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Particulate matter (PM) is considered the primary contributor to air pollution and
has severe implications for general health. PM concentration has high spatial
variability and thus needs to be monitored locally. Traditional PM monitoring
setups are bulky, expensive, and cannot be scaled for dense deployments. This
paper argues for a densely deployed network of IoT-enabled PM monitoring
devices using low-cost sensors, specifically focusing on PM10 and PM2.5, the
most health-impacting particulates. In this work, 49 devices were deployed in a
region of the Indian metropolitan city of Hyderabad, of which 43 devices were
developed as part of this work, and six devices were taken off the shelf. The low-
cost sensors were calibrated for seasonal variations using a precise reference
sensor and were particularly adjusted to accurately measure PM10 and
PM2.5 levels. A thorough analysis of data collected for 7 months has been
presented to establish the need for dense deployment of PM monitoring
devices. Different analyses such as mean, variance, spatial interpolation, and
correlation have been employed to generate interesting insights about temporal
and seasonal variations of PM10 and PM2.5. In addition, event-driven spatio-
temporal analysis is done for PM2.5 and PM10 values to understand the impact of
the bursting of firecrackers on the evening of the Diwali festival. A web-based
dashboard is designed for real-time data visualization.
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1 Introduction

Air pollution has been an issue of grave concern across the world for decades
(COMEAP, 2010). Particulate matter (PM) occurring from local activities significantly
contributes to air pollution, which causes serious health implications. The average
concentration of PM2.5 and PM10 in India is 55.8 μ g/m3 and 131 μ g/m3, 11 times
higher than theWHO guideline (Greenstone et al., 2022). According to an estimate, in 2019,
around 6.7 million premature deaths globally were associated with air pollution (Fuller
et al., 2022). Studying and continuously monitoring the various patterns related to air
pollution is essential to address the challenge comprehensively.

OPEN ACCESS

EDITED BY

Gadadhar Sahoo,
Indian Institute of Technology Dhanbad, India

REVIEWED BY

Michele Penza,
Italian National Agency for New Technologies,
Energy and Sustainable Economic
Development (ENEA), Italy
Ivo Allegrini,
Independent Researcher, Rome, Italy

*CORRESPONDENCE

Ayu Parmar,
ayu.parmar@research.iiit.ac.in

Ayush Kumar Dwivedi,
ayush.dwivedi@research.iiit.ac.in

RECEIVED 02 November 2023
ACCEPTED 31 January 2024
PUBLISHED 21 February 2024

CITATION

Parmar A, Sara S, Dwivedi AK, Reddy CR,
Patwardhan I, Bijjam SD, Chaudhari S, Rajan KS
and Vemuri K (2024), Development of end-to-
end low-cost IoT system for densely deployed
PM monitoring network: an Indian case study.
Front. Internet. Things 3:1332322.
doi: 10.3389/friot.2024.1332322

COPYRIGHT

© 2024 Parmar, Sara, Dwivedi, Reddy,
Patwardhan, Bijjam, Chaudhari, Rajan and
Vemuri. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in The Internet of Things frontiersin.org01

TYPE Original Research
PUBLISHED 21 February 2024
DOI 10.3389/friot.2024.1332322

https://www.frontiersin.org/articles/10.3389/friot.2024.1332322/full
https://www.frontiersin.org/articles/10.3389/friot.2024.1332322/full
https://www.frontiersin.org/articles/10.3389/friot.2024.1332322/full
https://www.frontiersin.org/articles/10.3389/friot.2024.1332322/full
https://crossmark.crossref.org/dialog/?doi=10.3389/friot.2024.1332322&domain=pdf&date_stamp=2024-02-21
mailto:ayu.parmar@research.iiit.ac.in
mailto:ayu.parmar@research.iiit.ac.in
mailto:ayush.dwivedi@research.iiit.ac.in
mailto:ayush.dwivedi@research.iiit.ac.in
https://doi.org/10.3389/friot.2024.1332322
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://doi.org/10.3389/friot.2024.1332322


1.1 Existing approaches and related works

Many countries have established elaborate structures for air-
quality monitoring based on beta attenuation monitor (BAM) and
tapered element oscillating microbalance (TEOM) often deployed
by pollution control boards and other governmental agencies to
monitor air quality (Khot and Chitre, 2017). For example, the
metropolitan city of Hyderabad in India, where this study is
based has 12 centralized air quality monitoring stations (AQMS).
Not only precise measuring techniques like BAM and TEOM but
several recent studies have been conducted to monitor air quality
using low-cost sensors (Piedrahita, 2014; Clements et al., 2017). The
importance of setting precise performance targets for PM2.5 sensors
is further supported in the context of low-cost sensor accuracy and
reliability, as discussed in Williams et al. (2019), indicating a critical
area of focus for urban air quality monitoring networks. Moreover,
internet-of-things (IoT) and cloud computing have been used for
real-time PM monitoring. Citywide deployment of such devices has
been studied to increase pollution data’s spatial-temporal resolution.
For instance, in Cheng et al. (2019), 1,000 devices were deployed for
10 months in Beijing, China (area 16, 411 km2). In Lu et al. (2021),
361 devices were deployed for 1 year in a large area of 1302 km2 in
Los Angeles, California, to estimate hourly intra-urban
PM2.5 distribution patterns using machine learning model. In
Zhao et al. (2019), 169 devices were deployed in 20 km × 20 km
area measuring PM2.5 every hour with a focus on identifying the
primary source of PM2.5. In Montrucchio et al. (2020), 100 devices
have been deployed, both stationary and mobile, for 5 months in
Turin, Italy. In Becnel et al. (2019), 50 devices have been deployed in
a large area of 100 km2 for 6 months in Utah, United States,
discussing the reliability and efficiency of low-cost PM sensors
for spatial and temporal dense heterogeneous pollution data. In
Gupta et al. (2018), 20 devices were deployed in Los Angeles,
California, to quantify the impact of wildfires in California by
using 20 low-cost air quality monitoring devices and satellite
data. Similarly, in Penza et al. (2017), 11 devices were deployed
in Bari, Italy, discuss the deployment challenges and solutions of
these sensors in urban settings. In Lee et al. (2019), 438 devices were
deployed for 2 months in Taichung, Taiwan (area 163 km2). In Park
et al. (2019), 30 devices were deployed in an area of 800 m × 800 m
discussing the suitability of low-cost sensors for networks of air
quality monitors for dense deployment, but the data collection is
significantly less. In Popoola et al. (2010), authors deployed a
network of 45 low-cost electrochemical sensor devices in and
around Cambridge, United Kingdom, for 2.5 months. The
network provided measurements of harmful gases (CO, NO,
NO2), temperature, and relative humidity (RH). The collected
data from these devices was analyzed for source attribution. The
authors also determined the regional pollution level by studying
variations in the sensor readings deployed in different
environments. In Brienza et al. (2015), authors developed a low-
cost device named uSense, which can measure the concentration of
harmful gases (NO2, O3, CO) in the ambient environment. It uses
Wi-Fi to offload the sensed data on a cloud server. Wi-Fi
connectivity enables users to place the device indoors or
outdoors in balconies or gardens.

1.2 Limitations and identified research gaps

Despite the advancements in air quality monitoring, there are
still significant gaps in the research. The primary issue is that,
although the air quality monitoring apparatus like AQMS, BAM,
TEOM are very accurate but they are often expensive, bulky, and
large in size (Yi et al., 2015). Thus, they cannot be densely deployed,
leading to a significant mismatch between the requirement of
PM2.5 and PM10 data and its availability. Consequently, the
resolution of available air quality data is limited as very few
stations are typically responsible for an entire city region. For
example, in a big metropolitan city like Hyderabad, with a
population of over 6.7 million (Census India, 2011) and area
over 650 km2, the Central Pollution Control Board (CPCB) and
the Telangana State Pollution Control Board (TSPCB) have
deployed only 12 (AQMS) (CPCB India, 2015). This low
resolution is insufficient for a deeper understanding of
PM2.5 and PM10, as pollutant levels can vary drastically even
within smaller blocks in a city (Apte et al., 2017).

