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Introduction: Conventional defect detection systems in Automated Fibre
Placement (AFP) typically rely on end-to-end supervised learning,
necessitating a substantial number of labelled defective samples for effective
training. However, the scarcity of such labelled data poses a challenge.

Methods: To overcome this limitation, we present a comprehensive framework for
defect detection and localization in Automated Fibre Placement. Our approach
combines unsupervised deep learning and classical computer vision algorithms,
eliminating the need for labelled data or manufacturing defect samples. It efficiently
detects various surface issues while requiring fewer images of composite parts for
training.Our framework employs an innovative sample extractionmethod leveraging
AFP’s inherent symmetry to expand the dataset. By inputting a depthmap of the fibre
layup surface, we extract local samples aligned with each composite strip (tow).

Results: These samples are processed through an autoencoder, trained on normal
samples for precise reconstructions, highlighting anomalies through reconstruction
errors. Aggregated values form an anomaly map for insightful visualization. The
framework employs blob detection on this map to locate manufacturing defects.

Discussion: The experimental findings reveal that despite training the
autoencoder with a limited number of images, our proposed method exhibits
satisfactory detection accuracy and accurately identifies defect locations. Our
framework demonstrates comparable performance to existing methods, while
also offering the advantage of detecting all types of anomalies without relying on
an extensive labelled dataset of defects.
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1 Introduction

Automated Fibre Placement (AFP) is an advanced composite manufacturing method
for forming strong and lightweight components from strips of reinforced fibres known as
tows. It is commonly used in quality-critical industries such as aerospace, where quality
inspection and assurance are paramount (Palardy-Sim et al., 2019b; Böckl et al., 2023). Most
existing inspection techniques are implemented via manual human examination strip by
strip, which is time-consuming, and thus a major production bottleneck (Meister et al.,
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2021b). To address this problem, recent research seeks to automate
defect detection by using artificial intelligence (AI), computer vision
(CV) and deep learning (DL) methodologies, reducing manual effort
in AFP inspection, and expediting the production (Brasington
et al., 2021).

Supervised learning with explicit labeling, a widely employed
methodology in AFP inspection, relies on extensive labeled datasets
of surface imaging. The surface images, crucial for training
convolutional neural networks (CNNs), encompass various
forms, including photographs, thermal images, and depth maps
from profilometry sensors (Schmidt et al., 2019; Sacco et al., 2020;
Zemzemoglu and Unel, 2022; Zhang et al., 2022). Photographs,
captured using high-resolution cameras, provide detailed visual
information of the composite part. Thermal imaging, on the
other hand, exploits temperature variations on the surface,
enabling the detection of defects based on their thermal
signatures. This technique utilizes infrared sensors to capture and
visualize the heat distribution across the composite material.
Profilometry sensors, such as those described by Sacco et al.
(2020), employ various technologies, including laser-based or
structured light-based profilometry, to capture detailed depth
maps of the composite part’s surface. These depth maps
represent the elevation of the surface, providing valuable insights
into the structural integrity of the manufactured component. The
synergy of these imaging techniques enriches the dataset for training
AI models, enhancing their accuracy and effectiveness in AFP
quality inspection.

Sacco et al. (2020) review the applications of machine learning in
compositemanufacturing processes and present a case study of state-of-
the-art inspection software for AFP processes. The presented inspection
method uses a deep convolutional neural network for semantic
segmentation to classify defects on a per-pixel basis. They use about
800 scans which is relatively a large dataset in this domain, yet the
results show their method oftenmisses some defects. Object detection is
a well-developed subfield of computer vision in which models learn to
recognize specific objects from a large dataset of labelled bounding
boxes. Zhang et al. (2022) offer an alternate approach using object
detection. This work implements a modified YOLOv5 network, which
is a popular and commercially available object detection model. With a
large dataset of 3000 images containing five different defect types, their
proposed model demonstrated effective performance in detecting those
five defect types.

