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Acoustic signal analysis is an important component of transformer onlinemonitoring.
Currently, traditional methods have problems such as low spectral resolution,
imbalanced sample distribution, and unsatisfactory classification performance.
This article first introduces the matrix pencil algorithm for time-frequency
spectrum analysis of acoustic signals, and then uses the SMOTE algorithm to
expand the imbalanced samples. Then, an ACmix hybrid deep neural network
model is constructed to classify 11 types of transformer operation and
environmental acoustic signals. Finally, detailed experiments were conducted on
the method proposed in this paper, and the experimental results showed that the
matrix pencil algorithm has high time-frequency resolution and good noise
resistance performance. The SMOTE sample expansion method can significantly
improve the recognition accuracy by more than 2%. Overall accuracy of the
proposed method in acoustic signal classification tasks reaches 91.81%.
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1 Introduction

As a high-value key equipment in the power system, power transformers need to
undergo maintenance work throughout their entire life cycle to ensure the healthy
operation (Wardani et al., 2011; Liang et al., 2017). During the operation of
transformers, mechanical waves are generated due to the vibration of the iron core and
winding, which in turn generate sound waves through the fluid medium (Hsu et al., 2015;
Wang et al., 2021). Furthermore, when the insulation of transformers deteriorate, partial
discharge may occur (Okabe and Wada, 2011), which can also trigger acoustic signals.
Acoustic signals near transformers contain a large amount of equipment status information
(Cole, 1997). The collection of acoustic signals has advantages such as non-contact, low cost,
and convenience, and thus has broad application prospects in the field of online monitoring
of transformers (Sithole et al., 2019; Kucera et al., 2022).

In terms of feature extraction of acoustic signals, it mainly includes time-domain feature
extraction, frequency-domain feature extraction, and time-frequency domain feature
extraction (Zhang et al., 1998; Lee et al., 2021; Caldeira and Coelho, 2023). The time-
frequency spectrum contains both time-domain and frequency-domain information, which
has better performance in fault identification (Geng et al., 2019). In the field of pattern
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recognition of acoustic signals, traditional machine learning
methods such as support vector machine (SVM) (Wu et al.,
2018), back propagation neural network (BP NN) (Wang et al.,
2011) have gradually developed deep learning methods such as
convolutional neural network (Lu et al., 2019; Kollias and
Zafeiriou, 2021).

With the rapid development of artificial intelligence technology,
edge computing technology (Huang et al., 2023), intelligent perception
(Zhao et al., 2024) and other technologies, online monitoring of
equipment status has been widely used. But the effectiveness of
related applications still needs to be improved. The pattern
recognition algorithm based on deep neural networks faces the
problem of low accuracy in engineering applications. Reference
(Huang et al., 2020) introduces Gaussian Bernoulli restricted
Boltzmann machines to improve algorithm performance. In different
application fields, data preprocessing methods and pattern recognition
algorithms require specific improvements to adapt to
corresponding tasks.

Currently, there are still three issues in the analysis of
transformer acoustic signals:

A) The spatiotemporal resolution of the time-frequency spectrum is
insufficient, and there is a problem of signal interference.

B) Treating environmental sounds such as bird singing and rain
sound as background noise, ignoring the risk factors present
in the transformer environment;

C) The distribution of acoustic signal samples is uneven, and the
recognition accuracy is unsatisfactory.

This article focuses on the above issues and introduces the
matrix pencil algorithm to improve the time-frequency resolution
of acoustic signals and enhance the noise resistance performance.
Expand imbalanced samples using the SMOTE algorithm (Bao and
Yang, 2023). An ACmix model was constructed to classify
transformer operation and environmental sound. Finally, the
effectiveness of the method proposed in this article was verified.

