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Exploring the risk factors of avian influenza (AI) occurrence helps us to monitor 
and control the disease. Since late 2020, the number of avian influenza 
outbreaks in domestic and wild birds has increased in most European countries, 
including Denmark. This study was conducted to identify potential risk factors 
for wild birds and poultry during the epidemic in 2020/2021 in Denmark. Using 
Danish AI surveillance data of actively surveyed poultry and passively surveyed 
wild birds from June 2020 to May 2021, we calculated geographical attributes 
for bird locations and assessed the potential risk factors of AI detections using 
logistic regression analyses. 4% of actively surveyed poultry and 39% of passively 
surveyed wild birds were detected with AI circulating or ongoing at the time. Of 
these, 10 and 99% tested positive for the H5/H7 AI subtypes, respectively. Our 
analyses did not find any statistically significant risk factors for actively surveyed 
poultry within the dataset. For passively surveyed wild birds, bird species 
belonging to the Anseriformes order had a higher risk of being AI virus positive 
than five other taxonomic bird orders, and Galliformes were of higher risk than 
two other taxonomic bird orders. Besides, every 1  km increase in the distance 
to wetlands was associated with a 5.18% decrease in the risk of being AI positive 
(OR (odds ratio) 0.95, 95% CI 0.91, 0.99), when all other variables were kept 
constant. Overall, bird orders and distance to wetlands were associated with the 
occurrence of AI. The findings may provide targets for surveillance strategies 
using limited resources and assist in risk-based surveillance during epidemics.
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Introduction

There has been an increase in reports of avian influenza (AI) in Europe during recent 
decades (1). The AI virus (AIV) is classified as highly pathogenic avian influenza virus 
(HPAIV) or low pathogenic avian influenza virus (LPAIV), and may pose a threat to birds, 
humans, and other mammals. The viruses are divided into subtypes on the basis of two 
proteins on the surface: hemagglutinin (HA) and neuraminidase (NA). Previous studies from 
Europe demonstrated that the persistent detection of different viral subtypes in poultry and 
wild birds might affect public health (2). Measures taken to control the disease during 
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outbreaks in Denmark included culling of poultry and movement 
restrictions (3). During the HPAI season in 2020/2021, subtype H5N8 
was the dominant strain circulating in poultry and wild birds in 
European countries (4). LPAIV of the subtypes H5 and H7 were also 
reported during the years 2020 and 2021  in Europe in Denmark, 
Belgium, France, Italy, the Netherlands, and the UK (1). These 
subtypes have previously been described as capable of evolving into 
HPAIV (e.g., in Italy), and outbreaks with LPAI H5 and H7 viruses are 
therefore of concern (5, 6).

In the study period between June 2020 and May 2021, Denmark 
conducted AI surveillance in poultry and wild birds in agreement with 
Commission Decisions 2005/734/EC, 2006/605/EC, and 2010/367/
EU. For wild birds, passive surveillance refers to the EU mandatory 
surveillance of AIV in dead and moribund birds, where citizens 
voluntarily report the locations of found birds and the authority 
selects from the reported birds and performs laboratory diagnosis. For 
poultry, passive AI surveillance refers to the surveillance of clinical 
signs and changes in production figures, and active AI surveillance 
refers to the routine risk-based sampling of healthy birds. A number 
of inclusion criteria are given for registered farms that require active 
surveillance in Executive Order No. 1456 of 12/12/2019,1 which, 
among other criteria, include the need for AIV testing before 
movement or selling. Cycles in poultry production can, therefore, lead 
to seasonal variation in the number of poultry submissions.

With extensive coastlines and rich wetlands, Denmark provides 
an ideal habitat for waterfowl and migratory birds such as swans, 
geese, and gulls (7–9). The distance to wetlands and coastline can 
be used as a proxy for attractive habitats for waterfowl and migratory 
pathways of wintering birds, and it is thus relevant for poultry farmers 
considering farm locations (10). Infectious wild birds can shed virus 
via saliva and droppings, and susceptible birds may become infected 
by direct or indirect contact with infectious birds or their secretions 
(11). A study from the Netherlands found that virus detection in 
domestic ducks coincided with the prevalence peak in wild ducks, 
indicating that wild birds might have a role in the transmission of AIV 
to poultry (12).