To achieve better real-time inspection, Meister and Wermes
(2023) evaluate the use of convolutional and recurrent neural
network architecture for analyzing laser-scanned surfaces line by
line as 1D signals. The different network structures are assessed on
both real and synthetic datasets, demonstrating sufficient
performance. Through experimentation, the authors evaluate the
effects of training and testing on differing data types (real or
synthetic), realizing that deviations between the training and
testing domain have a greater potential to impact the results of
their proposed 1D analysis methodology.

These supervised learning methods, however, can be impractical
in industrial projects because they require large, unambiguously
labelled training datasets which are not typically available. There are
three key reasons for the lack of labelled training data. First,
collecting real-world data from production machines is expensive
and disruptive to existing production schedules. Second, defects and

anomalies in real-world production are rare. To collect enough
defect and anomaly samples for the models to learn from, one must
collect a very large amount of data, adding to the training cost.
Third, real-world defects can take many different forms, and there is
no universally accepted standard of how a human inspector should
delineate and record anomalies and defects, not to mention how to
label them for machine learning (Heinecke and Willberg, 2019).
Industrial practitioners of AFP manufacturing typically rely on
organizational-specific standards and individual professional
practices to identify and correct AFP anomalies. These separate
standards and practices cannot be easily translated into a well-
defined labelling strategy for labelling training sets.

Islam et al. present a novel approach to optimizing the AFP
process through the integration of machine learning and a Virtual
Sample Generation (VSG) method. The method generates virtual
samples to address the challenge of incomplete information within the
collected experimental data. The proposed approach incorporates
physical experiments, finite element analysis, and VSG with the
objective of refining the training process in scenarios with limited
data, ultimately improving the accuracy of the machine learning
model. However, the proposed approach lacks comprehensive
validation, and although the integration of VSG holds promise for
enhancing the training of machine learning models in AFP, the
efficacy of this approach for defect detection tasks should be
further explored.

One solution for addressing data limitations is to create
synthetic datasets that can be utilized for training supervised
models. Using AI models for synthetic dataset creation has been
explored in many applications with varying success. To address the
limited defect data in AFP, Meister et al. (2021a) compares different
data synthesis techniques for generating defect data useful to AFP
inspection applications. The paper compares synthetic image
datasets generated by various GAN-based models, even
implementing a CNN-based defect classifier for analysis.
However, there is a lack of comparison of the generated datasets
to real-world data regarding image diversity and realism (Meister
et al., 2021a). In a similar problem, for the task of machine fault
detection where faulty data is scarce and normal data is abundant,
Ahang et al. (2022) implemented a Conditional-GAN for generating
fault data in different conditions from normal data samples. This
paper provides a more in-depth analysis comparing generated data
to real ground truth fault data, showcasing that generated feature
distributions are similar to those of real faults. Such data generation
approaches have demonstrated effectiveness, though they still
require sufficiently large and representative datasets, and cannot
generalize to unseen defects or anomalies.

Circumventing the need for large datasets with labelled defects,
unsupervised anomaly detection methods focus on learning the high-
level representations of non-defective, normal data to identify outlying
anomalies. In AFPmanufacturing, normal data is typically well-defined
thanks to the simple, invariant structure of the tows (narrow strips of
composite material) and limited layup manners used. In this study, we
utilize the non-defective samples, which constitute the majority of any
real-world AFP datasets, to train a classifier capable of discerning
normal and abnormal composite structures.

Autoencoders, known for their capability of reconstructing
input data, have emerged as potent tools for detecting anomalies
within images (Albuquerque Filho et al., 2022). An autoencoder
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works by learning to encode normal input samples into a lower
dimensional latent vector that can be decoded to reconstruct the
original sample. The reconstruction is compared with the original,
and a reconstruction error metric is calculated. When an abnormal
sample is provided, the reconstruction errors will be high since the
autoencoder was never trained with similar images. A threshold is
then applied to the reconstruction errors to determine if the sample
is normal, with a higher error indicating the sample is more likely to
be abnormal or defective.