2 Research methodology

2.1 Transformer acoustic signal time-
frequency spectrum

Spectrum is an important feature in the analysis and processing
of acoustic signals. It can reflect the frequency energy distribution of
signals at different times, establish a good connection between the
time and frequency domains of acoustic signals, and achieve the
maximization of acoustic feature information. The generation of
time-frequency spectrum mainly includes the process of framing,
windowing, and frequency analysis. Traditional frequency analysis
methods of acoustic signals are mainly based on Fourier transform,
which has problems such as low accuracy and poor anti-interference
ability. In contrast, the matrix pencil method (Wang et al., 2017)
belongs to the subspace rotation invariant method, which utilizes the
orthogonal characteristics of the signal subspace to construct
spectral peaks, thereby improving the frequency resolution and
anti-interference performance of the algorithm. And since there

is no need for iterative operations, the efficiency is high. This article
uses matrix pencil method to construct the time-frequency spectrum
of sound signals.

2.1.1 Acoustic signal model
The transformer acoustic signal model can be represented as

Eq. 1.

s n( ) � ∑K
k�1

ake
−βknΔt cos nωkΔt + θk( ) (1)

Among them, αk, ωk, and θk represent the amplitude, frequency,
and initial phase of the k-th frequency component, respectively. βk is the
attenuation coefficient of the k-th frequency component. Δt is the
sampling time interval. Further represented as an exponential model in
Eq. 2.

s n( ) � ∑2K
k�1

Rke
pknΔt (2)

Among them, Rk = αke
±jθ/2; pk = −βk ± jωk。

Considering the presence of noise u (n), the actual observed
signal is described in Eq. 3.

x n( ) � s n( ) + u n( ) (3)

2.1.2 Matrix pencil method
For the acoustic signal x (n), construct two (N-L) × L Hankel

matrices X1 and X2 are represented as Eqs 4, 5.

X1 �
x 0( ) x 1( ) / x L − 1( )
x 1( ) x 2( ) / x L( )
..
. ..

.
1 ..

.

x N − L − 1( ) x N − L( ) / x N − 2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

X2 �
x 1( ) x 2( ) / x L( )
x 2( ) x 3( ) / x L + 1( )
..
. ..

.
1 ..

.

x N − L( ) x N − L + 1( ) / x N − 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

Where, L is the matrix pencil parameter, and appropriate
selection can reduce the impact of noise. N/3 to 2N/3 is the
better choice for L. Represent X1 and X2 as Eqs 6, 7

X1 � ZLPZR (6)
X2 � ZLPZZR (7)

The variables in Eqs 6, 7 are calculated based on Eqs 8–11.

ZL �
1 1 / 1

ep1Δt ep2Δt / ep2KΔt

..

. ..
.

1 ..
.

ep1 N−L−1( )Δt ep2 N−L−1( )Δt / ep2K N−L−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

ZR �
1 ep1Δt / ep1 L−1( )Δt

1 ep2Δt / ep2 L−1( )Δt

..

. ..
.

1 ..
.

1 ep2KΔt / ep2K L−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Z � diag ep1Δt, ep2Δt,/, ep2KΔt[ ] (10)
P � diag R1, R2,/, R2K[ ] (11)
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Then the following Eq. 12 is obtained, i.e.,

X1 − λX0 � ZLP Z0 − λI( )ZR (12)

The generalized eigenvalue of matrix pencil X1-λX0 includes the
number, frequency, and attenuation coefficient of frequency
components. Thus the calculation of signal frequency
components can be transformed into solving Eq. 13 for
generalized features:

X1 − λX0 � X0
+X1 (13)

In the equation, X+ is the pseudo inverse of X0.
After obtaining the number, frequency, and attenuation

coefficient of frequency components of acoustic signals, the signal
amplitude can be obtained by solving the following least squares
problem shown in Eq. 14.

x 0( )
x 1( )
..
.

x N − 1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
1 1 / 1

ep1Δt ep2Δt / ep2KΔt

..

. ..
.

1 ..
.

ep1 N−1( )Δt ep2 N−1( )Δt / ep2K N−1( )Δt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R1

R2

..

.