For localized monitoring and real-time analysis of outdoor PM
(PM2.5 PM10) and improving the spatial and temporal resolution
of the data, a dense IoT system is needed to send more data points.
Frequent sensing of air pollution data through transmitting
multiple data points improves spatial and temporal resolution.
It aids in source identification, identifying pollution patterns, and
assessing mitigation measures. Moreover, a significant proportion
of the monitoring devices in operation today require consistent
calibration. Any deviations in calibration practices can undermine
the integrity of the data. Thus, consistent calibration of affordable
sensors is vital to guarantee data reliability (Popoola et al., 2010;
Lewis and Edwards, 2016). The necessity for such rigorous
calibration and validation, especially under varying
environmental conditions, is further underscored in Borrego
and et al. (2018). Air quality data often is not integrated with
other relevant data, such as traffic flow, ongoing construction
activities, or season/event-specific variations. Such integrations
can offer a more holistic understanding of pollution sources
and patterns (Chen et al., 2014; Kumar, 2015). The data
collated through such methodologies allows for the immediate
detection of pollution spikes and changes, helps understand long-
term trends and seasonal variations, makes more accurate
predictions, and evaluates the impact of interventions, which is
scalable with low-cost portable ambient sensors. However, current
research and practices have not adequately addressed this need,
which represents a significant research gap. Despite the
technological advancements in air quality monitoring, there
remain pronounced challenges, especially in densely populated
urban environments like Hyderabad. The limited presence of
AQMS, while precise, cannot fully capture the multifaceted air
quality variations in large urban landscapes. The evident need for
dense deployment, the challenge of consistent calibration, and the
integration of diverse data sources underscore the existing research
gaps. Our study aims to bridge some of these voids. By
concentrating on dense deployment of calibrated IoT devices,
we aim to enhance data resolution and provide a more nuanced
understanding of air quality variations.
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1.3 Contributions

In our preliminary work (Reddy et al., 2020), a smaller network
with ten devices was deployed inside the International Institute of
Information Technology Hyderabad (IIITH) campus for
PM2.5 PM10 monitoring. Field experience from this deployment
highlighted the need for a denser deployment across different
environments and areas with calibrated PM (PM2.5 PM10)
sensor and a more robust device that can cache data to avoid
data loss due to communication outages. In this paper, an end-
to-end low-cost IoT system is developed and densely deployed for
monitoring PM2.5 PM10 with fine spatio-temporal resolution. The
system includes designing the hardware, calibrating the low-cost
sensors, cloud interfacing, and developing a web-based dashboard.

The specific contributions of this paper are:

1. For the high spatial resolution of outdoor PM2.5 PM10,
49 IoT-based PM monitoring devices were developed,
calibrated, and deployed at various outdoor locations.

2. The developed device is designed to be robust against the issue
of data loss due to connection and power outages. The device
maintains an offline cache in the event of an outage. The stored
data is offloaded in bulk once the power and communication
are restored.

3. All PM sensors were calibrated for seasonal variations by co-
locating with a reference sensor. Also, each device was
calibrated individually.

4. The devices were deployed at 49 outdoor locations covering a
4 km2 area in Gachibowli, Hyderabad, India. The field
locations were selected to include urban, semi-urban, and
green regions. Few devices were deployed at busy traffic
junctions and roadsides. The data was recorded at a
frequency of every 30 s (sec), spanning over all the seasons
for 7 months, thus aggregating 20.7 million data points.

5. A web-based dashboard was developed and deployed to
visualize the data in real time.

6. Different analyses were carried out by observing seasonal mean
and variance, spatial interpolation, event-driven variation, and
correlation. Results show the optimal deployment across a
varied landscape and can be a key factor in identifying the
release of high concentration in real-time.

Our work differs significantly from the previous studies
discussed earlier (Popoola et al., 2010; Brienza et al., 2015; Gupta
et al., 2018; Becnel et al., 2019; Cheng et al., 2019; Lee et al., 2019;
Park et al., 2019; Zhao et al., 2019; Montrucchio et al., 2020; Lu et al.,
2021) and also shown in Table 1. For example (Popoola et al., 2010;
Brienza et al., 2015), are about gas monitoring, while this paper
focuses mainly on PMmonitoring. The studies in (Gupta et al., 2018;
Becnel et al., 2019; Cheng et al., 2019; Zhao et al., 2019; Montrucchio
et al., 2020; Lu et al., 2021) have a large number of devices for
citywide monitoring of PM but have a sparse deployment (<
0.6 devices per km2) in contrast to our dense deployment (>
12 devices per km2). The work in Lee et al. (2019); Park et al.
(2019) is on dense deployment, but in Lee et al. (2019) (<
2.6 devices per km2) for a small duration of 2 months which is
very less for a comprehensive seasonal analysis. The network in Park
et al. (2019) is not an IoT network. Data is collected locally onT
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microSD card for a small duration, while our work involves an IoT
network deployed for the last 1 year collecting large data sets.

The rest of the paper is structured as follows: Section 2 describes
the complete system’s hardware architecture and software design.
Section 3 describes the measurement setup and the deployment
plan. Section 4 describes the process of data collection,
preprocessing, and calibration. Section 5 presents the
development of the dashboard and its framework. Section 6
presents the observations from the measurement campaign.
Finally, the conclusions are deduced and articulated in Section 7.

2 Hardware architecture: General
overview and specifications

2.1 Hardware specification

Figure 1 shows the hardware architecture and circuit board for
the developed PM monitoring device in this work. The basic
architecture consists of sensors (PM sensor SDS011 and
temperature humidity sensor SHT21), a communication module
(SIM800L and eSIM), a real-time clock (RTC), and a lithium
polymer (LiPo) battery.

All these components are connected to the microcontroller
TTGO T-Call ESP32. The controller reads data from all the
sensors periodically every 30 s and offloads it to ThingSpeak, a
cloud-based server employing message queuing telemetry transport
secured (MQTTS) over a 2G or Wi-Fi network. The data packet size
is 28 bytes. The device is powered with an AC-DC power adapter
and a 1,000 mAh battery and enclosed in an IP65 box made of ABS
filament; the enclosure offers complete protection against dust and
good protection against water. The form dimensions are width =
125 mm, depth = 125 mm, and height = 125 mm. The SDS011 and
SIM800L modules are connected to the controller through the

UART protocol, while the SHT21 and RTC are connected
through the I2C protocol. The overall cost of the device after
adding the cost of individual hardware components is 7000 INR
(approximately 84 USD)1. The specifications of the individual
hardware components are listed in Table 2. The details of each
component are given below.

2.1.1 Nova SDS011
A Nova-SDS011 PM sensor (SDS011, 2023) is used in this study

to gauge the presence and concentration of tiny particles with a
diameter 10 µm or less (referred to as PM10) and particles with a
diameter 2.5 µm or less (referred as PM2.5). The sensor uses light
scattering phenomena to sense particle concentration. It is a low-
cost sensor with a good correlation with BAM for
PM2.5 PM10 monitoring (Badura et al., 2018). At the same time,
it can achieve low error values after calibrating and using a simple
linear regression (Patwardhan et al., 2021). Table 3 effectively
demonstrates the high level of accuracy achieved by the Nova-
SDS011 PM sensor in this study compared to other literature.

2.1.2 SHT21
At high temperature and RH levels, light scattering-based PM

(PM2.5 PM10) sensors do not operate reliably (Hernandez et al.,
2017). Therefore, temperature-humidity sensor SHT21 (SHT21,
2023) is installed in the developed device to measure temperature
and RH for filtering out any unreliable PM2.5 PM10 values.

2.1.3 Battery/power adapter
The developed device uses a 3.3 V rechargeable 1,000 mAh LiPo

battery. A battery management circuit onboard the micro-controller

FIGURE 1
Block architecture and the circuit board of the deployed PM monitoring device. (A) Block architecture, (B) PM monitoring circuit board.

