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The suboptimal productivity of maize systems in sub-Saharan Africa (SSA) is a
pressing issue, with far-reaching implications for food security, nutrition, and
livelihood sustainability within the affected smallholder farming communities.
Dissecting the genetic basis of grain protein, starch and oil content can increase
our understanding of the governing genetic systems, improve the efficacy of
future breeding schemes and optimize the end-use quality of tropical maize.
Here, four bi-parental maize populations were evaluated in field trials in Kenya
and genotyped with mid-density single nucleotide polymorphism (SNP) markers.
Genotypic (G), environmental (E) and G×E variations were found to be significant
for all grain quality traits. Broad sense heritabilities exhibited substantial variation
(0.18–0.68). Linkage mapping identified multiple quantitative trait loci (QTLs) for
the studied grain quality traits: 13, 7, 33, 8 and 2 QTLs for oil content, protein
content, starch content, grain texture and kernel weight, respectively. The co-
localization of QTLs identified in our research suggests the presence of shared
genetic factors or pleiotropic effects, implying that specific genomic regions
influence the expression of multiple grain quality traits simultaneously. Genomic
prediction accuracies were moderate to high for the studied traits. Our findings
highlight the polygenic nature of grain quality traits and demonstrate the potential
of genomic selection to enhance genetic gains in maize breeding. Furthermore,
the identified genomic regions and single nucleotide polymorphism markers can
serve as the groundwork for investigating candidate genes that regulate grain
quality traits in tropical maize. This, in turn, can facilitate the implementation of
marker-assisted selection (MAS) in breeding programs focused on improving
grain nutrient levels.
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1 Introduction

Maize (Zea mays. L) ranks among the most prominent coarse cereal crops on a global
scale, alongside rice and wheat (Erenstein et al., 2021). It is a widely cultivated crop,
spanning over 170 countries and covering a vast area of 197 million hectares (FAOstat,
2022). In 2020, maize cultivation spanned approximately 43 million ha in Sub-Saharan
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Africa (SSA), contributing to a substantial production of around
90 million metric tonnes. On a continental scale, Africa accounts for
approximately 20.9% of the total global maize cultivation area.
However, its contribution to global maize production is
comparatively lower (~7.4%) (Prasanna et al., 2021). Indeed,
maize yield growth varies across regions, with Africa lagging at
1.3%, while the United States of America leads at 2.0%, followed by
Asia at 1.8% (Erenstein et al., 2022). Despite the widely reported low
productivity per unit area, maize is the major source of food for
more than 80% of the population in SSA (Prasanna et al., 2021) and
meets more than 30% of their calorie requirement (Goredema-
Matongera et al., 2021). Maize cuisine in this region is remarkably
diverse, encompassing six distinct categories: whole-maize foods,
wet-ground foods, snacks, bread, maize sourdough, and dumplings
(Ekpa et al., 2018). Within this spectrum, stiff porridge, prepared by
slowly adding maize flour to boiling water until it reaches the desired
thickness - called ugali in Kenya and Tanzania, nshima in Zambia,
sadza in Zimbabwe, and mealiepap in South Africa - stands out as a
widely favoured culinary choice (De Groote and Kimenju, 2012).
This staple, akin to rice in Asian cuisines, holds significant
prominence and is widely consumed.

The substantial dependence of the SSA population on maize-based
foods comes with inherent drawbacks, given that a significant
proportion of the accessible maize varieties lack adequate levels of
essential minerals. Ranum et al. (2014) indicated that while tropical
maize is characterized by a high carbohydrate content (~72%), its grain
protein content is modest, ranging from 9% to 10% and its fat content is
around 4%. The region’s reliance on maize for sustenance, particularly
among low-income farming communities facing malnutrition,
amplifies the urgency of addressing maize yield stagnation. Maize
production in these communities is globally the lowest, standing at
2.1 t/ha. This can be attributed to various factors, with a considerable
portion linked to the restricted availability of improved hybrid seeds
(Quarshie et al., 2021). Other contributing factors include low-input
agricultural practices, such as the application of only 8.0 kg of fertilizers
per ha compared to the global average of 137 kg/ha (Das et al., 2019),
small land holdings, limited access to mechanisation, sub-optimal post-
harvest management, and challenges related to biotic and abiotic
stresses. Some of these challenges impacting maize production in
SSA have a negative effect on grain quality composition, notably the
critical issue of low soil nitrogen stress. The application of nitrogenous
fertilizer in smallholder farming systems within this region is severely
constrained, reported by FAOSTAT (2023) at 4%. The effect of soil
nitrogen on maize grain yield, composition and quality has been
extensively investigated by numerous researchers (Worku et al.,
2012; Biswas and Ma, 2016; Zhang et al., 2020; Ertiro et al., 2022;
Ndlovu et al., 2022; Hammad et al., 2023). Although findings have
varied, there is a consensus on the existence of genotypic differences in
grain yield and composition among tropical maize genotypes grown
under diverse management conditions.

The integration of genomic tools with field-based breeding
techniques holds promise for enhancing nutrient composition in
maize grain. Among these genomic techniques, quantitative trait loci
(QTL) mapping stands out as a classical method for identifying
genomic regions associated with traits of interest (Yang et al., 2020;
Goering et al., 2021; Ren et al., 2022), even in the absence of prior
genetic knowledge about the specific trait(s). Several studies have
identified major QTLs associated with starch, protein, and oil

contents in maize grain. In 275 recombinant inbred lines (RILs),
Lu et al. (2022) identified 11 QTLs affecting kernel protein content
some linked to the Zm00001d002625 gene which encodes an
S-adenosyl-L-methionine-dependent methyltransferase
superfamily protein. Guo et al. (2013) identified nine
unconditional QTLs across all chromosomes (excluding chr
3 and 7) for oil content and eight unconditional QTLs
distributed across all chromosomes except chromosomes 4 and
8 for starch content. Liu et al. (2008) identified a total of
eighteen QTLs for grain quality traits across diverse soil nitrogen
regimes and locations. Among these, seven QTLs were associated
with oil content, six with protein content, and five with starch
content. Ndlovu et al. (2022) also identified multiple QTLs for maize
grain quality traits using multiple biparental populations under
different soil nitrogen levels. Application of genomic selection for
different traits in maize revealed moderate to high prediction
accuracies (Gowda et al., 2018; 2021; Ertiro et al., 2020; Beyene
et al., 2021). Ndlovu et al. (2022) applied genomic selection onmaize
grain quality traits under optimum and low soil N management and
observed moderate to high accuracies in both diversity panel and
biparental populations. In the preceding studies, empirical evidence
has substantiated that the integration of traditional breeding
methodologies with linkage mapping, coupled with genomic
selection, markedly enhances the efficiency of improving
nutritional quality traits in maize.