Land cover type can be considered a proxy for the variation in 
wild bird foraging and breeding behavior (13), and it is suspected to 
result in differences in the spatial pattern of AI occurrence. For 
instance, studies from Central Asia found that wetland, cropland, and 
urban land around farms were significant factors in their best-fit 
model for poultry HPAI H5N1 outbreaks, yet the association was only 
found between urban land and HPAI H5N1 detection in waterfowl 
(14). In contrast, land cover was the largest contributor when using a 
disease distribution model for AI outbreaks in California, 
United States (15). In Denmark, Kjær et al. (16) investigated landscape 
effects on the presence of AIV in wild birds and found that coastal 
areas and wetlands were associated with the detection of AIV. In the 
Netherlands, a higher density of certain wild bird species was found 
around farms located in water-rich areas compared to non-water-rich 
areas, potentially contributing to more effective transmission in these 
areas (10).

In addition to geographical attributes, other risk factors may 
facilitate AI outbreaks. In the Netherlands, the spatial distribution of 

1 https://www.retsinformation.dk/eli/lta/2019/1456

some wild bird species was found to be a predictor of the risk of 
HPAIV outbreaks in poultry, most notably that of mallards (17). 
Furthermore, in Australia, Ferenczi et al. (18) found that an increase 
in temperature during the coldest quarter of the year was associated 
with an increased risk of domestic HPAIV outbreaks.

Identifying risk factors of AIV transmission using surveillance 
data during epidemics can help decision-makers determine the 
optimal surveillance strategy. Denmark faced an unprecedented 
challenge with increasing numbers of poultry affected by outbreaks of 
H5 HPAI virus belonging to clade 2.3.4.4b during the epidemic season 
of 2020/2021 (19), and it is important to assess potential AI risk 
factors in the Danish bird population during this season. The objective 
of our study was to investigate the spatial distribution of AI detections 
with regards to potential risk factors for AI and in particular H5/H7 
detection from June 2020 to May 2021 based on data from active 
surveillance in poultry and from passive surveillance in wild birds.

Methods

In this study, two data sets with diagnostic results from the period 
1 June 2020 to 31 May 2021 were used, based on the active surveillance 
of poultry (including farm-reared game birds) and passive surveillance 
of wild birds.

AI surveillance in Denmark

Figure 1 briefly demonstrates the origin of the surveillance data. 
Risk-based active surveillance was routinely conducted at selected 
farms registered in Danish Central Husbandry Register (CHR). Wild 
birds were monitored passively with a focus on AI high-risky target 
species (20). Positive samples with H5 and H7 were targeted for 
subtyping and pathotyping.

Data collection

Data structure
We used data from the Danish AI surveillance programs from 

June 2020 to May 2021. All laboratory tests were performed by the 
Danish National Reference Laboratory (NRL) for AI, which 
transferred the results to the Danish Veterinary and Food 
Administration (DVFA).

We obtained data of the active poultry surveillance from DVFA 
and information about Danish poultry holdings from CHR, including 
the geographical coordinates of the holdings and their flock sizes, also 
provided by DVFA. Based on registered poultry records from CHR, 
we defined a poultry holding as a farm with a unique identification 
number and a unique set of coordinates. Each farm may hold multiple 
species in separate flocks, and each flock might consist of several 
hierarchically structured sub-flocks. Flock size represents the number 
of birds belonging to the same species in a farm.

Similarly, data from the passive wild bird surveillance program 
were obtained from the DVFA. Records of dead wild birds consisted 
of the sampling dates, species, unique CHR numbers, and 
testing results.
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Aggregation to flock/event level
We aggregated all samples in the data to show the presence/

absence of AI for the same location, time of testing, and type of 
bird. We defined the aggregated data as being at flock level for 
poultry and event level for wild birds. For actively surveyed 
poultry, individual bird samples were aggregated by unique CHR 
numbers, species, and sampling dates within 10 days and then 
months. The aggregation on dates within 10 days was used to 
avoid double counting introductions in flocks where serological 
samples were followed up by HI or RT-PCR tests (Figure  1). 
Except for one submission from a chicken flock that was 
diagnosed by virological testing rather than serology, active 
poultry surveillance consisted of virological results for farmed 
game birds and serological test results for all other poultry. For 
passively surveyed wild birds, due to a wide variety of species and 
wild birds’ high similarity in the same order, we use bird orders 
instead of species. Thus, wild birds were aggregated by 
coordinates, sampling date, and bird order.