1 Assuming the conversion rate of 1 USD = 83.33 INR in October 2023.
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module and a dedicated AC-to-DC power adapter charges the
battery. If the AC input is available, the device will work using
an AC-to-DC power adapter and charge the battery. It will switch
automatically to battery power if no AC input is available. Including
a battery in the system serves as a contingency measure to mitigate
the impact of disruptions or power outages in the AC supply. The
battery ensures uninterrupted data collection and device operation
during such events.

2.1.4 TTGO T-Call ESP32
In field deployment, a wireless module is needed to send the

sensed data to the cloud. This study uses the TTGO T-Call ESP-32

(TTGO, 2023), a Wi-Fi and SIM800L GSM/GPRS module with
built-in Bluetooth wireless capabilities. Each device is configured to
use Wi-Fi or GPRS according to the network availability in the area.

2.1.5 Cellular network
In the previous deployment on the campus, Reddy et al. (2020),

Wi-Fi routers were used to communicate sensed data to the
ThingSpeak server. However, Wi-Fi connectivity is unavailable at
most locations outside the campus, particularly on the roadsides. In
such places, we have used a 2G network, which has excellent
coverage in the city. Since the sensed data is small in packet size
(24 bytes), a 2G network data rate is sufficient. Moreover, the use of

TABLE 2 Specifications of the components used in the developed PM monitoring device.

Component Specification Value

SDS011 SDS011, (2023) Operating voltage 4.7 V–5.3 V

Operating Temperature −20°C to +50°C

Operating Rel. Humidity 0% to 75%

Measurement Particle Size 0.3–10 μm

Measuring Range 0.0–999.9 μg m−3

Serial Data Output Freq 1 s

Maximum Current 100 mA

Signal Output UART, PWM

SHT21 SHT21, (2023) Operating Voltage 2.1 V–3.6 V

Operating Temperature −40°C to +125°C (±0.3°C)

Operating Rel. Humidity 0%–100% (±2.0 %RH)

Temp. and Humidity Resolution 0.01°C and 0.04%RH

Response Time 8 s–30 s

Signal Output I2C

TTGO T-Call Operating Voltage 3.3 V

ESP32 TTGO, (2023) Operating Temperature −40°C to +85°C

Max Operating Frequency 240 MHz

RAM 540 KB

Wi-Fi IEEE 802.11 b/g/n

SIM Module SIM800L

eSIM eSIM, (2023a) Operating Voltage 1.62 V–5 V

Operating Temperature −40°C to +105°C

Available Memory 128 KB or more

Technology & Bandwidth 2G GPRS and 25 MHz

TABLE 3 Comparison of R2 values for PM2.5 and PM10 in this paper with other papers in the literature.

Literature Lee et al. (2019) Montrucchio et al. (2020) Zhao et al. (2019) Borrego and et al. (2018) This paper

R2 value of PM2.5 0.76 0.66 0.79 0.37–0.40 0.99

R2 value of PM10 Not Specified Not Specified Not Specified 0.54–0.83 0.87
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removable SIM cards in-field deployment gives rise to the threat of
their misuse in case of theft. Hence an embedded SIM (eSIM)
customized for IoT applications from the Sensorise service
provider is used in the device (eSIM, 2023a). An eSIM is a small
chip embedded in the hardware setup with the help of the SIM 800L
module (eSIM, 2023b), thus restricting the reusability by the general
public. IoT devices planned for long-term projects and having a field
deployment are protected from the impact of evolving network
technologies or service terminations by eliminating technical or
carrier lock-ins with a single eSIM. The eSIM information is
rewritable, making it easy to change the operator at any time. It
allows users to change the service provider over the air without
physically changing the eSIM. The Sensorise eSIM also provides the
facility of multi-operator subscriptions. If there is an issue with one

network, eSIMs can switch to other operators to connect to
the network.

2.1.6 ThingSpeak
In the deployed IoT network, the data is aggregated at

ThingSpeak, a cloud-based platform for IoT applications. It
facilitates data access, logging, and retrieval by providing an
application programming interface (API) (ThingSpeak, 2023).
While personal servers can also be used for IoT applications,
setting up and maintaining a personal server can be more
complex than using a cloud-based platform like ThingSpeak, and
it may require more technical expertise. Moreover, ThingSpeak
supports many communication protocols, including MQTTS,
with security and ease of scaling. In Ihita et al. (2021), the
authors conducted a security analysis of AirIoT, an air-quality
monitoring network, and proposed solutions for baseline security
of any smart city air monitoring network. The paper recommended
using MQTTS instead of MQTT as the latter does not provide data
integrity, while attackers can access information such as payload,
topic names, and IP addresses. MQTTS is a lightweight, publish-
subscribe messaging protocol designed specifically for efficient
communication in the context of IoT, where devices have limited
processing power, memory, and battery life. Therefore, the MQTTS
protocol is implemented in this work for communication between
the device and ThingSpeak.

In our examination of low-cost consumer-grade monitors
available in the Indian market, we identified a range of devices
with varying price points. The AirIoT stands out as the most
affordable option, retailing at ₹ 7,000. In contrast, the Prana
CAAQMS Prana (2023) is on the higher end of the spectrum,
priced at ₹ 64,900. Falling between these extremes are the
Airveda (2023) and Atmotube PRO Atmo (2023), which are
available for ₹ 35,000 and ₹ 15,000, respectively. Such a diverse
price range underscores the accessibility and variability of air quality
monitoring solutions for Indian consumers.

2.2 Working mechanism of the device

Figure 2 illustrates the flowchart of the sensing algorithm
developed to avoid data loss in the event of a connection outage.
The microcontroller first reads the sensed data every 30 s; however,
the time to offload the sensed data depends upon the network. Next,
the controller checks the network connectivity for pushing the data
to the server. If the network is available, the data is transmitted
instantaneously. However, if the network is unavailable, the data is
stored locally in a part of the microcontroller RAM until the device
reconnects to the network. Note that the size of microcontroller
RAM is 540 KB, and part of it is used for code and header files
(created while pushing data), while part of the remaining memory
can be used to store data. We define S = 20,000 as the maximum
number of data points that can be stored. Every stored data point
contains the value of sensed parameters and the sensing time. Once
the connection is restored, the stored data is uploaded to the cloud
server in a bulk transmission and cleared from the device. In the case
device memory is filled with back-logged data in the event of a
prolonged connection outage, i.e., if the number of stored data

FIGURE 2
Working mechanism of the device.
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points (s) is equal to the S, the data is cleared in first-in-first-out
(FIFO) format to make space for the new incoming data.

3 Deployment strategy

Figure 3A shows the plan for the field deployment of devices,
while Figure 3B shows an example of the deployed device at one of
the locations. The deployment was done in the Gachibowli region of
Hyderabad, the capital city of the Telangana state and the fourth
largest populated city in India (Census India, 2011). A total of
49 devices were deployed in a region of approximately 4 km2 to
understand the variation of PM2.5 PM10 across different
environments and areas.

Based on the landscape pattern of Gachibowli (Robert et al.,
1996; Chakraborti et al., 2017), the entire region is divided into three
categories: urban, semi-urban, and green. A few devices have also
been deployed at busy traffic junctions and roadsides. Figure 3A
shows the deployment plan of all the devices with exact locations of
the following location types:

• Location type L1: Urban region
• Location type L2: Semi-urban region
• Location type L3: Green region
• Location type L4: Traffic junctions and roadsides poles

The 4 km2 area has been divided into approximately 42 boxes.
Every square box in Figure 3A represents an area of 400 × 400 m2.
An attempt has been made to deploy one device in each box
depending on the availability of power, network, and consent
availability. However, more than one device has been deployed in
some boxes, as shown in Figure 3A. The field deployment of
devices was completed in July 2021, and the data collection
started in Aug. 2021. As part of experimentation, along with
the devices developed at IIITH, a few devices from an Indian

manufacturer, Airveda, were also deployed (Airveda, 2023).
Table 4 summarizes all the deployed devices with their
network configuration.