Though many studies reported several genomic regions
associated with grain quality traits, additional sources of genetic
variation exist in unexplored maize populations. On the flip side, the
rapid acquisition of high-quality phenotypic data to facilitate
genomic analyses for grain-quality traits continues to be a
resource-demanding endeavour. Indeed, the conventional
phenotyping methods for assessing grain quality traits are
characterized by their labour-intensive nature and time-
consuming processes. On a positive note, the expanded
utilization of Near Infrared Reflectance Spectroscopy (NIRS) has
enhanced the capabilities of nutritional profiling studies for maize
grain. NIRS is a fast, reliable, and non-destructive method that is
being employed in plant phenotyping assessment of maize kernel
starch, protein and oil content (Ndlovu et al., 2022). In this study, we
used NIRS to measure the main nutritional quality traits in four bi-
parental maize populations and used mid-density single nucleotide
polymorphism (SNP) markers for both linkage mapping and
genomic prediction. Our study was designed to accomplish the
following objectives: (i) to assess the genetic variation in grain
quality traits (i.e., protein, oil and starch) among tropical maize
populations; (ii) to identify significant QTLs associated with grain
quality traits in tropical maize populations tested across multiple
environments, and (iii) to assess the potential of utilizing genomic
selection for the improvement of grain quality traits in
tropical maize.

2 Materials and methods

2.1 Plant materials

One doubled haploid (DH) and three F3 tropical maize
populations comprising 110, 271, 333 and 158 lines, respectively,
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were developed from four bi-parental crosses (Table 1).
The populations used in this study were also used for mapping
agronomic traits in our earlier studies (Ertiro et al., 2020; Ndlovu
et al., 2022; Kimutai et al., 2023). All the parental lines we used in
this study exhibited variations in grain quality traits (oil, protein
and starch content) and are adapted to mid-altitude regions
(1,000–1,500 m above sea level (MASL)) of SSA. Studied
populations were test-crossed with an appropriate tester from the
opposite heterotic group for phenotypic evaluations. The performance
of parental lines and selected commercial hybrids (Supplementary
Table S1) and the progenies for each population are listed
(Supplementary Table S2) for all quality traits. Each population
along with its parents were planted at the Kiboko Maize
Research Station, Kiboko, Kenya. Kiboko Maize Research Station is
situated between 37.7235°E longitude and 2.2172°S latitude, at
an elevation of 975 MASL. The annual temperature ranges from
16.0°C to 33.6°C, and the rainfall varies from 545 to 629 mm
annually across the two studied seasons. This location lies in a hot,
semi-arid region and the soils are well-drained, dark reddish
brown to dark red, friable sandy clay to clay (Acri-Rhodic
Ferrosols) developed from undifferentiated basement system rocks,
predominantly banded gneisses (Ertiro et al., 2022). The DH pop
1 and F3 pop 2 were evaluated at Kiboko in the main rainy season
for two seasons, while F3 pop 3 and F3 pop 4 were evaluated for
one season.

2.2 Field trial and data collection

All four biparental populations were evaluated using an alpha
lattice incomplete block design with two replications. Single row
plots, measuring 5 m long at a row spacing of 0.75m, were sown.
Trial plots were top-dressed with urea fertilizer at the rate of 138 kg
N per hectare 3 weeks post-planting. All trials were irrigated as
required to avoid anymoisture stress. Trials were kept weed-free and
other established standard agronomic practices were followed. Data
pertaining to the target traits were systematically collected by
selecting ten plants from the midsection of the plot rows. This
included plant height (PH, centimetres), anthesis date (AD, days),
anthesis silking interval (ASI, days), ear height (EH, centimetres)
and ear position (EPO, ratio of EH/PH). For grain yield (GY)
assessment, the shelled grains were quantified in kilograms (kg)
and subsequently converted to tons per hectare, considering a
moisture content of 12.5% (GY in t/ha).

Grain texture was measured on a 1 to 5 scale (where 1 = flint,
2 = semi-flint, 3 = intermediate, 4 = semi-dent and 5 = dent).
Kernel weight (Kwt) was determined by measuring 100 randomly

selected seeds per line/family per replication, with measurements
recorded in grams. Following harvest, seeds for each genotype
were separated to facilitate grain nutrient analyses. Grain quality
traits, specifically oil, protein, and starch contents, were
quantified using a FOSS Infratec TM 1241. The analysis
involved 500 g samples of maize grain obtained from each
plot, and the results were reported as a percentage of whole
grain. Five 100-g subsamples were assayed and the mean reading
for each parameter was reported per plot. The reflectance spectra
were collected in a range of 400–2,500 nm with 10 nm intervals in
the near-infrared reflectance (NIR) region.

Analyses of variance (ANOVA) for grain traits, including oil
content, protein content, starch content, kernel weight, and grain
texture, within each biparental population across different seasons
were performed using the META-R (Alvarado et al., 2020) and
ASREML-R (Gilmour et al., 2002). Best Linear Unbiased Estimators
(BLUEs) were computed utilizing a mixed model, wherein genotype
entries were treated as fixed effects, while the remaining terms were
treated as random. In the estimation of broad-sense heritability, all
terms were considered as random effects. Broad sense heritability
was estimated by the formula:

h2 � σ2G/ σ2G + σ2GE/E + σ2e/Er( )

Where σ2G is the genotypic variance, σ2GEis the genotypic by
environment interaction (GEI), σ2e is the error variance, E is the
number of environments or seasons, and r is the number of
replications in each trial. The phenotypic and genotypic correlations
among traits were evaluated as described by Hirel et al. (2007).