There is a lack of research applying these methods in the AFP
industry, however, the approach has demonstrated success in other
similar defect detection tasks. Ulger et al. (2021) employ
convolutional and variational autoencoders (CAE and VAE) for
solder joint defect detection. Reconstruction errors guide
classification, applying a threshold to differentiate between
normal and abnormal inputs. Tsai and Jen (2021) also employ
CAE and VAE for textured surface defect detection, favoring CAE in
a Receiver Operator Characteristic (ROC) analysis. The proposed
anomaly detector is tested on various textured and patterned surface
types, including wood, liquid crystal displays, and fibreglass.
Additionally, Chow et al. (2020) implement a CAE for concrete
defect detection, introducing a window-based approach for high-
resolution images. Their window-based implementation enables
pixel-wise anomaly maps to provide localization and contextual
understanding of anomalies.

We propose a comprehensive framework for anomaly detection
in AFP based on the autoencoder methodology. Compared to the
existing methods that require a large labelled dataset including
manufacturing defects, our approach is compatible with a small

training dataset of normal samples. Our autoencoder-based
anomaly detector uses data collected from the AFP setup shown
in Figure 1. The autoencoder is trained on a collection of local
samples taken from depth images of the composite carbon fibre
surfaces. The depth images are obtained with an Optical Coherence
Tomography (OCT) sensor installed on the AFP layup head, which
captures high-resolution point clouds of the layup tow surfaces
(Palardy-Sim et al., 2019a; Rivard et al., 2020).

To simplify and enhance efficiency in processing information,
the 3D point clouds are converted into 2D depth maps. Since the
point cloud is a measurement of the surface elevation, it can be
projected onto a 2D depth map without the loss of information.
These depth maps are presented as grayscale images, where the
brightness of each pixel corresponds to the surface elevation on the
composite part. Figure 2 provides various representations of a
sample composite part, highlighting that defects are less
discernible in the photograph due to reflections and low visual
contrast. However, defects become more evident in the depth map,
facilitating defect detection.

The work offers the following contributions.

1. We introduce a novel, end-to-end framework for anomaly
detection and localization in Automated Fibre Placement,
circumventing the data limitations in this industry. Our
proposed framework has several advantages compared to
the existing methods. It detects all types of anomalies,
without the need for manual data labeling or defect
samples. Also, it works with a small number of
composite images.

FIGURE 1
The industrial AFP setup is shown. On top is an overall view of the fibre placement machine, and on bottom is a close-up shot of the machine
applying carbon fibre tows.
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2. Another major contribution of this work is an efficient data
extraction methodology that can convert a limited number of
composite images into a large dataset of local samples. Utilizing
classical computer vision algorithms to detect the boundaries
of composite tapes, this method generates a dataset that
exploits the inherent symmetry of AFP composite materials.

3. We design and validate an autoencoder with the optimal size of
the latent domain that can identify the best distinctive features
to differentiate between normal and defective samples.

4. The proposed framework generates a map representing the
local anomaly score of the AFP-manufacture parts and
visualizes this map on the original composite scan. This
visual representation serves as a valuable tool for AFP
technicians, aiding them in the identification and resolution
of anomalies within the composite structure.

The organization of this manuscript is as follows: Section 2
describes, the whole procedure of anomaly detection, including data
prepossessing, training of the AI model, and implementation details.
In Section 3, the evaluation results of both the anomaly detector and
the localization system are presented. Finally, concluding remarks of
this work are provided in Section 4.

2 Methodology

Figure 3 summarizes our anomaly detection framework.
First, a composite scan is processed and local samples are
extracted from the images. Then, the trained autoencoder
generates an anomaly map, used to detect and locate the
defects in the image.

FIGURE 2
Different representations of a composite part manufactured with an AFP machine. Above (A) is a 3D point cloud measured using OCT Technology.
The bottom left (B) shows the depth map generated from the 3D point cloud, and a real photograph of the same composite part is shown in the bottom
right (C) for comparison.
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2.1 Data preparation

The raw depth maps contain impulse artifacts, also known as
salt and pepper noise, which can be detrimental. To remove the
noise, we used a median filter with the kernel size 3 × 3 applied to
the whole depth image (Azzeh et al., 2018). Compared to a
Gaussian filter with a small radius (a low-pass filter) (Deng
et al., 2016), a median filter has less risk of losing high-
frequency features.