For poultry as well as wild birds, if RT-PCR or serology results 
identified one or more birds as positive for any AIV subtypes, the 
flock/event was considered AI positive. Additionally, if one or more 
birds were found to be H5/H7 positive, the flock/event was considered 
H5/H7 positive.

Analysis preparation
All AI detections were included in our analysis regardless of 

subtype, and the statistical analyses were therefore conducted on the 
presence/absence of AI at a location as a whole. For consistency in 
statistical analysis, we  assumed that serological and virological 
diagnostic results from active poultry surveillance represented the 
same outcome, for which we used the term AI detection or occurrence 
to describe a positive result. Additionally, all poultry submissions 
collected by passive surveillance reported poultry outbreaks on farms 
due to the epidemic situation in the study period, and 15 poultry 
outbreaks were detected. We were unable to include passive poultry 
surveillance data in our study due to the limited sample size of only 
15 outbreaks in the study period and the presence of numerous 
potential risk factors differing between poultry farms. Additionally, it 
was not feasible to merge the passive poultry surveillance data with 
the active poultry surveillance data due to differences in their 
respective sampling criteria.

Potential risk factors

A range of potential spatial-environmental and species-specific AI 
risk factors were selected for the analyses (Table 1). For the passive 

FIGURE 1

Flowchart showing different laboratory testing procedures to obtain surveillance data. The focus was on the detection of H5 and H7 subtype viruses. 
Testing results within the dashed blue border were used in the later stages. Further details are in the Supplementary material.
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wild bird surveillance and the active poultry surveillance, exact 
coordinates were available for each sample, allowing us to calculate 
“distance to wetlands” and “distance to coast.” Previous work has 
shown that the mean T90 (time required for a 90% reduction in virus 
infectivity) of LPAIV (H4N6, H5N1, and H6N8) in lake sediment 
contaminated by infected wild birds was 2.5 months (21). Additionally, 
based on laboratory experiments, H5 HPAIV was less persistent than 
wild-type LPAIV (22), and we, therefore, calculated the distance 
between sampled poultry farms and the nearest location of a wild bird 
AIV detection (identified through passive surveillance) within the 
previous 3 months. Other factors assessed in the analysis of poultry 
were species, season, flock size, and factors in the analysis of wild birds 
were order, season, and land cover type.

We calculated spatial attributes for the sampling locations in R 
4.1.2 (23) using Corine Land Cover data and the Danish Map Supply 
(24, 25). We used a coarse resolution (level 1 classification provided 
by Corine) to identify the land cover types: artificial surfaces, 
agricultural areas, forest and semi-natural areas, wetlands, and water 
bodies. We suspected that temporal patterns of AIV occurrence would 
reflect the seasonality of wild bird presence, and therefore wanted to 
include seasonality in our analyses. For the passive wild bird 
surveillance data, we divided the year into four quarters beginning 
with January. These four quarters then represented the four seasons 
over the one-year epidemic period in our study. To reduce the number 
of classes used when dealing with wild bird species, we aggregated the 
species according to taxonomic order.