2.3 Genotypic analysis

DNA was extracted from bulked young leaves of the studied
tropical maize lines following the CTAB Method (CIMMYT, 2005).
Genotyping of the F3 populations was performed using the Illumina
Maize SNP1500 Bead Chip, which utilizes evenly spaced SNPs to
comprehensively cover the maize genome (Ganal et al., 2011). The
above task was performed at the LGC genomic labs in the
United Kingdom (https://www.lgcgroup.com/genotyping/). In the
case of the tested DH population, lines were genotyped using the
Genotyping-by-Sequencing (GBS) approach. The obtained data
underwent filtration using TASSEL software, with criteria set at >
0.10 Minor Allele Frequency (MAF), <5% heterozygosity, and a
minimum count of 90% of the total size (Bradbury et al., 2007;
Sitonik et al., 2019). In all the populations, homozygous marker loci
for both parents and uniformly distributed polymorphic markers
between parents were retained. Linkage maps in all four populations
were constructed using QTL IciMapping version 4.1 software (Meng
et al., 2015). After removing the distorted markers, finally, we used
1,007, 452, 231, and 387 high-quality SNPs in DH pop 1, F3 pop 2, F3
pop 3 and F3 pop 4, respectively. In brief, the linkage map was
constructed by using these SNPs, and by selecting the most
significant markers using stepwise regression. A likelihood ratio
test was used to calculate the logarithm of odds (LOD) for each
marker at a score of >3 with a 30 cM maximum distance between
two loci. The recombination frequency between linked loci was

TABLE 1 Details of the maize populations used in this study.

Population Pedigree Population size

DH Population 1 CML494×CML550 110

F3 Population 2 CKL05017×CML536 276

F3 Population 3 CML494×CML550 315

F3 Population 4 VL081452×VL058589 158
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transformed into cM (CentiMorgan’s units) using Kosambi’s
mapping function (Kosambi, 1944).

For each population, best linear unbiased predictors (BLUPs)
across seasons were used to detect QTLs based on Inclusive interval
mapping (ICIM). The quantification of phenotypic variation attributed
to individual QTLs and the cumulative variation explained by the

aggregate presence of all QTLs was conducted. QTL names were
constructed by starting with the letter ‘q’ to indicate QTL, followed
by an abbreviation of the trait name, the corresponding chromosome
number, and the marker position (Ribaut et al., 1997).

Genomic prediction (GP) analysis was performed in R
program version 4.2.1 (R Core Team 2023). GP was applied to

FIGURE 1
Phenotypic distribution for grain quality traits evaluated across DH and F3 tropical maize populations. The sky blue and light green colour plots
represent the grain quality trait measurements for DH and F3 populations, respectively. DH pop 1 = CML494×CML550; F3 pop 2 =CKL05017×CML536; F3
pop 3 = CML494×CML550; and F3 pop 4 = VL081452×VL05858.
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each F3 and DH population to find out the prediction accuracy of
grain quality traits. This was done using the RR-BLUP model
(Zhao et al., 2012; Crossa et al., 2017). BLUEs across seasons for
each of the studied populations were used for the analysis. In GP
analysis, polymorphic SNPs between the parents of each
population, comprising 1,007, 452, 231, and 387 SNPs in DH
pop 1, F3 pop 2, F3 pop 3, and F3 pop 4, respectively, were used. A
five-fold cross-validation approach was employed, specifically
utilizing a ‘within population’ strategy where both training and
estimation sets originated from within each bi-parental
population. For each trait in each population, 100 iterations
were performed to divide the data into training and
estimation sets.

3 Results

3.1 Phenotypic analyses

The analysis of grain quality traits revealed significant variability
within the studied tropical maize populations for each trait. The
distribution of these traits closely followed the expected normal
distribution pattern, as demonstrated by the histogram plots
(Figure 1). Across the DH and F3 populations, the mean protein
content varied from 6.8%–10%, oil content from 4.5%–6.2% and
starch content ranged from 69.5%–72.5%. Among these
populations, F3 pop 2 had the highest protein content (10%)
followed by DH pop 1 (9.6%). F3 pop 3 and F3 pop 4 recorded

TABLE 2 Estimates of means, components of genotypic (σ2G), genotype × environment interaction (σ2G×E), error variances (σ
2
e) and heritability (h2) for four

biparental populations evaluated at Kiboko in Kenya for grain quality traits (protein content, starch content, oil content and grain texture).

Populations Grain quality traits

Oil content Protein content Starch content Texture/Kernel weight1

DH pop 1 - CML494×CML550

σ2G 0.02* 0.03* 0.04** 4.37*

σ2G×E 0.01 0.03* 0.02* -

σ2e 0.03 0.24 0.41 21.30

h2 0.68 0.29 0.26 0.31

LSD5% 0.22 0.38 0.49 5.07

CV (%) 3.23 5.94 1.01 7.06

F3 pop 2 - CKL5017×CML536

σ2G 0.02* 0.04** 0.04** 0.07**

σ2G×E 0.01 0.06** 0.01* 0.04*

σ2e 0.04 0.11 0.21 0.19

h2 0.58 0.42 0.42 0.67

LSD5% 0.22 0.44 0.46 0.43

CV (%) 3.66 3.85 0.69 19.76

F3 pop 3 - CML494×CML550

σ2G 0.02* 0.04* 0.07** 3.47**

σ2e 0.03 0.09 0.27 14.84

h2 0.57 0.47 0.34 0.35

LSD5% 0.26 0.42 0.60 3.11

CV (%) 3.55 4.18 0.73 7.33

F3 pop 4 - VL081452×VL058589

σ2G 0.02* 0.04* 0.04* 11.50**

σ2e 0.04 0.15 0.22 30.42

h2 0.50 0.35 0.27 0.43

LSD5% 0.30 0.46 0.51 7.38

CV (%) 4.16 5.17 0.80 7.89

CV- coefficient of variation, LSD-least significant difference, *, ** significant at p=0.05 and 0.01 level, respectively.1 Grain texture was recorded in F3 pop 2 whereas kernel weight was recorded in

the other three populations.
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grain protein levels <9%. For oil content, DH pop 1 (6.2%) exhibited
the highest values, followed by F3 pop 4 (5.8%). For starch content,
the highest levels were recorded in DH pop 1 and F3 pop 3 (both
with 72.5%).