4 Data collection, preprocessing, and
calibration

Figure 4 shows a flow diagram depicting different steps in
collecting useable data for analysis. It involves data collection,
creating the dataset, removing outliers, and interpolating missing
data, followed by calibration. Each of the steps involved is explained
in detail.

4.1 Data collection

To create the data set, the air quality was sensed at a frequency of
t = 30 s for 43 IIITH devices. For 6 Airveda devices, t = 1 s, averaged
over 30 s.

FIGURE 3
Deployment plan covering urban, semi-urban, green region, junctions, and roadsides poles. (A) Deployment plan, (B) Example field deployment.

TABLE 4 Deployment setup.

Device No. of
Location

Location type Network type

IIITH (AQ) 43 L1 (07 devices) Wi-Fi (2 devices)

L2 (05 devices) 2G eSIM (32 devices)

L3 (15 devices) 4G Jio-Fi (9 devices)

L4 (16 devices)

Airveda (AV) 6 L1 (04 devices) Wi-Fi (4 devices)

L2 (01 device) 2G eSIM (2 devices)

L3 (01 device)
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All the devices were deployed for almost 1 year and are still
deployed. However, useable data were collected for 7 months (Aug.
2021, Nov. 2021, Dec. 2021, Jan. 2022, Apr. 2022, May 2022, and
June 2022). The loss in the data is because the devices had to be
brought back to the lab due to the frequent failure of low-cost
sensors requiring regular repair and maintenance. Additionally,
the devices were brought for seasonal calibration at regular
intervals and to make a major upgrade in using ThingSpeak
from MQTT to MQTTS (in Mar. 2022). A total of
20.70 million useable data points have been collected. As shown
in Figure 4A, the collected dataset has PM2.5, PM10, temperature,
and RH parameters. All the concentration values of PM10 and
PM2.5 are mentioned in μg m−3 hereafter. The temperature and
RH values are mentioned in °C and %, respectively. Corresponding
to every device, a vector of data points sent from the device is
stored on the cloud server for each sensing instance having the
following elements:

• created_at: Timestamp at which the sensor value is read. This
timestamp is recorded utilizing the RTC module of
the device.

• PM10: Raw concentration of PM10 read by SDS011.
• PM2.5: Raw concentration of PM2.5 read by SDS011.
• RH: Raw RH value read by SHT21
• Temp: Raw temperature value read by SHT21 sensor.

The size of this payload (or sensor data sent from the device) for
each sensing instance is 24 bytes. In addition to this, the following
static information is stored in the cloud server.

• Device_id: ID for device identification like IIITH device as
AQ-XX and Airveda device as AV-XX, where XX denotes the
device sequence number.

• Location: Latitude and longitude according to the
deployment location.

4.2 Data preprocessing

The following methods have been employed for preprocessing
the raw data received from the PM monitoring device:

4.2.1 Outlier removal
Environmental conditions like RH and temperature, sensor

behavior, and anthropogenic activities occasionally result in
outliers in the sensed data. Hence the raw data received from the
devices need to be preprocessed to make it statistically significant, as
shown in Figure 4B. PM10 values are unreliable at higher RH levels
(RH> 80%). Also, errors may cause raw values to be out of the PM
(PM2.5 PM10) sensor range (0-999). These unreliable points are
thus removed. In the dataset, nearly 0.5% values have been found
unreliable.

Further, to identify and remove outliers, the interquartile range
(IQR) method (Dodge, 2008) is used. This method separates the
data into four equal parts, which are sorted in ascending order
using three quartiles (Q1, Q2 (median), Q3). Let the difference
between the first (Q1) and the third quartile (Q3) be represented by
the IQR, which is a measure of dispersion. A decision range is set to
detect outliers with this approach, and every data point that falls
outside this range is deemed an outlier. The lower and upper values
in the range are given in Eqs 1, 2.

Lr � Q1 − 1.5 IQR, (1)
Ur � Q3 + 1.5 IQR. (2)

Any data point less than the Lr or more than the Ur is called an
outlier. In the collected dataset, nearly 1.4% values have been found
as an outlier.

4.2.2 Interpolation
Interpolation is a technique to estimate the missing (or

removed) data point between two existing data points. In the
data set, only 1.9% data is an outlier which is very less and easy

FIGURE 4
Data collection, preprocessing, and calibration. (A) Data Collection, (B) Outlier Removal and Calibration.
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to interpolate. In this work, simple linear interpolation was used for
this purpose.

4.3 Calibration

For calibration, the low-cost PM (PM2.5 PM10) sensors were
co-located with a reference sensor [Aeroqual S500 (AeroqualS500,
2023; Aeroqual, 2023)] in a ventilated room for a week. Data points
were collected at a frequency of 30 s. A raw dataset of approximately
20,160 data points for each sensor was collected to perform the
calibration. Figure 5A shows the time series plot of PM10 averaged
hourly for a few devices before deployment in the field. It can be
observed that all the sensors follow the reference sensor in trend but
differ with an offset in absolute value. Therefore, there is a need for
calibration. It can also be observed that the offsets for each sensor are
different. Although not shown to maintain brevity, the same is valid
for raw PM2.5 values.

This paper uses simple linear regression to compensate for the
difference between the low-cost and reference sensor values.
Although many complex algorithms have been used in the past
for calibration, linear regression has been chosen since it can
compensate for the offset well while preserving the trend in the
data, as shown in our previous work for SDS011 in Patwardhan et al.
(2021). The calibrated data y(i) corresponding to the ith data point
can be written as shown in Eq 3.

y i( ) � mx i( ) + c, (3)
where x(i) is the ith raw data point and m, c are the learned
parameters. Each sensor will have a different value of m and c.

Figure 6A shows the calibrated data of PM10 for a few devices.
It can be observed that the low-cost sensors match well with the
reference sensor after calibration. Similar results are obtained by
training separate functions for PM2.5 as well. It can also be
observed from Figure 5B and Figure 6B that every low-cost sensor
differs uniquely from the reference sensor. The same is also

FIGURE 5
Time series and scatter plot of raw PM10 data (1-h average). (A) Timeseries Plot, (B) Scatter Plot.

FIGURE 6
Time series and scatter plot of calibrated PM10 data (1-h average). (A) Timeseries Plot, (B) Scatter Plot.
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FIGURE 7
Web-based dashboard for real-time air quality data visualization from all deployed devices. (A) Default view of the dashboard, (B) Graphical
representation of the real-time data, (C) Architecture of the dashboard, (D) Data-flow pipeline of the dashboard, (E) Communication between the users
and the server.
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concluded in Patwardhan et al. (2021) for three sensors.
Therefore, PM10 and PM2.5 of each low-cost sensor have to
be calibrated using unique functions for each sensor. Moreover, it
is observed that the sensor behaves differently in different
seasons. Hence separate calibration functions have been
calculated for different seasons by repeating the process at the
season’s onset.

5 Development of web-
based dashboard

Figure 7 shows the overview of a web-based dashboard named
AirIoT, developed to easily access the real-time data sensed by
the deployed sensor devices. AirIoT is a responsive website
(https://spcrc.iiit.ac.in/air) that aims to visualize the air
pollution levels of the areas where the devices have been
deployed. Figure 7A shows the dashboard that provides a view
of all the deployed devices and their locations on an interactive
map. Figure 7B shows that for all locations, the users can get
10 min average of real-time data and also visualize the trend of
the past 48 h. The user can select and deselect the parameters to
visualize the trend individually. The dashboard also provides the
features of implementing calibration algorithms, authorizing and
maintaining user profiles, and logging network activities.
Figure 7C shows the basic architecture of the dashboard
connecting all the building blocks. The data flow pipe and the
sequence of communication steps between the users and the
server are presented in Figures 7D, E, respectively.