Statistical analysis

We used descriptive statistics to examine the characteristics of AI 
occurrence in flocks/events against predictor variables. The statistical 
model for poultry used surveillance data consisting of test results from 
all flocks sampled during the study period. However, since different 
flocks may be situated in the same farm, their test results were likely 
not independent. In order to address this limitation, we included the 
CHR number as a random effect in our model. Similarly, because in 
some cases the same flock was tested multiple times within the same 
month, we  included a random effect of month to account for the 
temporal correlation. Therefore, for poultry surveillance, we  used 
generalized linear mixed effect models (GLMM) with the crossed 
random effects CHR number and month. We  first performed 
univariable analyses for each potential risk factor of AI occurrence, 
and then selected factors with p-value < 0.2 to include in a 

multivariable analysis. This was done using the lme4 package in R 
4.1.2 (23, 26). Passive wild bird surveillance consisted of dead birds 
reported at random unique locations. For the analysis of the wild bird 
surveillance data, we used simple generalized linear models (GLM) to 
examine the associations between each potential risk factor and AI 
occurrence, followed by a multivariable analysis with selected risk 
factors (p-value < 0.2). We  also implemented Tukey post hoc 
comparison with Holm adjusted p-values to identify significant multi-
level risk factors for the GLM (27). The significant threshold for 
identifying risk factors in the multivariable models of poultry and 
passive wild bird surveillance was set at p-values <0.05.

In the multivariable analyses, we  used backward stepwise 
elimination based on the Akaike Information Criteria (AIC) to obtain 
the final models with the lowest AIC for the model of each data set. 
Model estimates and the 95% confidence intervals for significant 
predictor variables were calculated as the natural logarithm differences 
of the ORs between each level and the reference level. The log-ORs 
were back-transformed to ORs using the exponential function.

To explore the overall spatial autocorrelation in residuals of final 
models for the two types of surveillance data, we first used Moran’s 
I  index in the spdep package in R 4.1.2 (23, 28). This index can 
evaluate whether spatial locations are significantly clustered, 
dispersed, or random (29). Notably, wild bird surveillance reported 
dead birds of different orders at the same coordinates if they were 
found very close together, but two wild bird events most likely would 
not be at the exact same location. Thus, we adjusted their positions 
marginally using the jitter function in R to avoid overlapping points, 
in order to be able to evaluate any potential spatial autocorrelation. 
Secondly, we fitted spline (cross)-correlograms of residuals using the 
R package ncf (30). Correlograms are graphical representations of 
spatial autocorrelation between locations at a range of lag distances, 
indicating if spatial correlation is significant at the 95% level.

Results

Population and distribution of samples

The two original datasets included 11,477 samples from poultry 
and 852 samples from wild birds tested via passive surveillance. These 
original samples were further aggregated into 1,062 poultry flock data 
points and 778 wild bird events from the passive surveillance 
(Figure 2). Figure 2A shows aggregated AI antibody detections in 
poultry and virus detections in the offspring of farmed game birds 
(i.e., farmed mallards, pheasants, and partridges). Figure 2B shows 
aggregated AIV detections in wild birds.

Descriptive statistics

For the active poultry surveillance data, 423 Danish poultry farms 
(unique species and CHR number) were sampled at least once 
between June 2020 and May 2021, with seven species covered: hens/
chickens, domestic ducks, turkeys, geese, farmed mallards, farmed 
pheasants, and farmed partridges. The distance from the sampled 
farms to the closest wetland ranged from 0.07 to 21 km (median: 

TABLE 1 Overview of selected risk factors for analysis.

Active poultry surveillance Passive wild bird 
surveillance

Species Order

Flock size Season

Distance to coast Land cover type

Distance to wetlands Distance to coast

Distance to nearest positive wild birdsa Distance to wetlands

aDistance to the nearest AIV-positive wild bird collected from the passive wild bird 
surveillance within the previous 3 months.
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3.9 km), and the distance to the closest coast ranged from 0.27 to 
50 km (median: 14 km). Furthermore, the distance to the nearest 
AIV-positive wild bird collected from the passive wild bird 
surveillance within the previous 3 months ranged from 0.19 to 302 km 
(median: 21 km). A total of 187 out of 1,062 poultry flock samples 
were excluded when analysing the effect of distance to the nearest 
AIV-positive wild bird, because no dead AIV-positive wild birds were 
found within 3 months of the farm sampling date (mainly between 
June and September) (Figure 3). For poultry, 39 of the 1,062 (4%) 
samples were AI positive, 4 (10%) of which were H5/H7 subtypes 
(Supplementary Table 1). The peak in poultry submission observed in 
June and July (Figure 3), was caused by testing of game bird offspring. 
Game bird offspring were tested for AIV before being released at 
3–6 weeks of age, the number of which was most frequent in June 
and July.