RN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

2.2 Imbalanced sample expansion method

The acoustic signal samples of transformers in different states
exhibit significant imbalance, especially in the absence of abnormal
samples. To address the issue of sample imbalance, SMOTE is used
for sample expansion.

The SMOTE algorithm is an algorithm for expanding minority
class samples in imbalanced samples, which is an improvement on the
random oversampling algorithm. The random oversampling algorithm
expands the dataset by simply copyingminority samples, which is prone
to overfitting and other issues. The SMOTE algorithm combines the
ideas of nearest neighbor analysis and linear interpolation.

Firstly, traverse the minority class samples, select each minority
class sample A as the reference value for a single expansion, and
calculate its Euclidean distance from other sample point B in the
minority class samples according to Eq. 15

d A, B( ) �
��������������∑n
i�1
∑n
j�1

ai,j − bi,j( )2√√
(15)

Obtain k nearest neighbors of sample point A based on the size
of Euclidean distance, randomly select a certain nearest neighbor B,
and perform linear interpolation with reference sample A according
to Eq. 16 to generate a new sample C. Repeat this n times (n is the
given sample expansion ratio)

ci,j � ai,j + bi,j − ai,j( ) · θ (16)

In Eq. 16, θ Is a random number between (0, 1). After SMOTE
process, for each sample A, n new samples will be generated. After
traversing all the minority samples, the original number of samples
will be expanded to n times the original number, achieving sample
expansion through oversampling. The specific flowchart of SMOTE
algorithm is shown in Figure 1.

2.3 Hybrid deep neural network

Convolutional neural network is composed of convolutional
layer, pooling layer, and fully connected layer. Compared with
traditional artificial neural networks, convolutional neural
network has fewer connections between neurons in different
layers. Convolutional layers learn features from network inputs,
and different convolutional kernels have different feature
extraction effect.

Attention mechanism is a special plug and play structure often
embedded in convolutional neural networks, used to automatically
learn and calculate the contribution of input data to output data. The
self attention mechanism is a variant of the attention mechanism,
which reduces dependence on external information and is better at
capturing internal correlations of data or features. Attention
mechanisms are also widely used in visual tasks. Compared to
traditional convolutional models, attention allows the model to
focus on important regions over a larger range.

This article combines the advantages of residual neural network
and self attention mechanism, and uses ACmix algorithm to
construct a transformer operation acoustic signal analysis model.

The schematic diagram of ACmix is shown in Figure 2:
First, three 1 × 1 convolutions are used to project the input

features, and then reshape them into N pieces, thereby obtaining a
set of 3 × N intermediate features.

FIGURE 1
Flow chart of SMOTE algorithm.
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Secondly, parallel self attention computation and convolution
computation are carried out. For the self attention part, gather the
intermediate features into N groups, each containing 3 features, each
from 1 × 1 convolution. The corresponding three feature maps are
used as query, key, and value, respectively, using a multi head self
attention module. The calculation formula is shown in Eqs 17, 18

q l( )
i,j � W l( )

q fi,j, k
l( )
i,j � W l( )

k fi,j, v
l( )

i,j � W l( )
v fi,j (17)

gi,j � ‖N
l�1

∑
a,b∈Νk i,j( )

A q l( )
i,j , k

l( )
a,b( )v l( )

a,b
⎛⎜⎜⎝ ⎞⎟⎟⎠ (18)

where ‖ is the concatenation of the outputs of N attention heads. q, k,
v represent the projection matrices for queries, keys and values. N
represents the local area near the pixel point (i,j) with a range of k. A
is the attention weight, f is the input, and g is the output.

In the convolutional part, a convolutional kernel with size k is
used to generate k2 feature maps using a light fully
connected layer.

By shifting and aggregating the generated features, convolution
processing is performed on the input features, and information is
collected from the local receptive field. Finally, the output is obtained
by Eq. 19

Fout � αFatt + βFconv (19)

Based on the structure of ResNet50, replace the convolutional
layer with ACmix module.