Another data preparation step is needed because different raw
depth-map images have inconsistent ranges of values depending on
the distance of the laser origin to the composite surface. This effect is
commonly caused when the OCT sensor is mounted to a fixed
location behind the AFP head while scanning a contoured surface.
These variations can cause undesired behaviour in the defect
detection methodology. To address this, all the images undergo a
min-max normalization so that the minimum depth value is
mapped to zero and the maximum value is mapped to one. By
applying this linear transformation, the visual contrast of the images
is improved while keeping the original depth ratio. The
normalization function is provided in Eq. 1 in which zi,j is the
original depth value, pi,j is the normalized pixel value, and Z is the
whole depth map matrix.

pi,j � zi,j −min Z( )
max Z( ) −min Z( ) (1)

2.2 Local sample extraction

The training dataset used in this work is composed of depth
maps from 42 non-defective composite surfaces. Developing an
effective end-to-end network for defect detection using such a
limited number of scans presents a significant challenge.
However, we address this issue by leveraging the consistent
uniformity along the composite tows and extracting cropped
windows of the scans to form a dataset with many more
localized samples. This is possible under the assumption that
each cropped section conforms to a similar distribution, given
that defect-free tows should exhibit minimal to no disparity
across their segments. Consequently, the analysis of smaller
regions allows us to employ a more compact neural network to
learn from a broader spectrum of local samples rather than relying
on a larger network to process full scans. Moreover, by extracting
localized samples along the tows, our network gains exposure to a
greater variation of tow structure.

One of the most basic methods to detect local objects in an image
is to move a window on the image and classify the smaller region
inside the window (Dalal and Triggs, 2005). This method is known
as “sliding window” in computer vision literature and has its own
limitations. For example, the scale of the object may vary depending
on how close the object is to the camera. Consequently, multiple
sizes of sliding windows are required which can be computationally
expensive. In our current dataset, on the other hand, most of the

FIGURE 3
An overview of the defect detection process shows the necessary steps.
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defects are localized to one tow, and therefore approximately the
same relative size and there is no wide variation in perspective or
orientation of the objects. Consequently, only one scale of sliding
windows is sufficient for this use case. This also helps to keep
computation complexity relatively low for this approach. Besides,
there is preliminary knowledge of the composite part scans, like the
number of tows and the general direction they follow. This enables a
customized sliding window method that makes use of the known
information. Moreover, the depth maps generated from our OCT
scans have a specific structure. For example, all tows are placed
straight and horizontal in the images, the number of tows is known,
and their width is also known. To incorporate this predetermined
knowledge, a line detector algorithm based on Hough Transform
(Hough, 1959; Duda and Hart, 1972) detects the vertical and
horizontal edges of the tows. After detecting the boundaries of
the tows, the center of them (centerlines) are calculated by averaging
each two consecutive horizontal lines, bounded within the detected
vertical lines. This process of centerline detection is illustrated in
Figure 4. Finding the center of the tows makes it possible to directly
focus on the regions that are candidates for defect instead of
scanning the whole image. In other words, it creates a skeleton
that directs and constrains the region of interest. This can reduce
additional effort on the classifier side.

Based on the detected centerlines, a square window slides across
the tows to extract cropped regions. To select the size of the window
we use the width of the tow plus a 50% of extra margin to consider
the boundary of the tows. This 50% of extra margin is sufficiently
large to cover the upper and lower boundary of the tows. A larger
margin will cover a big portion of neighboring tows which is not
desirable for the tow-by-tow approach proposed in this work. The
window size calculated in this way will be 32 × 32 pixels. In this
implementation, a step size of 8 pixels is used to move the window
and sample the information cropped inside. This size of stride allows
enough overlap between the nearby samples while keeping the
samples sufficiently distinctive. Using a smaller stride increases
the number of generated samples which leads to increased
computational requirements for training. On the other hand, a
larger stride allows less overlap between the windows, resulting
in chance of overlooking or undervaluing key features of the AFP
composite structure. Some of the extracted samples are presented in

Figure 5. At the time of inference, each window that is detected as an
anomaly is considered to contain a defect, while the windows that
are not anomalies are assumed to have normal tow structures. The
next sections explain the approach to distinguishing between normal
and abnormal samples.