Figure 7C shows the backend of the dashboard, which is built
using Django. It is an open-source Python-based framework
created using model-template-views architecture. It provides a
host of features that efficiently help the data manipulation using
GUI. PostgreSQL, an open-source and SQL-compliant relational
database management system, is used to store the device’s data on
the server (PostgreSQL, 2023). The periodic task of fetching data
from the ThingSpeak cloud server to the dashboard is
implemented using Huey, a Python queue. Web technologies
like CSS, Bootstrap, and Javascript are used to build the
dashboard’s front end.

The 43 IIITH devices upload the sensed data on the
ThingSpeak server every 30 s, and the 6 Airveda devices upload
sensed data on the Airveda server every 1 s. As shown in Figure 7D,
all the data from the Airveda server is aggregated at ThingSpeak
using a separate REST API with periodic calls for data
management on a single platform. The dashboard fetches data
from ThingSpeak for all the locations every 10 min and updates the
AQI in real-time.

The Django frameworks also help maintain users and their
access rights. Figure 7E shows that there are mainly two types
of supported users, the website users and the API users. The
website users are the system administrators who log in on the
admin console to maintain or update network details like
adding new devices or updating information like location,
sensing parameters, calibration coefficients, etc. On the
other hand, the API users are other platforms like mobile
applications which can take air quality data from the
dashboard to integrate with their services. Every API user

must use OAuth authentication to fetch the data from the
server. Initially, the API users send their credentials to the
server. The server verifies them and responds with a token. This
token is used in every request to the API to fetch the server’s
data after that.

6 Results and analysis

This section presents mean and variance analysis results and
the spatial interpolation for PM10 values in different seasons.
Further, the event-driven variation analysis is done for the data
collected during the festival of Diwali. It is followed by
correlation analysis to understand the range, after which the
correlation between the two points is insignificant. Note that
the results are shown only in terms of PM10 for brevity, and
similar observations have been made for PM2.5 as well.

6.1 Mean and variance

Figure 8 illustrates the mean and variance of PM10 levels
during different seasons: monsoon (August 2021), winter
(December 2021), and summer (May 2022). The findings
indicate that the mean and variance values are highest during
winter and lowest during the monsoon season. This pattern aligns
with expectations, as the temperature inversion phenomenon in
winter, characterized by cold air near the ground and warm air
above, tends to trap PM (PM2.5 PM10) near the surface.
Conversely, the frequent rainfall during the monsoon helps
settle the PM (PM2.5 PM10) particles, reducing their
concentration in the air. Figure 8 illustrates the mean and
variance of PM10 levels during different seasons: monsoon
(August 2021), winter (December 2021), and summer (May
2022). The findings indicate that the mean and variance values
are highest during winter and lowest during the monsoon season.
Conversely, the frequent rainfall during the monsoon helps settle
the PM (PM2.5 PM10) particles, reducing their concentration
in the air.

In Figure 8, the three devices with the highest mean
PM10 values among the 49 devices are AQ23 (Traffic junction),
AQ20 (Green region), and AQ16 (Roadside), while the three
devices with the lowest mean PM10 values are AQ11
(Residential area), AQ43 (Roadside), and AQ22 (Roadside).
Devices like AQ23 near the traffic junctions have high
PM10 exposure due to heavy traffic. Similarly, devices like
AQ16 near traffic lights have sluggish traffic flow leading to
high mean PM10 concentrations. AQ20 is placed in a high
vegetation area but still shows a high mean due to ongoing
construction activities in the region. Among the ones with low
mean values, AQ11 is placed in a residential area with fewer
anthropogenic activities. Similarly, AQ43 and AQ22 are
otherwise placed on the roadside but still experience low mean
PM10 due to the free flow of traffic and less anthropogenic
activities.

These findings highlight the intricate relationship between
environmental factors, human activities, and PM10 pollution.
They emphasize the need for context-aware monitoring strategies
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that consider specific locations and associated characteristics to
assess air quality at the street level accurately.

6.2 Spatial interpolation

Inverse distance weighting (IDW), one of the most popular
spatial interpolation techniques, is used for spatial interpolation in
this paper. IDW follows the principle that closer devices will have
more impact than farther devices (Longley et al., 2005). A linearly
weighted combination of the measured values at the devices is used
to estimate the parameters at the nearest location. The weights are a
function of the inverse distance between the device’s location and
the estimate’s location. Algorithm 1 provides a detailed
representation of the IDW algorithm.

Figure 9 shows the IDW-based interpolation maps for PM10 in
monsoon (August 21), winter (December 21) and summer (May 22),
respectively. For all three seasons, the interpolation results are
shown at three different times of the day, 1,100 h, 1,400 h, and
2,100 h, based on hourly averaged PM10 values. Similar to the

observations from Figure 8, it can also be observed in these
figures that the PM10 concentrations are lowest in monsoon and
highest in winter as the frequent rainfall during the monsoon helps
settle the PM10 particles and due to temperature inversion
phenomenon in winter, PM10 particle trap near the surface.

It can be observed fromFigure 9 that PM10 concentrationwas high at
1,100 h and 2,100 h and low at 1,400 h. At 1,100 h, PM10 concentration
was high, primarily due to heavy traffic in the area where the device is
deployed during office hours. As many office-going people travel to this
area during these hours, the density of traffic increases, leading to higher
levels of PM10 concentration. As the day progresses, the density of traffic
decreases, and the PM10 concentration decreases at 1,400 h. However,
with the onset of night, PM10 concentrations can be seen as increased at
2,100 h, falling in peak traffic hours.

The spatial analysis results in this research study offer valuable
insights into the spatial distribution of PM10 levels within the study
area. Utilizing the IDW interpolation technique, the study
successfully estimated PM10 concentrations at unmonitored
locations based on the measurements from nearby monitoring
devices. The IDW-based interpolation maps showcased the

FIGURE 8
Mean and variance of PM10 concentration at the different locations in different seasons. (A) PM10 mean, (B) PM10 variance.
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FIGURE 9
Spatial interpolation of PM10 values in three seasons using IDW. (A)Monsoon (August 2021): at 1100 hrs, (B)Monsoon (August 2021): at 1400 hrs, (C)
Monsoon (August 2021): at 2100 hrs, (D) Winter (December 2021): at 1100 hrs, (E)Winter (December 2021): at 1400 hrs, (F)Winter (December 2021): at
2100 hrs, (G) Summer (May 2022): at 1100 hrs, (H) Summer (May 2022): at 1400 hrs, (I) Summer (May 2022): at 2100 hrs.
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spatial patterns of PM10 concentrations during different seasons
and times of the day.

Input: Set of location coordinates of deployed devices

X = {x1, x2, . . . , xn}

Input: Set of PM10 values Y = {y1, y2, . . . , yn} for the

corresponding locations.

Input: Location coordinate of a point of interest c, for

which an estimated value will be computed

Output: The interpolated value ŷIDW
j , computed for

the location c

Initialization: n ← number of devices deployed

for i = 1 to n do

dij = Euclidean distance between xi and cj;

for i = 1 to n do

wi,j � (di,j )−2

∑
n

k�1
(dk,j )−2

;

ŷIDW
j � ∑

n

i�1
(wi,j · yi);

returnŷIDW
j ;

Algorithm 1. Spatial Interpolation Using IDW.

6.3 Event driven variation analysis

Diwali, also known as the festival of lights, is celebrated during
the start of the winter. As part of this five-day festival, people burst
large numbers of firecrackers in the late evening of the third day of

Diwali (4 November 2021). The bursting of firecrackers leads to a
significant increase in PM2.5 and PM10 values during those times.
Figure 10 shows a time series plot of hourly averaged PM10 values
for a few devices over a few days around Diwali. A few critical
observations can be made from this figure. First, there was a sudden
drop in the PM10 values on the afternoon of 4th November because
of rain. The same has been observed on 5th and 6th November
afternoons. Second, a clear peak is observed for all the devices during
the late evening on 4 November 2021, roughly after 2000 h. For
example, the PM10 values in AV64 increased from 40 to 307 before
and after bursting crackers. This peak can be attributed to the
widespread bursting of firecrackers during the festive
celebrations. Third, it can be observed that the
PM10 concentrations decrease sharply after a few hours,
indicating that the rise was temporary and activity driven.