3 Manuscript experimental results
and analysis

3.1 Performance verification of matrix
pencil method

To verify the time-frequency spectrum analysis performance of
matrix pencil method. Construct the test signal as shown in Table 1,

FIGURE 2
Schematic diagram of ACmix.
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and perform time-frequency spectrum analysis using matrix pencil
method and Fourier transform, respectively.

The signal sampling rate is set to 48 kHz, and the waveform of
the test signal is shown in Figure 3.

Set the time window to 0.01 s, and the moving step of the time
window is 0.01 s. The time-frequency spectrum of the test signal was
calculated using matrix pencil method and Fourier transform,
respectively, as shown in Figure 4.

It can be seen that the frequency resolution of the Fourier
method is relatively low. When the signal frequency changes,
there are significant unclear areas in the time-frequency
spectrum. The matrix pencil method can more accurately extract
the frequency characteristics of signals, especially to accurately
identify changes in signal frequency. To further verify the noise
immunity of the matrix pencil method, Gaussian colored noise is
added to the original signal, and the signal-to-noise ratio is set to 10.
The test signal containing noise is shown in Figure 5.

The time window and step size remain unchanged, and the
matrix pencil method and Fourier transform are used to calculate
the time-frequency spectrum of the test signal, as shown in Figure 6.

When noise exists, significant noise appears in the time-
frequency spectrum obtained by the Fourier method. In contrast,
the time-frequency spectrum background obtained by matrix pencil
method is pure. Therefore, the matrix pencil method has higher
resolution and stronger anti-interference ability compared to the
Fourier method in the time-frequency spectrum analysis of
acoustic signals.

3.2 Dataset and evaluation indicators

3.2.1 Sample information
2236 audio signals of various types were collected at substations

of different voltage levels. The sampling rate is 48 kHz. Each audio
segment has a collection time of 5 s. The dataset used in this article
includes 11 types of acoustic signals, including normal operation of
transformers with 5 voltage levels, bird singing, rain, OLTC
switching, short circuit impulse, partial discharge, DC bias, etc.
Encode it and use the SMOTE method for sample expansion. With
the goal of balancing the number of expanded samples, expand the

TABLE 1 Test signal parameters.

No. Frequency/
kHz

Amplitude/
A

Phase Duration/
s

1 1.00 0.90 0 0–0.05

2 0.20 0.70 0 0.05–0.10

3 18.00 0.60 0 0.10–0.15

4 5.00 0.50 0 0.15–0.20

FIGURE 3
Test signal.

FIGURE 4
Test signal spectrum: (A) MP time-frequency spectrum, (B) Fft time-frequency spectrum.
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original sample size to an integer multiple. After sample expansion,
4,524 samples were obtained. The sample information is shown
in Table 2.

3.2.2 Acoustic signal preprocessing
Due to the different durations of characteristic signals in various

states, it is necessary to intercept audio signals. After analysis, 2 s was
selected as the duration for signal analysis. Intercept typical data
with a duration of 2 s from the audio and convert the acoustic signal
into a time-frequency spectrum using the method described in
Chapter 2.1. The sampling rate of the sample data is 48 kHz. The
width of the sliding window is 0.01 s, and the step length of the time
window movement is 0.01 s. The frequency range of the time-
frequency spectrum is 0–20 kHz, and the frequency resolution is
set to 0.1 kHz. Convert the amplitude to a decibel value according to
Eq. 20.

sdb � 20 log10 s (20)

Where s represents amplitude. The typical acoustic signal time-
frequency spectrum of transformer operation is shown in Figure 7.

Subsequently, the time-frequency spectrum of the acoustic
signal will be used as input data for classification processing
using the deep neural network model.

3.2.3 Evaluation indicators
Evaluate the recognition rate of the model using accuracy, recall,

F1 score, and overall accuracy. The accuracy calculation formula is
shown in Eq. 21.

p � xpt

xp
× 100% (21)

Among them, xpt is the number of samples predicted to be x and
actually x. Xp is the number of samples predicted to be x. The recall
rate is calculated according to the formula Eq. 22.

r � xpt

xt
× 100% (22)

Xt is the actual number of samples that are x. The F1 score is
calculated by Eq. 23.