Samples from 60 bird species were collected in the passive wild 
bird surveillance, covering 13 bird orders (Anseriformes, Galliformes, 
Accipitriformes, Charadriiformes, Podicipediformes, Suliformes, 
Gruiformes, Columbiformes, Passeriformes, Piciformes, 
Pelecaniformes, Strigiformes, and Falconiformes). These birds were 
found in five land cover types. Distance to the closest wetland ranged 
from 0.0019 to 23 km (median = 3.8 km), and distance to the closest 
coast ranged from 0.043 to 50 km (median = 8.8 km). The passive wild 
bird surveillance data consisted of 471 AIV-negative and 307 (39%) 
AIV-positive detections, with the latter consisting of 305 (99%) 
records of H5/H7 subtypes (Figure 3).

The most often identified subtype in dead wild birds (passive 
surveillance) was H5N8. Results of subtypes in active poultry 
surveillance were dominated by antibodies not belonging to H5/H7. 
AIV-positive game bird offspring were not infected with H5 or 
H7 subtypes.

The proportion of virus subtypes detected in the data varied 
across surveillance approaches (i.e., active or passive; Table  2). 

Furthermore, monthly variation in the number of samples was evident 
in wild birds, with sparse sampling and no AIV-positive birds detected 
from June to September.

Univariable analyses

The univariable GLMM models did not identify significant (p-
value < 0.05) risk factors in the active poultry surveillance data 
(Supplementary Table 2). In the wild bird surveillance data, the GLM 
identified the bird order Anseriformes (e.g., geese and ducks) to have 
a higher risk of AI detection than Accipitriformes (e.g., Eurasian 
sparrowhawk) and Charadriiformes (e.g., gulls).

In addition, we found a significantly higher risk of AI detection 
during the spring compared to summer for passively surveyed wild 
birds. The risk of AI occurrence decreased significantly with an 
increasing distance to wetlands for passively surveyed wild birds. A 
rug plot shows the distribution of AI occurrence found in passive wild 
bird surveillance, and the decrease in the probability of AI occurrence 
with the increased distance to wetlands (Figure 4). As none of the 
variables in the models for active poultry surveillance exhibited 
p-values below 0.2, no variables were eligible for inclusion in a 
multivariable analysis. In the passive wild bird surveillance, 
we selected distance to wetlands, bird order, season, and land cover 
type for the full multivariable model.

After failing to include any potential risk factors into the poultry 
multivariable model, we  examined the spatial autocorrelation of 
residuals from the univariable models for the poultry surveillance 
data. Moran’s I statistics indicated that the spatial autocorrelation of 
residuals of univariable models for active poultry surveillance was not 
significant (distance to coast: I = −0.61, p = 1; distance to wetlands: 
I = −0.6, p = 1; flock size: I = −0.6, p = 1; species: I = 0.59, p = 1; Distance 
to nearest positive wild birds: −0.67, p = 1).

FIGURE 2

Distribution of samples included in the study. (A) Active poultry surveillance; (B) Passive wild bird surveillance. Colors denote the chronological order of 
AI positive cases within the study period, with light colors indicating early periods and dark colors indicating later periods. Samples testing negative for 
AI are shown in dark grey.
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Multivariable analysis

For passively surveyed wild birds, for every 1 km increase in 
distance to wetlands, the risk of AIV occurrence decreased by 5.18% 

(OR 0.95), when other variables remained the same. The order 
Anseriformes had a high risk of AIV occurrence compared to 
Pelecaniformes, Charadriiformes, Falconiformes, Suliformes, and 
Passeriformes. The order Galliformes was associated with a higher risk 
than Suliformes and Passeriformes (Figure 5).