Genotypic variance (σ2G) was significant at p ≤ 0.05 for grain
quality traits (oil, protein, starch content, kernel weight and grain
texture) across all the studied genotypes (Table 2). Genotype-
environment interaction effects (σ2G×E) were significant for
protein and starch content in DH pop 1 and F3 pop 2. In
general, kernel weight consistently exhibited elevated coefficients
of variation (CVs) within both DH and F3 populations. When
comparing the same trait across the studied populations, the CVs
for the F3 pop 4 were marginally higher than those for other
populations. Nonetheless, substantial variations across the
genotypes and traits were still evident.

Across the segregating populations, the highest and lowest
values of broad sense heritabilities were observed for oil content
(0.68) and starch content (0.26) in DH pop 1. Overall broad-sense
heritabilities ranged from low to high for all grain quality traits
studied–with oil content (0.68) and grain texture (0.67) having the
highest values. Generally, oil content (0.50–0.68) had moderate to
high broad-sense heritabilities across the studied populations.
Whereas protein (0.29–0.47) and starch (0.26–0.42) contents, on
the other hand, recorded low to moderate values of heritability
across the populations. Likewise, for kernel weight trait the
heritability values ranged from low (0.31 in DH pop 1) to high
(0.43 in F3 pop 4).

To understand the interrelations among grain quality traits,
Pearson’s correlations of BLUP values were computed within the F3

pop 2 (Figure 2). Grain protein content was negatively correlated
with starch content (r = −0.56**), grain yield (r = −0.16**) and plant
height (r = −0.13*). In the same population, grain yield had a weak
but significant positive correlation with grain texture (r = 0.14*),
plant height (r = 0.21**) and ear height (r = 0.19**). Grain oil content
was negatively correlated with starch content (r = −0.65**). Grain
texture and anthesis date were also negatively correlated
(r = −0.18**). The documented correlations between grain quality
and associated traits in diverse maize populations present valuable
insights for making informed decisions in genotypic selection. These
findings suggest a complex trait architecture, wherein grain quality
traits display significant interactions (+/−) with one another.

3.2 QTLs associated with grain quality traits

The maize populations evaluated in this study were also tested in
earlier studies (Gowda et al., 2018; Kimutai et al., 2023), where the
linkage maps information is included. In brief, the map length of
each population was 2,970, 1,650.28, 906.83, and 2,169.97 cM from
1,007, 452, 202, and 387 polymorphic SNPs for DH pop 1 and F3 pop
2, 3, and 4, respectively. Across the ten maize chromosomes, a total
of 63 significant QTLs were identified for oil content (13), grain
protein content (7), starch content (33), grain texture (8) and kernel
weight (2) (Table 3). The identified QTLs were distributed across
10 chromosomes. Table 3 contains comprehensive information
about the identification and locational specifics of the discerned
QTLs, as well as their respective genetic effects. QTLs for oil content
were found in all chromosomes except chromosomes 2, 7 and 10.
For protein content, QTLs were only discovered on chromosomes 1,
2, 3, 5 and 6. QTLs associated with starch content were found in all
chromosomes except on chromosomes 9 and 10. For grain texture,
only chromosomes 6 and 10 had no QTLs. For kernel weight, two
QTLs on chromosomes 4 and 10 were found in F3 pop3.

In DH pop1, QTL analysis revealed a total of 6 QTLs for the
studied grain quality traits on chromosomes 3, 6, 8, 9 and 10
(Table 3). The highest number of QTLs were discovered for
starch content in F3 pop 2 (n = 22). For the same population,
8 and 4 QTLs discovered were associated with grain texture and
protein content respectively. No QTLs were detected for protein
content in F3 pop 4. A comparison of the QTLs across DH and F3
populations revealed that several QTLs overlapped for some of the
grain quality traits. In Chromosome 6, the region between 89.81 and
112.9 Mb had QTLs for both oil and starch content. In chromosome
2, QTLs associated with protein content and starch content were
detected in the region between 188.45 and 233.61 Mb (Table 3).

The phenotypic variance explained (PVE) for all detected QTLs
associated with grain quality traits ranged from 0.81% to 26.85%
(Table 3). The most extensive range of PVE was observed in F3 pop 2
(0.81%–22.46%) for starch content. On the other hand, a narrow
PVE range was observed for oil content (2.49%–3.51%) in F3 pop 3.
Significant QTLs that explained more than 10% of the PVE (major
effects), was identified for oil content (qOC3-146 (18.06%), qOC6-
102 (26.85%), qOC2-185 (25.93%) and qOC2-185 (25.93%)), protein
content (qGPC6-30 (19.45%), starch content (qSC1-20 (22.46%),
qSC4-10 (10.55%), qSC5-10 (12.99%) and qSC5-55 (19.75%)) and
grain texture (qGT3-9 (14.59%) and qGT5-88 (11.29%)). In DH
pop1, additive effects are high for two major effect QTL and the

FIGURE 2
Phenotypic correlations of grain quality and other agronomic
traits evaluated in F3 pop 2 (CKL5017×CML536). The correlation
values < 0.11 are not significant at p < 0.05. GPC = grain protein
content; AD = anthesis date; EPO= ear position; GY = grain yield;
PH = plant height; EH = ear height; TEX = grain texture; SC = starch
content; OC = oil content.
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TABLE 3 Analysis of markers associated with grain quality traits, allele substitution (α) effects, and the total phenotypic variance of the joint linkage
association mapping based on combined DH and F3 maize populations.