2.3 Anomaly detection

As mentioned in Section 1, autoencoders have shown great
success at identifying anomalies in images. An autoencoder is an
unsupervised learning model that reconstructs the given input by
learning to minimize the error between the input and reconstructed
output. They do this by encoding the input to a vector of latent
features, also known as the bottleneck, and then decoding those
latent features to reconstruct the input. Convolutional Autoencoders
(CAEs) are a group of autoencoders that use convolution layers in
their network structure. Convolutional neural networks (CNN) are
more popular for image-based autoencoders than basic fully-
connected networks. This is because CNNs incorporate receptive
fields using kernels that maintain the spatial relationships of the
data. CNNs are also computationally efficient with sparse
connectivity of neurons.

If only normal samples are used to train the autoencoder, it will
be able to reconstruct similar normal samples accurately, and the
reconstruction results for abnormal samples will be poor. Therefore,
reconstruction error can be used as an indicator of how anomalous
each input is. For inference, each cropped window of a composite
material depth map is fed into the trained autoencoder. The
reconstruction error of each window is then used as an anomaly
score to create an anomaly map for the entire image. Reconstruction
error of a window centred at (x,y) is calculated using Eq. 2 in which
pi,j and p̂i,j are the pixel value of the input and reconstructed output,
respectively, and b is half of the size of each window.

mx,y � 1

2b( )2 ∑
x+b−1

i�x−b
∑

y+b−1

j�y−b
pi,j − p̂i,j[ ]

2
(2)

In this work, a CAE is designed and used as the anomaly
detector. The design incorporates symmetric encoder and

FIGURE 4
The centerline detection procedure contains two main steps: detecting horizontal and vertical lines (A) and estimating tow centerlines from the
detected lines (B).
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decoder structures shown in Figures 6A, B respectively. For training
the model, mean squared error is employed as the loss function.
Although the full method uses continuous valued anomaly maps to
identify the defects rather than a binary prediction, binary
classification can still be useful in validating the model
performance. For this, a threshold parameter is introduced to

classify samples based on their reconstruction error. To select the
threshold value, a Receiver Operating Characteristic (ROC) curve is
applied. The ROC curve plots the true positive rate against the false
positive rate while varying the threshold value. In an ideal case, the
selected threshold would give a true positive rate of 1 and a false
positive rate of 0. In the ROC plot, this corresponds to the upper left

FIGURE 5
A dataset is created from cropped sections of the depth maps, using the sliding window method. Normal samples are shown on top and abnormal
samples are shown below.

FIGURE 6
A graphic depicting the network structure of the proposed autoencoder. Above is the encoder structure (A), and below is the decoder structure (B).
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corner and hence the best threshold value is selected from the curve
at the point closest to that corner.

2.4 Defect localization

The anomaly detection generates an array of anomaly scores for
each tow, which can be considered as a 1D digital signal. Any area of
this signal with a concentration of high values indicates the presence
of a defect. In Computer Vision literature, these areas are called
blobs (Danker and Rosenfeld, 1981; Kong et al., 2013). For detecting
the blobs, we use the Difference of Gaussian (DoG) method (Lowe,
2004). In this approach, the signal (f(x)) is filtered using Gaussian
kernels with increasing values for standard deviations (σ) as
described in Eq. 3. Then, the subtractions of each two
successively filtered signals are calculated. The local maxima of
g(x, σ) represents the blobs. In such maxima points, x and σ

correspond to the location and characteristic scale (size) of the
blob, respectively.

g σ, x( ) � σ2
∂n2σ
∂x2 *f x( ) (3)

For each defect, two parameters are detected, radius and center.
With this information the detected blobs can be transferred from
anomaly map to image space.

3 Results and discussion

The performance of the anomaly detection and localization
system depends on two factors. First is the number of samples
the anomaly detector is correctly classifying as normal or abnormal.
Second is the size and location accuracy of the predicted defects.
This section evaluates these two aspects using a test dataset with an
additional two composite surfaces containing defects.