The goodness of fit (R2) for the multivariable model was 0.21 
(Table 3), showing relatively poor predictive power, similar to previous 
studies (16). For the final wild bird surveillance model, Moran’s 
I indicated significant spatial dependence among residuals, suggesting 
surveillance locations deviated from a random distribution of 
sampling locations (I = 0.19, p < 0.001). However, upon closer 
examination of spline (cross)-correlograms of the final model 
residuals, the spatial dependence envelope overlapped with zero 
across the whole scale (Supplementary Figure 1). This observation 
indicates a weak autocorrelation between neighboring locations 
over distance.

Discussion

The objective of the study was to identify risk factors associated 
with AI in wild and domestic birds by use of data from active 
surveillance in poultry and passive surveillance in wild birds. Our 
results revealed that when accounting for spatial and temporal 
components in the active poultry surveillance, we were not able to 
identify any significant risk factors, whereas for passive surveillance 

FIGURE 3

AI occurrence and H5/H7 subtypes identified in the surveillance data (shown as % of all samples within each surveillance type; left column), and the 
number of samples in actively surveyed poultry and passively surveyed wild birds (right column) during the epidemic wave from June 2020 to May 
2021.

TABLE 2 Subtyping results for AIV-positive detected samples during June 
2020 and May 2021a.

Active poultry 
surveillance

Passive wild bird 
surveillance

H5N1 HPAI virus 3

H5N3 HPAI virus 2

H5N5 HPAI virus 6

H5N8 HPAI virus 291

H5Nxb HPAI virus 5

Not H5 or H7 

virus 3 2

H5 antibody 4

H7 antibody 0

Not H5 or H7 

antibody 32

aIn some aggregated samples from the same poultry flock or location of wild bird collections, 
several subtypes were detected in the same aggregation.
bNA-subtype was not determined.
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of wild birds there was a higher risk of the bird order Anseriformes 
being AIV positive, and a decreasing risk with increasing distance to 
wetlands. Although domestic ducks were not found to have higher 
risks than the other domestic species in our study using active 
surveillance data, other studies have shown that ducks are very 

susceptible to AIV and resistant to virus-induced mortality 
(specifically 2016 H5N8 Clade 2.3.4.4b) but can efficiently transmit 
viruses to other birds such as turkeys (31). In 2020, EU member states 
reported that the proportion of H5/H7 seropositive poultry 
establishments was 1.8% for breeding ducks, whereas it was below 1% 

FIGURE 4

Distribution of AI occurrence in passively surveyed wild birds against distance to wetlands. Marginal rugs represent the binary surveillance results, and 
the blue line displays a fitted curve for binary logistic regression between two variables.

FIGURE 5

Odds ratios with 95% confidence intervals for the significant factors identified in the multivariable analysis of wild bird passive surveillance data. 
Statistical significance was denoted by Tukey post-hoc comparisons (Holm-adjusted p values <0.05).
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in all other poultry categories (4). For wild birds, an experimental 
study found that H5N1 mortality in mallards ranged from 0 to 100% 
depending on the genotype, underlining the risk of mallards acting as 
a silent reservoir for H5N1 viruses (32). Furthermore, in Europe, mute 
and whooper swans can act as potential sentinels due to their high 
susceptibility to HPAI and the swans being conspicuous when they die 
(33, 34).

In general, land cover type was not significantly associated with 
AIV detection in our analyses, but we  did find significant 
associations with distance to wetlands from passively collected 
birds. This may indicate that the passive collection of dead birds by 
authorities would benefit from additional focus on water body 
areas. This finding was in line with what has previously been found 
in Denmark, where analyses of 15 years of wild bird surveillance 
showed that decreasing distance to wetlands was positively 
associated with AIV presence (16).

In the Netherlands, the risk of LPAIV introduction in poultry 
farms decreased significantly with increasing distance to medium-
sized waterways, and the median distance for all investigated farms 
was often less than 1 km (35). For the actively sampled poultry farms 
in this study, the median distance to wetlands was 3.9 km and the 
median distance to coastline was 14.3 km, which was much further 
than the Dutch cases. This difference might lead to less significant 
effects of distance to waterways in our analysis. The difference in farm 
selection was also evident, when we compared their significant effect 
of distance to wild bird areas (with a median distance of less than 
5 km) to our analysis, where we did not find a statistically significant 
effect of distance between poultry farms and the nearest location of a 
wild bird AIV case (with a median distance of 21 km).