SF1 � 2
p × r

p + r
× 100% (23)

The overall accuracy is defined as the proportion of the total
number of correctly predicted samples to the total number
of samples.

3.3 Comparison of classification effects

To verify the effectiveness of the SMOTE sample expansion
method, the ACmixmodel was used to train and test the original and
expanded samples, respectively. Epoch number was set to 300, and
learning rate was set to 0.01. When using the original samples, the

FIGURE 6
Time-frequency spectrum of test signal containing noise: (A) MP time-frequency spectrum, (B) Fft time-frequency spectrum.

FIGURE 5
Test signal containing noise (SNR = 10).
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accuracy and loss changes during the training process of ACmix
model are shown in Figure 8.

The loss converges at 200th epoch. Therefore, in the
subsequent training, the epoch number was set to 200. The

confusion matrix of the validation set under two sample sets
is shown in Figure 9.

After expanding the sample, the recognition accuracy of the
sample was significantly improved. Especially, the accuracy of

FIGURE 7
Typical acoustic signal time-frequency spectrum of transformer: (A) Short circuit impulse, (B) partial discharge, (C) DC bias, (D) bird sing, (E) 500 kV
transformer operation, (F) OLTC switching.

TABLE 2 Sample information.

Code Type Original sample size Expanded sample size

0 110 kV transformer operation 200 400

1 220 kV transformer operation 400 400

2 500 kV transformer operation 400 400

3 800 kV transformer operation 400 400

4 1000 kV transformer operation 450 450

5 Bird sing 60 420

6 Rain 48 384

7 OLTC switching 56 392

8 Short circuit impulse 42 378

9 Partial discharge 90 450

10 DC bias 90 450

Divide the original sample and the expanded sample into training, testing, and validation sets in a ratio of 8:1:1.
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minority class such as 6, 7, 8, and 9 have been significantly improved.
Therefore, the SMOTE algorithm can effectively improve the
classification performance of transformer samples.

Compare the ResNet50 model with ACmix and compare the
performance of the model with the addition of the SMOTE
algorithm. The classification results for the four scenarios are
shown in Table 3.

For the ResNet50 model, the original accuracy was 83.48%,
and after SMOTE sample expansion, the accuracy improved by
2.36%. The F1 scores of each category have significantly
improved, especially for samples in categories 6, 7, and 8,

with an increase of over 20%. For the ACmix model, the
original accuracy was 89.73%, and after SMOTE sample
expansion, the accuracy was improved by 2.08%. In categories
6, 7, 8, and 9, the F1 score has increased by 20%. Due to the
uneven distribution of the original samples, there is not much
difference in overall accuracy before and after using the SMOTE
algorithm to expand the samples. However, after using the
SMOTE algorithm, the accuracy of the minority categories is
significantly improved. The ACmix model has higher
recognition accuracy for transformer operation acoustic
signals compared to the ResNet50 model.

FIGURE 8
Accuracy and loss changing with epoch: (A) Accuracy versus epoch, (B) Loss versus epoch.

FIGURE 9
Confusion matrix: (A) Original samples prediction, (B) Expanded samples prediction.
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4 Conclusion

This article proposes a method for analyzing transformer acoustic
signals. Firstly, the matrix pencil algorithm is introduced for time-
frequency spectrum analysis of acoustic signals. The experimental
results show that the matrix pencil algorithm has a significant
advantage in time-frequency resolution and has good noise resistance
performance. Secondly, to address the issue of imbalanced sample
distribution, the SMOTE algorithm is used to expand the minority
sample categories. Finally, an ACmix model was constructed to classify
the operation and environmental sound of 11 types of transformers. The
results show that SMOTE sample expansion can significantly improve
the recognition accuracy of minority sample categories, and the ACmix
model has good recognition performance. Research content of this
article will provide technical support for intelligent analysis of
transformer sound signals.
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