Further, we see the effect of sparse deployment on the event-
driven analysis. Figure 11 shows the IDW-based interpolation maps
for PM10 using all 49 devices and sparse deployment of 12 and
4 devices, respectively, at different time instances on 4 November
2021. For sparse deployment, 4 and 12 devices were chosen
randomly with the constraint that they should not form a cluster
and should also cover different types of regions. It can be seen from
Figures 11A–C that the interpolation plot with all 49 devices can
identify the event as well as the local hotspots of pollution. Although
the interpolation in Figures 11D–F (with 12 devices within 4 km2)
can identify the event but is not able to identify the hotspots. On the
other hand, the interpolation (with four devices within 4 km2)
misses the event entirely and can be misleading. This not only

FIGURE 10
Time Series of PM10 (1-Hourly Average) showing the rise in PM10 due to bursting of firecrackers during Diwali.

Frontiers in The Internet of Things frontiersin.org14

Parmar et al. 10.3389/friot.2024.1332322

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1332322


fails to capture the event but also has the potential to yield
misleading results. The limited number of devices utilized in this
scenario leads to a significant gap in data coverage, resulting in
incomplete information about the event.

The root mean square error (RMSE) for different numbers of
deployed devices (12 and 4 devices) is calculated. The RMSE for
sparse deployments like four devices (59.29) is significantly higher

compared to 12 devices (32.47). Consequently, the interpolation
algorithm struggles to accurately estimate pollutant levels and
identify spatial patterns within the given area. Consequently,
relying on this interpolation with a sparse network of devices can
lead to erroneous interpretations and misrepresent the actual
pollution levels and distribution, potentially leading to misguided
decision-making or ineffective mitigation strategies.

FIGURE 11
A comparison of spatial interpolation of PM10 values during Diwali 2021 for different densities of nodes: Dense deployment (49 nodes), sparse
deployment (12 nodes), and sparse deployment (4 nodes). (A)Dense deployment: at 1700 hrs, (B)Dense deployment: at 2100 hrs, (C)Dense deployment:
at 2300 hrs, (D) Sparse (12 nodes): at 1100 hrs, (E) Sparse (12 nodes): at 1400 hrs, (F) Sparse (12 nodes): at 1100 hrs, (G) Sparse (4 nodes): at 1100 hrs, (H)
Sparse (4 nodes): at 1400 hrs, (I) Sparse (4 nodes): at 2100 hrs.
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The results underscore the significant impact of Diwali celebrations
on PM10 concentrations and emphasize the critical role of comprehensive
device coverage in conducting precise event-driven analysis. The findings
also highlight the limitations of sparse monitoring deployments in
effectively capturing localized pollution hotspots. These observations
stress the necessity for denser monitoring networks to ensure reliable
and accurate air quality assessments during specific events, enabling
informed decision-making and effective pollutionmanagement strategies.

Input: PM10 sensor values for N nodes: PM10[N]

Input: Location coordinates for N nodes: loc[N]

Output: Coefficients of the exponential model: a, b, c, d

Initialization: Correlation coefficients: tau[ ]

Initialization: Euclidean distances: dist[ ]

for i = 1 to N do

for j = i + 1 to N do

tauij � corr(PM10[i],PM10[j])
distij � euclidian(loc[i],loc[j])
tau ← [tau, tauij]

dist ← dist, distij]

Fit Exponential Curve;

f � fit(dist,tau, ′exp2′)
a ← f. a, b ← f. b, c ← f. c, d ← f. d

Return: a, b, c, d

Algorithm 2. Correlation Coefficient w.r.t Distance.

6.4 Correlation analysis

Correlation is a type of bivariate analysis that evaluates the
direction and strength of an association between two variables

(Boslaugh, 2012). Kendall’s tau method is used as it does not
require any presumptions on the data and suits the work in this
study. The correlation coefficient’s value ranges from −1 to
+1 depending on the strength of the association. Kendall’s
correlation coefficients τ between the 49 sensor devices have been
calculated using hourly averaged PM10 samples.

A two-term exponential fit is obtained on the correlation values
when plotted against the distance between the devices. The fitted
model can be written as shown in Eq 4

f x( ) � a eb x + c ed x, (4)
where a = 0.4801, b = −0.0124, c = 0.7380 and d = −0.0001 are the
coefficients of the best fit for PM10. Algorithm 2 provides a detailed
algorithm for finding the correlation coefficient against distance.
Figure 12 shows the correlation of PM10 plotted against distance. It
can be observed that the change in the correlation coefficient under
350 m is significantly large, after which the decline is gradual. The τ
change rate between 0 and 350 m is very fast compared to distances
above 350 m. Similar results were obtained for PM2.5 as well. It
indicates that the PM monitoring devices shall be deployed at most
350 m apart to capture the spatial variability of PM10 ccurately.
Considering the densely populated and rapidly changing nature of
Gachibowli, where various land uses such as office spaces, ring roads
(highways), residential complexes, and ecological parks are densely
packed within a 4 km2 area, the observation range of 350 m is
justified. This observation range accurately captures the spatial
variability of PM10 in such a dynamic environment. This
approach ensures that the monitoring network adequately
captures the diverse pollution sources and their impacts within
Gachibowli’s complex and rapidly evolving landscape. This statistic
can help decision-makers determine the optimum density required
for effectively monitoring street-level pollution.

7 Conclusion

In this paper, an end-to-end low-cost IoT system is developed
and densely deployed in Indian urban settings for monitoring
PM2.5 and PM10 with fine spatial and temporal resolution. For
evaluating the dense deployment, 49 calibrated devices were
deployed covering a 4 km2 area in Hyderabad, the capital city of
Telangana state and the fourth most populated city in India. For data
visualization, a web-based dashboard was developed for the real-
time interface of PM2.5 and PM10 data. The measurements over the
year clearly show a significant difference between the mean and
variance of PM2.5 and PM10 values across different locations and
seasons. The mean values and the variance were significantly higher
in winter than in the summer and the monsoon. The IDW-based
spatial interpolation results in monsoon, winter, and summer at
three different times show significant spatial variations in
PM10 values. Furthermore, variation in PM (PM2.5 and PM10)
values before and after the bursting of firecrackers on the day of
Diwali is clearly visible in the results. The results also show
noticeable temporal variations, with PM10 values rising by 4-5
(AV64) times at the same spot in a few hours, coinciding with
Diwali celebrations and identifying the hotspots in dense
deployment, which is not noticeable in sparse deployment. It has
been shown that the correlation coefficient among a set of devices in

FIGURE 12
Correlation coefficient of PM10 w. r.t distance between the
deployed devices to find the optimum distance between two
deployment locations.
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the area has low values demonstrating that the PM10 values across a
small region may be significantly different. A 350 m distance has
been estimated for optimal device deployment for this data set based
on insights deduced from the correlation versus distance plot. Thus,
there is a need for dense deployment to understand the effect of local
pollutants in the air and for improved spatial and temporal
resolution of the pollutant data.

The data collected through the established network and the
derived insights hold the potential for utilization by relevant
authorities and stakeholders in devising and implementing
suitable remedies. For instance, city planning authorities can
harness the network and data to guide decision-making processes
concerning urban planning, infrastructure development, and
targeted interventions to mitigate air pollution. An adaptive, non-
parametric approach can be implemented to make the data
collection robust and energy efficient, allowing the sensing rate to
change dynamically based on the maximum frequency estimate
derived from recent historical data. Additionally, advanced
interpolation techniques, like Kriging, can be explored in
future work.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

AP: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. SS:
Conceptualization, Data curation, Investigation, Software,
Visualization, Writing–review and editing. AD:
Conceptualization, Methodology, Validation, Writing–original
draft, Writing–review and editing. CR: Conceptualization,
Methodology, Visualization, Writing–review and editing. IP: Data
curation, Methodology, Visualization, Writing–review and editing.
SB: Software, Writing–review and editing. SC: Conceptualization,

Funding acquisition, Project administration, Resources,
Supervision, Validation, Writing–review and editing. KR:
Conceptualization, Project administration, Resources, Supervision,
Validation, Writing–review and editing. KV: Project administration,
Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work is
partially supported by the Dept. of Science & Technology (DST),
Govt. of India under grant No. 2073 (2020) and Pernod Ricard India
Foundation (PRIF) Social Incubator Program 2019, with no conflict
of interest.