A clear effect of seasonality has been observed in HPAI detections 
recorded by the World Organisation for Animal Health (WOAH) for 
199 countries, with the lowest number of detections in September, a 
rise in October, and a peak in February (36). In our multivariable 
models for wild birds, season also showed a significant association 
with AIV occurrence. However, a bias in the data for passive 
surveillance is that the Danish authorities stop collecting dead birds 
at a distance of 20 km from a known positive case for 4 weeks, which 
might have lowered the detection rate in AI intensive period compared 
to the less intensive period.

Flock size is often found to be a risk factor for infectious disease 
and outbreak occurrence in farmed animals (37, 38). However, we did 
not find a significant association between poultry flock size and AIV 
occurrence in active surveillance data. In the poultry system, contact 
with wild birds or contaminated fomites, and biosecurity have 
previously been identified as risk factors by summarising the analysis 
of 54 AI introductions in European poultry farms (39). Furthermore, 
the distance from a poultry farm to the closest AIV-positive wild bird 
within the previous 3 months was not a significant risk factor for the 

occurrence of AI in poultry flocks in our study. This was surprising, 
as we expected proximity to AIV-positive wild birds to be an indicator 
of AIV presence in the area. Belkhiria et  al. (40) observed the 
association between AI incidence in poultry and wild bird abundance 
during the migratory season in the USA, indicating that wild birds 
migrating from other countries or regions introduced disease to 
farms. Li et al. (41) also found a high degree of spatiotemporal overlap 
between the core pathway area of migratory whooper swans and 
historical HPAIV H5N1 wild bird events in China and Mongolia 
between 2005 and 2015, indicating that swans could carry HPAI 
H5N1 virus during migration, resulting in long-distance transmission. 
However, the exclusion of passive poultry surveillance data (i.e., 
outbreak detections based on clinical signs) may influence the 
identification of significant risk factors, especially regarding distance 
from wild birds. In addition, active poultry surveillance was risk-
based, focussing on herd types either considered with a higher risk 
(outdoor farming) or potentially constituting a higher risk by selling 
poultry. It is generally difficult to detect outbreaks using active 
surveillance, especially for HPAI which spread rapidly once 
introduced to flocks (42). The non-significant effect of distance to 
detection in wild birds may also be  explained by the lack of 
information for the distance variable in 187 records from our poultry 
data (i.e., not knowing the presence/absence of diseased wild birds 
around the actively surveyed farms), wherein ten of them were tested 
AI positive. Also, the contrast between high (99%) H5/H7 occurrence 
in positive, passive surveyed wild birds and relatively low (10%) H5/
H7 occurrence in active surveyed poultry suggested poultry farms in 
Denmark might explained by the housing rules, which is a preventive 
biosecurity measure against HPAI introduction from positive wild 
birds. In addition to a suspected overlap in outbreaks in wild and 
poultry birds, it would also be worth investigating dominating AIV 
subtypes and thus obtain further knowledge about disease 
transmission by investigating the evolutionary relationships of 
viral strains.

Other studies have found high bird activity and AIV survival rate 
to be  associated with low temperatures and high humidity. For 
example, viral persistence was significantly higher on duck feather 
samples at 10°C compared to 25°C and 37°C (43), which could further 
explain the low occurrence of AIV detection in wild birds during the 
warmer summer months in Denmark.

Our model could be improved by including other potential 
risk factors, using more information and updated surveillance 
data. Anthropogenic variables may have been responsible for the 
initial introduction to poultry farms, which may mask the 
association between some of our selected risk factors and AIV 
detection. Certain management factors, such as having multiple 
egg production sites, were found to be  risk factors for the 
introduction of AIV to poultry farms in France (44). For wild 
birds, it has been suggested that urbanization and deforestation 
transforming wild bird habitats could contribute to altered 
flyways and increased contact between different wild bird 
populations (45). In Denmark, the populations of different water 
bird species vary. For example, the population size of barnacle 
geese in Denmark has increased five-fold in recent decades, while 
the size of the Danish mallard population is relatively stable (46, 
47). Bird migration flyways, wild bird densities, and bird 
movement are all suspected to play a role in AI transmission and 

TABLE 3 The final multivariable model for AI detection using the passive 
wild bird surveillance data.