QTL
name

Chr Position
(cM)

LOD PVE
(%)

Add Dom Total
PVE (%)

Flanking markers Physical
position (Mbp)

DH pop 1 - CML494×CML550

Oil content

qOC3-146 3 150 6.3 18.06 0.05 - 30.72 S3_145603187 S3_149385251 145.60–149.38

qOC6-102 6 50 8.8 26.85 0.06 - S6_101991919 S6_103359585 101.99–103.35

qOC8-16 8 197 2.98 8.79 −0.03 - S8_15877080 S8_19122987 15.87–19.12

qOC9-10 9 48 3.47 9.58 0.03 - S9_8416672 S9_10276690 8.41–10.27

Grain protein content

qGPC9-144 9 162 2.95 11.88 −0.02 - 10.75 S9_143801329 S9_149382254 143.80–149.38

Starch content

qSC10-20 10 68 2.81 7.44 −0.02 - 9.75 S10_11602996 S10_38530632 11.60–38.53

F3 pop 2 - CKL5017×CML536

Oil content

qOC1-64 1 165 3.84 7.67 −0.06 0.04 15.53 PZA00455.14 PHM 1968.22 63.80–168.71

qOC6-74 6 59 4.59 7.13 −0.06 0.02 PZB01009.1 PZA00942.2 72.95–89.81

qOC6-90 6 70 3.74 5.6 0.05 0 PZA00942.2 lac1.3 89.81–112.90

Protein content

qGPC1-105 1 159 5.94 9.14 −0.14 0 17.61 PZA00939.1 PZA00455.14 104.96–168.71

qGPC2-227 2 46 2.74 6.19 −0.02 −0.16 PZD00022.5 PZA02266.3 226.34–233.61

qGPC2-10 2 207 3.42 4.89 0.09 0.04 PHM6111.5 PZA00613.22 3.50–21.42

qGPC6-30 6 28 3.05 19.45 −0.17 −0.04 PZD00072.2 PZA00440.1 21.59–71.99

Starch content

qSC1-20 1 16 5.6 22.46 0.04 0.1 17.96 PHM11114.7 PZA01456.2 12.76–157.65

qSC1-105 1 158 3.84 0 0.01 0 PZA00939.1 PZA00455.14 104.96–168.71

qSC1-21 1 303 3.59 8.81 −0.03 −0.3 PHM574.14 PZA02094.9 15.33–59.27

qSC2-189 2 1 2.96 2.82 0.02 −0.01 PZA01552.1 PZD00022.5 188.45–233.61

qSC2-194 2 77 3.11 2.98 0.03 0.01 PZA02964.7 PHM14412.4 193.67–201.69

qSC2-189 2 79 3.2 2.2 0.03 0.02 PHM7953.11 PZA00803.3 189.50–189.60

qSC3-171 3 20 2.55 4.5 0.04 0.03 PZA03735.1 PHM17210.5 170–91 - 173.26

qSC3-121 3 38 3.28 0.1 0.03 0.01 PHM1745.16 PZA00363.7 120.53–129.09

qSC3-40 3 44 9.03 4.47 0.04 0 PZA00707.9 PZA00380.10 38.20–98.45

qSC3-38 3 47 2.67 0.85 −0.03 0.01 PHM2343.25 PZA00297.2 26.85–38.83

qSC4-10 4 113 2.61 10.55 0.01 0.07 PZA02289.2 PZA00436.7 6.55–177.80

qSC4-20 4 143 3.92 6.17 −0.04 0.01 PHM259.11 PZA00704.1 16.30–114.90

qSC5-10 5 11 3.5 12.99 0.03 −0.2 PHM5484.22 PHM3137.17 8.18–20.83

qSC5-2 5 55 2.97 3.72 −0.03 0.02 PZA00963.3 PZA00818.1 1.0–87.11

qSC5-119 5 113 3.15 4 −0.03 −0.02 PZA02164.16 PZA01365.1 117.35–138.85

qSC6-90 6 60 5.14 2.56 0.03 −0.01 PZA00942.2 lac1.3 89.81–112.90

(Continued on following page)
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TABLE 3 (Continued) Analysis of markers associated with grain quality traits, allele substitution (α) effects, and the total phenotypic variance of the joint
linkage association mapping based on combined DH and F3 maize populations.

QTL
name

Chr Position
(cM)

LOD PVE
(%)

Add Dom Total
PVE (%)

Flanking markers Physical
position (Mbp)