Acknowledgments

The authors would like to acknowledge the support of Mr Vivek
Gupta (Senior Technical Assistant, Electronics Lab, IIITH) and Ritik
Yelekar (Intern, SPCRC, IIITH) in the deployment, maintenance
and upkeep of all the devices.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aeroqual (2023). PM10/PM2.5 portable particulate monitor. Available: https://www.
aeroqual.com/products/s-series-portable-air-monitors/portable-particulate-
monitor#product-overview (Accessed April 8, 2023).

AeroqualS500 (2023). Aeroqual series 500 – portable air quality monitor. Available:
https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-
portable-air-pollution-monitor (Accessed April 8, 2023).

Airveda (2023). Airveda outdoor air quality monitor. Available: https://www.airveda.
com/outdoor-air-quality-monitor (Accessed April 01, 2023).

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M.
M., et al. (2017). High-resolution air pollution mapping with Google street view
cars: exploiting big data. Environ. Sci. Technol. 51, 6999–7008. doi:10.1021/acs.est.
7b00891

Atmo (2023). Atmotube PRO. Available: https://atmotube.com/atmotube-pro
(Accessed April 01, 2023).

Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P. (2018). Evaluation of
low-cost sensors for ambient PM2.5 monitoring. J. Sensors 2018, 1–16. doi:10.1155/
2018/5096540

Becnel, T., Tingey, K., Whitaker, J., Sayahi, T., Lê, K., Goffin, P., et al. (2019). A
distributed low-cost pollution monitoring platform. IEEE Internet Things J. 6,
10738–10748. doi:10.1109/JIOT.2019.2941374

Borrego, C., Ginja, J., Coutinho, M., Ribeiro, C., Karatzas, K., Sioumis, T., et al. (2018).
Assessment of air quality microsensors versus reference methods: the eunetair joint
exercise – part II. Atmos. Environ. 193, 127–142. doi:10.1016/j.atmosenv.2018.08.028

Boslaugh, S. (2012). Statistics in a nutshell. O’Reilly Media, Inc. Available at: https://
www.oreilly.com/library/view/statistics-in-a/9781449361129/

Brienza, S., Galli, A., Anastasi, G., and Bruschi, P. (2015). A low-cost sensing system
for cooperative air quality monitoring in urban areas. Sensors 15, 12242–12259. doi:10.
3390/s150612242

Census India (2011). Provisional population totals, census of India 2011; cities having
population 1 lakh and above. Available: https://censusindia.gov.in/nada/index.php/
catalog/1428 (Accessed May 11, 2023).

Chakraborti, S., Bhatt, S., and Jha, S. (2017). Changing dynamics of urban biophysical
composition and its impact on urban heat island intensity and thermal characteristics:
the case of Hyderabad City, India. (Accessed 13 April 2023)

Frontiers in The Internet of Things frontiersin.org17

Parmar et al. 10.3389/friot.2024.1332322

https://www.aeroqual.com/products/s-series-portable-air-monitors/portable-particulate-monitor#product-overview
https://www.aeroqual.com/products/s-series-portable-air-monitors/portable-particulate-monitor#product-overview
https://www.aeroqual.com/products/s-series-portable-air-monitors/portable-particulate-monitor#product-overview
https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-portable-air-pollution-monitor
https://www.aeroqual.com/products/s-series-portable-air-monitors/series-500-portable-air-pollution-monitor
https://www.airveda.com/outdoor-air-quality-monitor
https://www.airveda.com/outdoor-air-quality-monitor
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.1021/acs.est.7b00891
https://atmotube.com/atmotube-pro
https://doi.org/10.1155/2018/5096540
https://doi.org/10.1155/2018/5096540
https://doi.org/10.1109/JIOT.2019.2941374
https://doi.org/10.1016/j.atmosenv.2018.08.028
https://www.oreilly.com/library/view/statistics-in-a/9781449361129/
https://www.oreilly.com/library/view/statistics-in-a/9781449361129/
https://doi.org/10.3390/s150612242
https://doi.org/10.3390/s150612242
https://censusindia.gov.in/nada/index.php/catalog/1428
https://censusindia.gov.in/nada/index.php/catalog/1428
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1332322


Chen, J., Lu, J., Avise, J. C., DaMassa, J. A., Kleeman,M. J., and Kaduwela, A. P. (2014).
Seasonal modeling of pm2.5 in California’s san joaquin valley. Atmos. Environ. 92,
182–190. doi:10.1016/j.atmosenv.2014.04.030

Cheng, Y., He, X., Zhou, Z., and Thiele, L. (2019). ICT: in-field calibration transfer for
air quality sensor deployments. ACM Interact. Mob. Wearable Ubiquitous Technol. 3,
1–19. doi:10.1145/3314393

Clements, A. L., Griswold, W. G., Rs, A., Johnston, J. E., Herting, M. M., Thorson, J.,
et al. (2017). Low-cost air quality monitoring tools: from research to practice (a
workshop summary). Sensors 17, 2478. doi:10.3390/s17112478

COMEAP (2010). The mortality Effects of long-term Exposure to particulate air
Pollution in the United Kingdom. COMEAP Health Protection Agency Report.

CPCB India (2015). National air quality index: central pollution control board India
(Accessed September 11, 2023).

Dodge, Y. (2008). The concise encyclopedia of statistics. 1st ed. New York (Accessed
April 13, 2023).

eSIM (2023a). QoSIM UICC assure eSIM specification. Available: https://sensorise.
net/products/qosim-m2m-connectivity/qosim/ (Accessed June 18, 2023).

eSIM (2023b). Sensorise eSIM. Available: https://sensorise.net/tag/esim/.

Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M.,
et al. (2022). Pollution and health: a progress update. Lancet Planet. Health 6, 535–547.
doi:10.1016/s2542-5196(22)00090-0

Greenstone, M., Hasenkopf, C., and Lee, K. (2022). Air quality life index. Energy
policy institute at the University of Chicago (EPIC).

Gupta, P., Doraiswamy, P., Levy, R., Pikelnaya, O., Maibach, J., Feenstra, B., et al.
(2018). Impact of California fires on local and regional air quality: the role of a low-cost
sensor network and satellite observations. GeoHealth 2, 172–181. doi:10.1029/
2018GH000136

Hernandez, G., Berry, T.-A., Wallis, S., and Poyner, D. (2017). Temperature and
humidity effects on particulate matter concentrations in a sub-tropical climate during
winter. Int. Proc. Chem., Biol. Environ. Eng. (ICECB). 41–49. doi:10.7763/IPCBEE.2017.
V102.10

Ihita, G., Viswanadh, K. S., Sudhansh, Y., Chaudhari, S., and Gaur, S. (2021). “Security
analysis of large scale IoT network for pollution monitoring in urban India,” in IEEE
World Forum on Internet of Things. New Orleans, United States (WF-IoT), 283–288.
doi:10.1109/WF-IoT51360.2021.9595688

Khot, R., and Chitre, V. (2017). Survey on air pollution monitoring systems. IEEE Int.
Conf. Innov. Inf., Embed. Commun. Sys. (ICIIECS), 1–4. doi:10.1109/ICIIECS.2017.
8275846

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., et al.
(2015). The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75,
199–205. doi:10.1016/j.envint.2014.11.019

Lee, C.-H., Wang, Y.-B., and Yu, H.-L. (2019). An efficient spatiotemporal data
calibration approach for the low-cost PM2.5 sensing network: a case study in Taiwan.
Environ. Int. 130, 104838. doi:10.1016/j.envint.2019.05.032

Lewis, A. C., and Edwards, P. M. (2016). Validate personal air-pollution sensors.
Nature 535, 29–31. doi:10.1038/535029a

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic
information systems and science. Wiley.