Factor p-value

Distance to wetlands 0.012*

Land cover type 0.072

Order <0.001*

* Significance level, p < 0.05 by Chi-square analysis.
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should be considered when investigating the seasonality of AI 
detection. In addition, there are suspected relationships between 
eco-climatic variables and the risk of AI occurrence. However, 
these variables include many elements (e.g., temperature, 
precipitation, and vegetation coverage), and the aggregation level 
(e.g., monthly or daily) makes it difficult to use them for 
prediction purposes (48).

The data sets used in this study were not designed for analyses 
representing overall bird populations in Denmark. There may, 
therefore, be some sampling bias when reporting AIV cases in 
wild birds, which may have led to geographical and taxonomic 
bias. Kjær et al. (16) investigated accessibility bias in the Danish 
passive surveillance data. They found that a geographical bias 
existed, as most of the recorded locations in the passive 
surveillance data were within 35 km of larger cities and within 
500 m of roads, and that numerous records were close to the coast 
potentially due to public access to beaches in Denmark (16). 
Another aspect linked to the original data sets is the differences 
between the aims of the two surveillance programs. Active 
surveillance for poultry targeted virus circulation, implying 
detection of mostly LPAIV (or non-H5/H7) strains on farms due 
to the high mortality of HPAIV strains; in contrast, passive 
surveillance of wild birds tended to detect the introduction/
circulation of HPAIV before farm outbreaks (Table 2). This also 
explained why we could not find a closer detection of a wild bird 
event being related to AI occurrence in actively surveyed poultry 
farms. For passive wild bird surveillance, Moran’s I  indicated 
significant spatial dependence among locations, while the spline 
correlograms indicated that the autocorrelation was weak. These 
results suggest that inclusion of other spatial factors may improve 
the model.

Many modeling approaches have been implemented in 
spatiotemporal analyses of AIV. For example, boosted regression 
trees (BRT) allow for a gradual fitting process. A previous study 
used BRT models and logistic regressions to test for associations 
between poultry production structure and H5N1 risk in Thailand 
(49). The authors found that the BRT had a goodness of fit that 
was better than or comparable to that of logistic regression when 
predictions were evaluated by different data sets. However, 
evidence of over-fitting for BRT was noted in other studies (50). 
Another modeling approach focused on the animal/case level and 
used spatial regression models with Bayesian inference under 
zero-inflated Poisson regression (51). The authors found a 
negative association between the density of chickens and 
outbreak risk due to high vaccine coverage. However, our study 
is at the population level and disregards information about the 
number of birds in one flock or event. Another aspect of AI 
spread is human-mediated transmission between holdings. This 
can be  analyzed using network analysis to quantify human-
mediated risks such as the movement of live poultry (52). 
However, it would require more farm-level data, including human 
behavior data, which are not currently available in the Danish 
surveillance data.

For the last 3 years, HPAI H5 viruses have been responsible 
for AI outbreaks in the Danish poultry sector. However, in this 
study, we included all AI detections regardless of subtype (thus 
including both LPAI and HPAI) from the assumption that the 

risk of AI infection in poultry is the same for all subtypes (53, 
54). While some virus strains have higher case fatality rates, 
others with lower case fatality rates might spread more efficiently 
among wild birds, leading to constant infection pressure from 
wild birds to poultry. Therefore, we  found it reasonable to 
investigate all types of AIV as a proxy for transmission between 
wild birds and poultry.

To conclude, we  evaluated spatiotemporal risk factors for AI 
detection in Danish poultry and wild bird populations using Danish 
national surveillance data and found associations between potential 
risk factors and AI occurrence during an epidemic wave. Overall, 
bird orders and distance to wetlands were associated with the 
occurrence of AI. The findings present potential targets for 
surveillance strategies using limited resources and aid risk-based 
surveillance during epidemics.
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