qSC6-113 6 71 5.18 0.81 −0.03 0 lac1.3 PZA00571.1 112.90–113.26

qSC6-125 6 88 5.05 3.39 −0.04 0.05 PZB00414.2 PZA02328.5 124.71–130.59

qSC7-15 7 35 4.82 2.44 0.02 0 PZB00752.1 PZA02872.1 11.07–113.74

qSC8-10 8 9 9.85 1.24 0.01 0 PHM2487.6 PZA02955.3 8.40–15.16

qSC8-105 8 39 5.65 1.93 0 0.03 PZA02566.1 PHM934.19 104.22–109.38

qSC8-123 8 47 3.08 5.06 0.02 0.06 PZA01049.1 PHM4757.14 122.03–144.66

Grain Texture

qGT1-43 1 157 4.5 4.76 0.06 −0.03 40.55 PZA00962.1 PZA00939.1 42.32–104.96

qGT1-55 1 304 2.53 5.52 −0.3 −0.53 PHM574.14 PZA02094.9 15.33–59.27

qGT3-9 3 68 11.5 14.59 0.11 −0.03 PZA00508.2 PZA01765.1 8.86–11.33

qGT4-10 4 123 7.21 8.03 −0.08 −0.02 PZA02289.2 PZA00436.7 6.55–177.80

qGT5-88 5 112 6.33 11.29 0.1 0.02 PZA01693.1 PZA02164.16 87.11–117.35

qGT7-82 7 91 2.73 7.71 −0.02 0.56 PZA01933.3 PHM3435.6 80.61–141.80

qGT9-87 9 22 2.76 3.49 0.06 0 PHM1766.1 PZA03235.1 86.54–107.26

qGT9-80 9 32 6.68 7.06 −0.08 0 PZA03235.1 PZA00225.8 76.31–86.54

F3 pop 3 - CML494×CML550

Oil content

qOC3-06 3 77 5.53 3.51 0.04 0 15.53 PZA01765.1 PHM12859.7 5.16–8.86

qOC5-05 5 78 3.47 2.49 0.03 0.01 PHM14671.9 PHM3096.19 3.83–5.50

Grain protein content

qGPC3-175 3 30 2.89 4.21 0.1 −0.04 17.61 PZA00538.15 PHM17210.5 170.91–199.68

qGPC5-10 5 53 5.23 6.16 −0.12 0.03 PZA03340.2 PHM14671.9 5.50–19.33

Starch content

qSC1-227 1 38 3.79 2.38 0.02 0.02 17.96 PHM5293.11 PZA00381.4 226.24–232.45

qSC1-192 1 67 2.56 3.57 0.04 0.03 PHM5480.17 PZA00425.11 191.75–209.98

qSC3-175 3 32 7.8 1.19 −0.03 0 PZA00538.15 PHM17210.5 170.91–199.68

qSC3-06 3 76 3.6 3.57 −0.04 0.02 PZA01765.1 PHM12859.7 5.16–8.86

qSC5-70 5 49 11.2 2.38 0.02 −0.01 PHM13675.18 PHM 1870.20 61.25–71.08

qSC5-35 5 51 13.8 1.19 0.02 −0.02 PZA01530.1 PZA00934.2 31.50–39.24

qSC6-121 6 65 3.01 1.19 −0.02 −0.01 PZA00473.5 PZA02673.1 117.06–135.75

qSC8-10 8 16 3.64 1.19 0.01 −0.03 PHM2487.6 PZA03178.1 8.41–11.88

Kernel weight

qKw4-170 4 62 3.02 4.54 −0.31 0.10 9.27 PHM3155.14 PZA01187.1 168.25–175.15

qKwt10-100 10 1 3.84 4.50 0.33 0.05 PZB01358.1 PHM229.15 92.58–107.42

F3 pop 4 - VL081452×VL058589

Oil content

qOC2-185 2 207 11.6 25.93 −0.011 0.64 15.53 PZA02170.1 PHM5060.12 184.40–231.77

(Continued on following page)
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favourable alleles are contributed from parent CML550.Whereas for
the major effect QTL identified for grain protein content, the
favourable alleles are contributed from parent CML494 (Table 3).
In F3 pop 2, the favourable alleles for major effect QTL for protein
content was contributed from parent CKL5017, whereas for starch
content and grain texture, parent CML536 contributed.

3.3 Prediction accuracies of grain quality
traits in DH and F3 tropical maize
populations

To estimate the prediction accuracy for each of the studied grain
quality traits, we used the RR-BLUP model (Figure 3). Overall, the
prediction accuracies across the populations were moderate to high
for the studied grain quality traits. The average prediction accuracies
were higher for kernel weight in DH pop 1 (0.58) followed by grain
texture (0.57). The prediction accuracies for protein content were
0.52, 0.41, 0.28 and 0.08 for DH pop 1, F3 pop 2, F3 pop 3 and F3 pop
4, respectively (Figure 3). For oil content prediction accuracies were
0.43, 0.25, 0.28 and 0.17, whereas for starch content prediction

accuracies were 0.38, 0.21, 0.28 and 0.15 in DH pop 1, F3 pop 2, F3
pop 3, and F3 pop 4, respectively. Interestingly, DH pop
1 outperformed F3 maize populations in terms of overall trait
genomic prediction accuracy for all traits.

4 Discussion

4.1 The positive and negative correlations
among grain quality traits indicate their
potential for simultaneous improvement
through phenotypic selection

The significant variability observed within the four tropical
maize populations for the studied grain quality traits (Figure 1;
Table 2) underscores the genetic diversity present within the studied
maize genotypes, emphasizing the potential for targeted breeding
efforts to capitalize on this diversity and enhance grain quality traits
in the subsequent generations. In an earlier study by Ndlovu et al.
(2022), a pronounced range of variability in grain quality traits in
maize was documented, despite their study being conducted under

TABLE 3 (Continued) Analysis of markers associated with grain quality traits, allele substitution (α) effects, and the total phenotypic variance of the joint
linkage association mapping based on combined DH and F3 maize populations.

QTL
name

Chr Position
(cM)

LOD PVE
(%)

Add Dom Total
PVE (%)

Flanking markers Physical
position (Mbp)

qOC4-230 4 89 3.26 5.98 0.03 0.001 PZA00521.3 PZA01367.2 226.98–243.38

qOC4-170 4 126 3.67 6.74 0.041 −0.01 PHM 2006.57 PZA01289.1 167.40–171.71

qOC6-70 6 126 3.78 6.97 0.037 −0.03 PZA00006.17 PHM14522.5 66.16–73.59

Starch content

qSC5-55 5 196 3.65 19.74 0.095 −0.46 19.81 PZA02207.1 PHM2769.43 51.25–59.62

qSC7-121 7 43 2.5 7.34 −0.091 0.201 PHM9162.135 PZA02959.14 120.22–133.75

Chr–chromosome; PVE, phenotypic variance explained; add–additive effects; Dom–dominance effects.