Lu, Y., Giuliano, G., and Habre, R. (2021). Estimating hourly PM2.5 concentrations at
the neighborhood scale using a low-cost air sensor network: A Los Angeles case study.
Environ. Res. 195, 110653. doi:10.1016/j.envres.2020.110653

Montrucchio, B., Giusto, E., Vakili, M. G., Quer, S., Ferrero, R., and Fornaro, C.
(2020). A densely-deployed, high sampling rate, open-source air pollution
monitoring WSN. IEEE Trans. Veh. Technol. 69, 15786–15799. doi:10.1109/TVT.
2020.3035554

Park, H.-S., Kim, R.-E., Park, Y.-M., Hwang, K.-C., Lee, S.-H., Kim, J.-J., et al.
(2019). The potential of commercial sensors for short-term spatially dense air
quality monitoring: based on multiple short-term evaluations of 30 sensor nodes in
urban areas in Korea. Aerosol Air Qual. Res. 20, 369–380. doi:10.4209/aaqr.2019.
03.0143

Patwardhan, I., Sara, S., and Chaudhari, S. (2021). “Comparative evaluation of new
low-cost particulate matter sensors,” in Int. Conf. on Future Internet of Things and
Cloud (FiCloud), 192–197.

Penza, M., Suriano, D., Pfister, V., Prato, M., and Cassano, G. (2017). Urban air
quality monitoring with networked low-cost sensor-systems. Proceedings. doi:10.3390/
proceedings1040573

Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., et al. (2014). The
next generation of low-cost personal air quality sensors for quantitative exposure
monitoring. Atmos. Meas. Tech. 7, 3325–3336. doi:10.5194/amt-7-3325-2014

Popoola, Olalekan, Mead, Mohammed, Stewart, Gregor, Hodgson, T., McLoed, M.,
Baldoví, José J., et al. (2010). Low-cost sensor units for measuring urban air quality. San
Fransisco. AGU Fall Meeting Abstracts.

PostgreSQL (2023). PostgresSQL object-relational database system. Available: https://
www.postgresql.org/about/ (Accessed October 23, 2023).

Prana (2023). Prana outdoor air quality monitor. Available: https://www.pranaair.
com/air-quality-monitor/ambient-air-monitor/ (Accessed April 01, 2023).

Reddy, C. R., Mukku, T., Dwivedi, A., Rout, A., Chaudhari, S., Vemuri, K., et al.
(2020). Improving spatio-temporal understanding of particulate matter using low-cost
IoT sensors. IEEE Int. Symp. Pers., Indoor Mob. Radio Commun 1–7. doi:10.1109/
PIMRC48278.2020.9217109

Robert, E., Burgan, J. C. E., and Hartford, R. A. (1996).Using NDVI to assess departure
from average greenness and its relation to fire business. Intermountain Research Station:
U.S. Department of Agriculture, Forest Service.

SDS011 (2023). SDS011 Nova laser PM sensor. Available: http://www.inovafitness.
com/en/a/chanpinzhongxin/95.html (Accessed June 18, 2023).

SHT21 (2023). SHT21 sensirion temperature and humidity sensor. Available: http://
www.farnell.com/datasheets/1780639.pdf (Accessed May 18, 2023).

ThingSpeak (2023). Thingspeak internet of things by MathWorks. Available: https://
thingspeak.com/pages/learn_more (Accessed June 05, 2023).

TTGO (2023). TTGO T-Call ESP32 module Specifications. Available: https://docs.ai-
thinker.com/_media/esp32/docs/esp32-sl_specification.pdf (Accessed August 18,
2023).

Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict, K., et al.
(2019). Deliberating performance targets workshop: potential paths for emerging
pm2.5 and o3 air sensor progress. Atmos. Environ. X 2, 100031. doi:10.1016/j.aeaoa.
2019.100031

Yi, W. Y., Lo, K., Mak, T., Leung, K., Leung, Y., and Meng, M. (2015). A survey of
wireless sensor network based air pollution monitoring systems. Sensors 15,
31392–31427. doi:10.3390/s151229859

Zhao, C., Wang, Y., Shi, X., Zhang, D., Wang, C., Jiang, J. H., et al. (2019).
Estimating the contribution of local primary emissions to particulate pollution using
high-density station observations. J. Geophys. Res. Atmos. 124, 1648–1661. doi:10.
1029/2018jd028888

Frontiers in The Internet of Things frontiersin.org18

Parmar et al. 10.3389/friot.2024.1332322

https://doi.org/10.1016/j.atmosenv.2014.04.030
https://doi.org/10.1145/3314393
https://doi.org/10.3390/s17112478
https://sensorise.net/products/qosim-m2m-connectivity/qosim/
https://sensorise.net/products/qosim-m2m-connectivity/qosim/
https://sensorise.net/tag/esim/
https://doi.org/10.1016/s2542-5196(22)00090-0
https://doi.org/10.1029/2018GH000136
https://doi.org/10.1029/2018GH000136
https://doi.org/10.7763/IPCBEE.2017.V102.10
https://doi.org/10.7763/IPCBEE.2017.V102.10
https://doi.org/10.1109/WF-IoT51360.2021.9595688
https://doi.org/10.1109/ICIIECS.2017.8275846
https://doi.org/10.1109/ICIIECS.2017.8275846
https://doi.org/10.1016/j.envint.2014.11.019
https://doi.org/10.1016/j.envint.2019.05.032
https://doi.org/10.1038/535029a
https://doi.org/10.1016/j.envres.2020.110653
https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.1109/TVT.2020.3035554
https://doi.org/10.4209/aaqr.2019.03.0143
https://doi.org/10.4209/aaqr.2019.03.0143
https://doi.org/10.3390/proceedings1040573
https://doi.org/10.3390/proceedings1040573
https://doi.org/10.5194/amt-7-3325-2014
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.pranaair.com/air-quality-monitor/ambient-air-monitor/
https://www.pranaair.com/air-quality-monitor/ambient-air-monitor/
https://doi.org/10.1109/PIMRC48278.2020.9217109
https://doi.org/10.1109/PIMRC48278.2020.9217109
http://www.inovafitness.com/en/a/chanpinzhongxin/95.html
http://www.inovafitness.com/en/a/chanpinzhongxin/95.html
http://www.farnell.com/datasheets/1780639.pdf
http://www.farnell.com/datasheets/1780639.pdf
https://thingspeak.com/pages/learn_more
https://thingspeak.com/pages/learn_more
https://docs.ai-thinker.com/_media/esp32/docs/esp32-sl_specification.pdf
https://docs.ai-thinker.com/_media/esp32/docs/esp32-sl_specification.pdf
https://doi.org/10.1016/j.aeaoa.2019.100031
https://doi.org/10.1016/j.aeaoa.2019.100031
https://doi.org/10.3390/s151229859
https://doi.org/10.1029/2018jd028888
https://doi.org/10.1029/2018jd028888
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2024.1332322

	Development of end-to-end low-cost IoT system for densely deployed PM monitoring network: an Indian case study
	1 Introduction
	1.1 Existing approaches and related works
	1.2 Limitations and identified research gaps
	1.3 Contributions

	2 Hardware architecture: General overview and specifications
	2.1 Hardware specification
	2.1.1 Nova SDS011
	2.1.2 SHT21
	2.1.3 Battery/power adapter
	2.1.4 TTGO T-Call ESP32
	2.1.5 Cellular network
	2.1.6 ThingSpeak

	2.2 Working mechanism of the device

	3 Deployment strategy
	4 Data collection, preprocessing, and calibration
	4.1 Data collection
	4.2 Data preprocessing
	4.2.1 Outlier removal
	4.2.2 Interpolation

	4.3 Calibration

	5 Development of web-based dashboard
	6 Results and analysis
	6.1 Mean and variance
	6.2 Spatial interpolation
	6.3 Event driven variation analysis
	6.4 Correlation analysis

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


