, nausea, vomiting, 
constipation, low exercise tolerance, etc. (127).

 • Incorrect medication dosing may cause severe hypoglycemia in 
diabetic patients (127).

 • May lead to ketonemia and ketonuria (127).
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 • An increase in low-density lipoprotein cholesterol (LDL-C) levels 
may lead to atherosclerosis acceleration and increased CVD 
risk (127).

 • More solid evaluation required in clinical trials: increased sample 
sizes, duration of interventions, decreased participant dropout 
rates, and follow-up for long-term response (127).

 • Women with gestational diabetes mellitus are advised to avoid a 
ketone-elevating diet (128).

 • KD is a lifelong treatment for some diseases, and therefore 
relatively low compliance rates (38% for CKD, 56% for MAD) 
were reported in a meta-analysis of 270 patients (12).

 • The genomic variations between individuals may mean that the 
risks of KD may outweigh the benefits.

6 Conclusion

As an endogenous fuel that bridges metabolism to epigenetic 
regulation, the recent understanding of the function of ketones in both 
areas is encouraging for the development of new drugs for these 
previously identified “incurable diseases.” The benefits of ketogenic 
intervention in clinical practice are thusly highlighting its therapeutic 
potential for multiple brain diseases. Ketogenic intervention can 
be  simply achieved through an associated diet that is relatively 
affordable and accessible. Growing evidence suggests that KD has a 
therapeutic effect on a wide range of human diseases, such potential 
makes KD an encouraging therapeutic strategy for many brain 
diseases. Being a low-side-effect treatment, elucidation of its 
therapeutic mechanism is a promising topic in the development of 
novel biotechnological drugs and synergistic therapy. However, the 
mechanism of KD benefits is still not fully understood, despite some 
evidence indicating its multiple targets and ability to regulate histone 
deacetylase, glycolysis, neurotransmitter levels, the function of NLRP3 
inflammasome, and oxidative stress.

Moreover, KD is not suitable for all diseases and even the ratio 
difference in the KD formula may lead to unexpected therapeutic 
outcomes, thus increasing the need for precision nutrition and 
nutrigenomics research. A recent study revealed a distinct cell type–
specific KD response in the brain: metabolic plasticity is found in 
astrocytes and neurons, but not in oligodendrocytes (129), which 
highlights the importance of narrowing the variation in KD responses. 
Available standards for clinical KD therapies are still very limited, and 
a certain level of precision nutrition is required as KD moves into 
clinical translation. Further studies to identify the clear mechanisms 
of KD and drug interactions, different KD responses in heterogeneous 
patient backgrounds, and clear mechanisms of KD intervention in the 
fight against numerous specific central nervous system diseases are 
crucial. In addition, in clinical applications, precision nutrition should 
also be considered as slight changes in dietary composition could 
impact/ameliorate the potential side effects of KD in 
certain populations.

7 Open questions

 1. From an evolutionary point of view, how do we understand the 
physiological benefits of KD compared with a normal diet?

 2. How do we define the drug interactions with KD in different 
individuals during the diagnosis and early treatment period?

 3. Is it possible to trigger ketone production on a cell-specific or 
tissue-specific level?

 4. Can KD regulate the immune system? Will combination 
therapies such as chemotherapy, immunotherapy, and KD 
improve the survival of cancer patients?

 5. Can KD be a trigger for synergistic drug treatment?
 6. What is the epigenetic map of patients following a KD regimen? 

Is there any drug or epigenetic regulator that can replace long-
term KD administration?
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