3.1 Anomaly detection

The network structure proposed in Figure 6 is implemented
using three different latent dimensions 2, 16, and 128 for
comparison. Each network is trained with a dataset consisting
of 27406 only normal samples. An Adam optimizer is employed
with an MSE loss function to train the network. The batch size is
set to 128. Each autoencoder undergoes training for 50 epochs,
completing in under 5 min on a computer with the following
specifications:

• Processor (CPU): Intel(R) Xeon(R) E5-1607 v4 @ 3.10 GHz
• Graphics (GPU): NVIDIA GeForce GTX 1080
• Memory (RAM): 32.0 GB

The curves in Figure 7 demonstrate the training losses of
each autoencoder. Comparing the training loss curves shows
that the models’ reconstruction ability improves with higher
dimensional latent space. The curves also show that the models
are learning relatively quickly with tiny improvement in the
later epochs.

Reconstruction results for the autoencoders are demonstrated in
Figure 8. The original samples are randomly selected from normal
and abnormal classes in test set. These results clearly show the
improved reconstruction performance with a higher dimensional
latent space. It shows that the autoencoder with a 128-dimensional
latent vector is able to produce good reconstructions for both
normal and abnormal samples. The 16-dimensional autoencoder,
on the other hand, produces relatively good reconstructions for
normal samples and poorer reconstructions of defect samples. This
is ideal for the classification method to distinguish anomalies.
Finally, the autoencoder with only a 2-dimensional latent space is
unable to make good reconstructions for any of the input samples.

Figure 9 shows comparisons of the reconstruction error. In
Figure 9A the distributions of mean square error are shown for the
16-dimensional autoencoder on the training set and test set. Note
that the training set only includes normal samples whereas the test
set contains both normal and abnormal samples, separated
accordingly. As the figure suggests, the normal samples have a
similar distribution in both the training and test sets. On the
other hand, the abnormal samples have a generally higher MSE
with a slight overlap on normal sample distribution. In an ideal case,
if there were no overlap between these two distributions we could
find a perfect threshold as the decision boundary to classify the
samples into normal and abnormal categories. With existing
overlap, however, an ROC curve can help to select the decision
boundary that makes the best trade-off between true and false
positive rates. Taking a closer look at the difference between the
three autoencoders, Figure 9B shows boxplots of theMSE for normal
and abnormal samples in the test set, using different numbers of
latent features. Here it shows how separable the two classes are based
on reconstruction error alone. For the 2-dimensional autoencoder,
the interquartile ranges are separable, but there is a significant
overlap when considering the whiskers. For the 16-dimensional
autoencoder, the separation is greatly improved with minimal
overlap between the whiskers. The 128-dimensional autoencoder,
however, does not show significant separation and would be
impossible to accurately classify the two classes based on MSE alone.

FIGURE 7
The training MSE losses of the three autoencoders are plotted in
comparison over 50 epochs.
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Figure 10 shows the ROC curves for each of the three
autoencoders and the selected best threshold points shown as
stars. These results further demonstrate that classification
performance does not correspond with reconstruction
performance, as the 2D and 128D autoencoders’ ROC curves
have worse classification performance than the 16D model. The
best-performing model is the autoencoder with a 16-dimensional
latent space, achieving a high true positive rate with a low false
positive rate.

Classification results of each autoencoder with the selected
threshold values found by the ROC curves are summarised in
Table 1. The table reports precision, recall, F1 score, area under
the ROC curve (AUC), and selected threshold for each classifier.

Figure 11 shows the effect of the latent vector size on the
performance of the model. Figure 11A suggests that larger latent
dimensions will produce lower reconstruction errors. However, an
accurate classification model does not require the lowest
reconstruction error, but a moderate reconstruction that leads to

FIGURE 8
The resulting reconstructions from the autoencoders with various latent sizes are compared for both normal and abnormal test samples.

FIGURE 9
Distributions of MSE for different input types and latent sizes are presented for comparison. (A)Comparing test and training. (B)Comparing different
latent sizes.

Frontiers in Manufacturing Technology frontiersin.org09

Ghamisi et al. 10.3389/fmtec.2024.1277152

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2024.1277152


better classification performance. In Figure 11B the best latent dim is
found by calculating the minimum AUC of the ROC curve while
varying the latent dim.