FIGURE 3
Distribution of the five-fold cross-validated genomic prediction accuracies in DH pop 1, F3 pop 2, F3 pop 3 and F3 pop 4 for grain quality traits.
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conditions of low-N-induced stress. In our study, the tested bi-
parental maize populations exhibited a typical grain quality trait
composition with moderate protein (6.8%–10%) and oil (4.5%–

6.2%) levels, and a substantial starch content reaching 72.5%. These
values are consistent with the general nutritional profile of maize
reported in earlier studies (Dei, 2017; Ray et al., 2019; Álvarez-
Iglesias et al., 2021; Ertiro et al., 2022; Langyan et al., 2022; Wang
et al., 2023). Targeted breeding could optimize the grain quality
traits to meet the requirements of the food and feed industry.

The observed significant genotypic variance for grain quality
traits underscores the substantial genetic diversity present within the
tropical maize populations, presenting opportunities for trait
enhancement through selective breeding. Furthermore, the
significant G×E interactions observed for traits like protein and
starch content underscore the importance of incorporating
environmental factors into breeding strategies for these traits.
These findings align with those of Katsenios et al. (2021) and
Ndlovu et al. (2022), particularly regarding the grain protein
content in maize. The results of these studies indicate that grain
quality is influenced by a variety of environmental conditions. In this
respect, to enhance grain quality traits, breeders and seed growers
should consider cultivating maize lines in optimal environments.
Despite the observed significant G×E interactions for these traits,
environmental variance across the studied grain quality traits was
not significant. This indicates that genetic factors predominantly
govern the trait variations, minimizing the role of external
environmental conditions.

Broad sense heritabilities for all the studied grain quality traits
ranged from low to high, indicating the varying degrees of genetic
influence on the trait variability. Grain oil content demonstrated
moderate to high heritability, suggesting that a significant portion of
the phenotypic variation was attributed to genetic factors, making it
feasible for recurrent selection approaches. Conversely, grain
protein and starch content exhibited a range of heritability from
low to high, indicating a complex interplay of genetic and
environmental factors. The significant negative correlations
observed among all grain quality traits (Figure 2) indicate an
inverse relationship, suggesting that an increase in one of the
traits can lead to a decrease in the other trait. This result has
implications for trait selection in breeding programs for
improved grain quality in tropical maize, highlighting the need to
carefully consider trade-offs and prioritize traits based on the set
breeding objectives.

4.2 Grain quality traits in tropical maize are
controlled by multiple QTLs

Grain quality traits in maize are characterized by their
complexity as quantitative traits, governed by a combination of
both major and minor genetic effects (Zheng et al., 2021). In the
present study, we used linkage mapping to identify significant QTLs
associated with grain quality traits in DH and F3 tropical maize
populations grown in Kenya. Numerous studies have extensively
explored the genetic underpinnings of maize grain quality traits,
resulting in the detection of a multitude of QTL (Li et al., 2009; Guo
et al., 2013; Galić et al., 2017; Karn et al., 2017; Badu-Apraku et al.,
2020; Ndlovu et al., 2022; Zhang et al., 2023).

In accordance with our results, the presence of QTLs related to
oil content across all chromosomes except for chromosomes 2, 7,
and 10, indicates a widespread genetic regulation of grain oil content
in maize. Similarly, QTLs governing grain protein content were
exclusively identified on chromosomes 1, 2, 3, 5, and 6, emphasizing
the specific chromosomal regions contributing to protein variations.
Furthermore, the near-ubiquitous distribution of QTLs associated
with grain starch content across most chromosomes, except for
chromosomes 9 and 10, highlights the genetic complexity
underlying grain starch content in maize. These findings diverge
slightly from those obtained by Zhang et al. (2023), who utilized
different genotypes from the ones in our study and detected a
combined total of 16 QTLs for grain oil content distributed
across all maize chromosomes. Yang et al. (2012) also identified
58 QTLs for kernel oil content in all chromosomes. Interestingly,
Zhang et al. (2023) recognized chromosome 9 as housing the largest
effect QTLs for oil content. Yang et al. (2012) and Ndlovu et al.
(2022), on the other hand, reported QTLs on chromosomes 1 and
2 as having the largest effects on grain oil content, respectively.
Another study by Fang et al. (2021) identified five major effect QTLs
associated with oil content located on chromosomes 6 and 9. For
grain protein content, Lu et al. (2022) found associated QTLs in all
chromosomes except chromosomes 6, 8 and 10. In the study by
Ndlovu et al. (2022), the only major effect QTL associated with grain
protein content was identified on chromosome 3. For starch content,
the major effect QTLs on chromosomes 1, 3, 4, 5, 7, 8 and 9 were
located in regions which were also reported in earlier studies
(Goldman et al., 1993; Yang et al., 2013; Lin et al., 2019; Zhang
et al., 2022). The absence of QTLs on certain chromosomes in our
study, despite earlier reports, underscores the intricate interplay of
genetic variations and environmental factors in QTL identification,
likely influenced by the distinct genotypes and growing conditions
used. This also highlights the importance of broadening the scope of
grain quality trait breeding research to encompass diverse maize
populations and environmental settings so as to comprehensively
uncover QTLs associated with grain quality traits.

DH pop1 and F3 pop3 share common parents. However, the
average performance was relatively higher for most of traits in DH
population with mean of 5.62%, 8.21%, 70.9% and 65.36 g observed
for grain oil content, protein content, starch content and grain
weight, respectively, compared to 5.17%, 7.33%, 70.9% and 54.3 g in
F3 pop3 (Figure 1). The number of QTL detected was also varied
between these populations with more QTLs (4) detected for oil
content in DH population whereas more QTL for starch content
were detected in F3 pop3 (Table 3). Interestingly, there is no
overlapping QTLs were detected in this study. All QTL detected
in F3 pop3 are associated with minor effect whereas, with DH
population, we able to identify one major effect QTL for grain
protein content (qGPC9-144 with PVE of 11.88%) and two major
effect QTL for oil content (qOC3-146 with PVE of 18.06%; qOC6-
102 with PVE of 26.85%). Overall, DH population has few
advantages over F3 population both in terms of mean
performance and finding QTLs, however, results from different
genetic populations are required for appropriate conclusion.