Figure 12 shows the classification confusion matrix while using
the optimal latent size. The off-diagonal values in this matrix are low
which shows that most of the samples from both normal and
abnormal classes are classified correctly.

3.2 Defect localization

Figure 13 illustrates the results of the anomaly detector on a 2D
depth map. The colour of each point indicates the normalized MSE
for reconstructing a small window around the point with the
anomaly detector. As can be seen, the defective areas have a large
density of points with a higherMSE. This information can be used to
detect these areas while ignoring individual outlier values.

In Figure 14 the process of detecting the defects from the
anomaly map is illustrated. The elevation in each curve
represents the MSE value for one tow (represented by colour in
the previous figure). The arrows show the detected blobs after
applying the Derivative of Gaussians method. It is observed that
only the areas with an extended length of high MSE values are
detected as blobs.

Figure 15 shows the final output of the computer vision pipeline,
comparing the annotated defect bounding boxes (ground truth) with
the predicted bounding boxes.

3.3 Qualitative comparison

The proposed framework is unique and to the best of our
knowledge, no other studies have implemented an end-to-end
unsupervised defect detection method for AFP inspection.
Unfortunately, there are no publicly available datasets in this
domain to serve as a benchmark for AFP inspection tasks.
Additionally, the dataset used in this work is insufficient for
training supervised learning models, which constitute the

FIGURE 10
ROC curves of the test set are plotted for the three autoencoder
classifiers.

TABLE 1 Test metrics of convolutional autoencoder.

Latent Dim. AUC Best Threshold Precision Recall F1-Score

128 0.978 3.86 0.918 0.929 0.923

16 0.999 13.69 0.992 0.976 0.984

2 0.942 42.08 0.922 0.810 0.862

FIGURE 11
Reconstruction MSE and AUC of ROC are plotted for autoencoder models with latent dimensions varied from 1 to 128. (A) MSE. (B) AUC.
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majority of current studies in this field. For these reasons, an explicit
quantitative comparison of our method with other state-of-the-art
approaches is not possible. However, a qualitative comparison of the
most relevant studies is presented in Table 2, showcasing the
advantages of our framework.

In regard to other defect detection methods, the main
advantages of our proposed approach stem from the
unsupervised learning process which enables learning with
data limitations. Foremost, our method detects all types of

surface anomalies in AFP, whereas existing methods are
limited to specific defect types. Additionally, unlike other
methods, ours does not require labelling which is time-
consuming and prone to errors. Moreover, our proposed
framework works with fewer composite scans and it does not
need any samples of defects.

Some methods implement semantic segmentation which
requires explicit pixel-wise labelling. This is not necessarily
needed, as our method provides sufficient localization with
bounding boxes and anomaly maps. Unlike other methods, ours
does not classify the defects, however, a separate classification
module could easily be integrated using the detected bounding
boxes. Besides, in an industry where the majority of the
inspected parts are non-defective, directly detecting the defective
parts can reduce most of the effort.

The proposed defect detection approach relies on layer-by-layer
inspection during the AFP process. Severe defective structure should
be detected and corrected before applying the next layer. If
additional AFP layers are added on top of defects, their
accumulation should leave a footprint that will affect the latest
layer. Depending of the type of defects present underneath and how
they combine with each other’s, the surface will appear differently
from normal AFP structure and the proposed detection method
should be trained to identify it as an anomaly. Note that, for the
purposes of this initial study, the selected laminate is thin, resulting
in little to no accumulation of defects in underlying layers and thus,
the impact is negligible. Datasets containing many layers are
required to conduct a study on this question.

AFP has planned and unplanned gaps and overlaps. This
study purposefully does not include planned gaps and overlaps.
When draping prepreg tows across a surface with compound
curvature, planned gaps or overlaps are expected based on the

FIGURE 12
The confusion matrix demonstrates the evaluation of the
best model.