The QTLs identified in the present study were found to overlap
with those previously reported in diverse maize populations (Ertiro
et al., 2022; Ndlovu et al., 2022), indicating a degree of genetic
consistency across different studies. A significant finding of our
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analysis is the identification of distinct genomic regions on
chromosome 6 associated with both oil and starch content
(Table 3). The detection of QTLs in the genomic region
spanning 89.81–112.9 Mb (chr 6) for these traits holds promise
for further improvement of these traits. Furthermore, another
distinct region from 188.45 to 233.61 Mb on chromosome 2 was
found to harbour QTLs linked to grain protein and starch content.
The identified regions on chromosomes 2 and 6 hold significant
potential for enhancing grain quality in tropical maize through
targeted breeding. Elucidating the underlying genes and
mechanisms within these regions could provide invaluable
insights for developing effective improvement strategies. In
previous investigations, research studies by Wassom et al. (2008)
and Fang et al. (2021) highlighted the crucial involvement of
chromosome 6 in shaping grain quality traits, further
substantiating its importance in genetic studies related to maize
grain quality. In a similar context, earlier studies (Ndlovu et al., 2022;
Zhang et al., 2022) have identified chromosome 2 as a pivotal
genomic region associated with grain quality traits.

In maize, starch content is regulated by many genes (Zhong
et al., 2020). Starch synthesis in kernels involves a series of starch
metabolic enzymes like sucrose synthase (SUS), starch synthases
(SSs) and starch branching and debranching enzymes (Nelson and
Pan, 1995; Zhang et al., 2022). Finding candidate genes within the
identified QTL regions improves the consistency of identified QTLs
to be used in breeding to improve the linked trait. Two QTLs for
starch content on F3 pop2 (qSC1-20 and qSC1-21) were overlapped
with two QTLs for grain texture (qGT1-43 and qGT1-55) and one
QTL each for oil content (qOC1-64) and protein content (qGPC1-
105) (Table 3). By using four DH populations, Zhang et al. (2022)
also reported QTL for starch content in the same region, which is
known to harbor sucrose synthase gene. Sus2 is one of the three SUS
encoding genes in maize located at 57.45 Mbp on chromosome 1,
which has a unique role in cytoplasmic sucrose metabolism (Deng
et al., 2020). Two QTLs from F3 pop2 for starch content (qSC4-10
and qSC4-20) are co-located with grain texture QTL (qGT4-10)
Several studies also reported colocalized QTL in the same region
(Wang et al., 2010; Guo et al., 2013; Yang et al., 2013; Dong et al.,
2015; Hu et al., 2021; Zhang et al., 2022). This region also harbors
three candidate genes involved in starch synthesis like vacuolar
invertase (IVR2) at 69.45 Mbp, Starch branching enzyme (SBE1) at
65.19 Mbp and SS2c at 34.23 Mbp (Zhang et al., 2022). IVR2 (Kim
et al., 2000) in maize has a key role in carbon metabolism in both
source and sink tissues that irreversibly hydrolyze sucrose to
fructose and glucose and regulates sugar accumulation in sink
organs (Juarez-Colunga et al., 2018). SBE1 is related to amylose
content and starch molecular structure (Zhong et al., 2021). Another
candidate gene SS2c encodes soluble starch synthases which are
responsible for synthesis of amylopectin (Yan et al., 2009). These
results suggested that QTLs detected in this study are overlapped
between traits and with earlier studies and related to series of
candidate genes encoding key enzymes relevant to grain quality
traits. Therefore, these QTLs are relevant and useful to be used in
breeding through marker-assisted breeding to improve the grain
quality in maize.

4.3 Genomic selection in maize breeding for
improved grain quality can serve as a
valuable complement to conventional
phenotypic selection methods

Genomic selection (GS) is rapidly gaining prominence in
maize breeding programs, enabling the precise prediction of
breeding values for individual maize lines (Crossa et al., 2017;
Atanda et al., 2021; Singh and Kaundal, 2023). This approach has
been extensively employed across diverse maize genotypes in
numerous studies (Badji et al., 2020; Beyene et al., 2021; Gowda
et al., 2021; Ma and Cao, 2021) to investigate various grain-
related traits. Our genomic selection analysis revealed a range of
prediction accuracies across the maize populations (Figure 3),
indicating the promise of genomic information in predicting and
selecting grain quality traits in maize breeding programs.
Recorded moderate to high prediction accuracies offer
promise in maize breeding for targeted traits (Gowda et al.,
2021). Interestingly, our analysis revealed higher prediction
accuracies for kernel weight, grain texture, and grain protein
content, highlighting their suitability for GS. Additionally, we
observed that overall trait prediction accuracy in DH pop 1 was
superior as compared to the other three F3 populations,
indicating the potential for leveraging this DH population for
more effective trait prediction and selection. A similar trend was
observed by Ndlovu et al. (2022), who reported the highest
prediction accuracies in DH populations under low N stress
conditions. The differences between maize genotypes in
overall trait accuracies underscore the importance of
considering population-specific factors such as genetic
diversity, population structure and trait variability within
population or environmental interactions, which may
influence the effectiveness of GS for grain quality traits.

5 Conclusion

Here, we utilized DH and F3 tropical maize populations to detect
significant QTLs associated with grain quality traits in maize lines
grown in Kenya. The results of this investigation offer valuable
genetic resources for molecular breeding and enhance our
understanding of the genetic framework governing grain quality
in tropical maize. The detection of multiple QTLs distributed across
the 10 maize chromosomes suggests that the regulation of grain
quality traits involves a combination of both major-effect and
minor-effect QTLs. Notably, there was an observation of QTL
overlap for protein, oil and starch contents, suggesting potential
genetic links or pleiotropic effects. Moving forward, it is essential to
prioritize the validation of these identified QTLs, as they hold the
key to enhancing the efficiency of maize breeding programs aimed at
improving grain quality within the SSA region. The results of this
study also illustrated that integrating GS into tropical maize
breeding programs focused on improving grain quality can serve
as a valuable complement to conventional phenotypic
selection methods.
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