FIGURE 13
An anomaly map is generated from the MSE of individual cropped windows.
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surface coverage methodology. These are features of the AFP
manufacturing process and typically occur along course edges or
at individual tow ends. Deviations of individual tows from the
expected fibre paths can produce unplanned gaps and overlaps.
Planned gap and overlap size, location, and engineering tolerance
are all known. This study used a simplified lamination sequence
on a flat tool that does not include planned gaps and overlaps. As
such, they are not considered in the evaluation. Only unplanned
gaps and overlaps caused by individual tow movement during the
lamination process are considered in the evaluation. In the next
phase, training the suggested autoencoder with a dataset of
curved composites that incorporates planned gaps and
overlaps will lead the autoencoder to perceive them as normal
structure. Any deviation from this predefined structure, such as
planned gaps and overlaps, is categorized as abnormal.
Consequently, the anomaly detector will specifically pinpoint
and identify unplanned overlaps and gaps. If these unplanned
gaps and overlaps exceed the manufacturing threshold, they
are defects.

4 Conclusion

This paper introduces a practical and novel method for the
inspection of composite materials manufactured by Automated
Fibre Placement (AFP). The AFP process is susceptible to various
types of defects which can significantly impact the final product’s
quality, necessitating thorough inspection of the composite parts.
Manual human inspection has traditionally been employed for this
purpose, but it is time-consuming, labour-intensive, and prone to
human errors. To enhance the efficiency, accuracy and reliability of
AFP, the development of an automated inspection system is crucial.
Current inspection procedures mostly utilize profilometry
technologies like laser scanning, thermal imaging, and optical
sensors to generate visual measurements of the part’s surface.
The data used in this work is obtained from a laser scanner that
operates based on OCT technology, though the framework
presented is general and can be adapted to other types of
profilometry data.

In AFP inspection, robust and generalized supervised
learning methods are infeasible due to limitations in available
labelled data. Anomaly detection methods, on the other hand,
can circumvent this challenge by focusing on learning the
structure of normal samples to identify any abnormalities. The
proposed computer vision framework detects individual tows in
AFP composites and creates a dataset of sub-images by sliding a
window along the center of each tow. The extracted data is then
used to train an autoencoder designed to detect anomalies. Using
the same sliding window procedure, the autoencoder produces
anomaly scores for local regions of the composite part. These
scores are aggregated to form an anomaly map of the full image.
This anomaly map can then be used as an explicit indication tool
by an operator. We further process this anomaly map using a 1D
blob detection algorithm to generate bounding boxes
around defects.

Compared to other state-of-the-art automated inspection
methods in AFP, our approach offers several advantages. Since
the autoencoder learns the inherent structure of normal tows, it
is capable of detecting all anomalies, unlike other methods which
can only detect defects specific to their training data. Furthermore,
our suggested framework operates with fewer composite scans and
eliminates the requirement for defect samples. For verification
purposes the autoencoder is evaluated in a classification task,
achieving over 98% classification accuracy. Additionally, the
overall framework is implemented on a set of test samples where
bounding boxes generated by the method achieve an Intersection
over Union (IoU) of 0.708. This demonstrates sufficient accuracy in
the localization of detected defects.

This paper outlines a novel defect detection approach for AFP
and emphasizes its practicality, particularly in addressing data
limitations. There are several potential directions for future
research to enhance the inspection system’s capabilities and
extend its relevance to broader domains. To improve dataset
quality and quantity, we suggest investigating data engineering
techniques like data augmentation and synthetic data generation.
Additionally, while the current system identifies anomalies, it lacks
the ability to classify specific defect types. To address this, we
recommend utilizing the generated bounding boxes to collect
training data for developing a classification model. We also

FIGURE 15
Predicted bounding boxes are displayed on the original depth
map in comparison with the ground truth bounding boxes. Also, the
values of Intersection over Union are displayed.

FIGURE 14
Anomaly scores are visualized as 1D signals for blob detection.

Frontiers in Manufacturing Technology frontiersin.org12

Ghamisi et al. 10.3389/fmtec.2024.1277152

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2024.1277152


recommend adapting our framework for use in industries that share
similar tape-by-tape structures. This can lead to enhancements in
defect identification and quality assurance across different sectors.
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