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With the rapid increase of economic globalization, the significant expansion

of shipping volume has resulted in shipping route congestion, causing the

necessity of trajectory prediction for e�ective service and e�cient management.

While trajectory prediction can achieve a relatively high level of accuracy,

the performance and generalization of prediction models remain critical

bottlenecks. Therefore, this article proposes a dual-attention (DA) based

end-to-end (E2E) neural network (DAE2ENet) for trajectory prediction. In the

E2E structure, long short-term memory (LSTM) units are included for the

task of pursuing sequential trajectory data from the encoder layer to the

decoder layer. In DA mechanisms, global attention is introduced between

the encoder and decoder layers to facilitate interactions between input and

output trajectory sequences, and multi-head self-attention is utilized to extract

sequential features from the input trajectory. In experiments, we use a ro-ro ship

with a fixed navigation route as a case study. Compared with baseline models

and benchmark neural networks, DAE2ENet can obtain higher performance on

trajectory prediction, and better validation of environmental factors on ship

navigation.

KEYWORDS

ship fixed route, prediction, end-to-end model, attention mechanism, DAE2ENet

1 Introduction

It is crucial to obtain dynamic information and data on ship navigation, so as to provide

trajectory predictions and develop security-friendly programs and countermeasures

for ships’ intelligent navigation systems (Lehtola et al., 2019). Currently, navigation

monitoring information in the shipping process is mainly obtained via the automatic

identification system (AIS), which can record the ship number, navigation position, speed,

course, and other information. AIS data can provide reliable data support for research

and analysis such as maritime traffic analysis, trajectory prediction, and route planning

(Zhe et al., 2020; Li et al., 2023). To predict trajectories from the perspective of ship

navigation, researchers often use kinematic modeling-based methods, such as the Kalman

filter, nearly constant velocity, Bayesian model, and Gaussian-sum filter, which have made

good achievements in ship trajectory prediction (Mazzarella et al., 2015; Enrica et al.,

2018; Baichen et al., 2019; Rong et al., 2019). The characteristics of these methods make
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them more suitable for ships sailing in a relatively stable

environment. Navigating ships is typically impacted by several

geographical conditions, which require consideration of historical

data for training prediction models to enhance generalization (Gao

et al., 2021). For this situation, machine learning techniques can

provide higher prediction accuracy and better generalization ability

compared with kinematic methods. Classic machine-learning

models have been extensively utilized in the realm of ship trajectory

prediction, such as logistic regression (LR) (Sheng et al., 2017),

support vector machines (SVM) (Liu et al., 2019), along with many

kinds of neural networks (NN) of multi-layer perceptron (MLP)

(Valsamis et al., 2017), back-propagation NN (BPNN) (Simsir and

Ertugrul, 2009), recurrent neural network (RNN) (Cho et al., 2014;

Capobianco et al., 2021), and long short-termmemory (LSTM) (Ma

et al., 2022; Tang et al., 2022).

However, classic NNs lack a mechanism that can effectively

mine information between sequences, so they have obvious

limitations when dealing with sequential prediction problems

(Zhang et al., 2022). RNN and LSTM can process sequential

information, which controls the transmission of information flow

through a network by adding gated mechanisms (Schmidhuber

and Hochreiter, 1997; Cho et al., 2014). Zhao et al. (2023)

proposed an RNN-based encoder-decoder model for trajectory

prediction during ship encounter situations, where the encoder-

decoder model provided improvement for handling sequential

information. For this case, attention mechanisms provide a more

appropriate solution (Luong et al., 2015). Several researchers have

introduced the attention mechanism in the trajectory prediction

model (Ma et al., 2020; Liang et al., 2022; Liu et al., 2022).

Another group of researchers used attention mechanisms for

feature extraction in sequential prediction. In Jiang and Zuo

(2023), a multi-class trajectory prediction model was trained using

the attention mechanism, and significant predictive ability was

achieved in predicting the trajectory sequence. In Chen et al.

(2023), an attention mechanism was applied to associate trajectory

change trends with ship navigation states, and adaptively update the

weighted factors of features to improve prediction accuracy.

After a review of existing studies, this article proposes a

dual-attention (DA) based end-to-end (E2E) neural network

(DAE2ENet) model for sequential prediction of ship trajectory.

There are two mainly improved parts of the DA mechanism

and E2E structure. In the E2E structure, we design a parallel

network of LSTM units to extract the complex relationship

between the historical and current states of ship trajectories. In

the DA mechanism, we incorporate two attention mechanisms,

namely global attention (GA) and local attention (LA). The GA

facilitates the identification of associations between the input

and output sequences, which enables the dynamic adjustment

of input sequence weights to suit various prediction tasks. The

LA is employed for acquiring significant characteristics from

the input sequence when generating the output. In comparison

experiments, traditional models (e.g., LR, SVM, BPNN), and

classic NNs (e.g., RNN, LSTM, Attention) are used as baseline

methods. The results show that DAE2ENet improves the accuracy

by around 50% compared to the classic NNs in ship trajectory

prediction. In ablation experiments, the effect of LSTM, LA, and

GA are investigated, where DA can successfully capture the latent

information and associations in AIS data sequences to enhance the

effectiveness and generalization of trajectory prediction. According

to numerical results, DAE2ENet has improved accuracy by around

30% compared to other attention models.

The remaining parts of this article are presented as follows.

Section 2 presents the prosed model of dual attentions, LSTM unit,

and end-to-end structure. Section 3 presents experimental results,

comparisons, and validations. Section 4 presents conclusions and

future plans.

2 Methodology

2.1 Variable statement of trajectory
prediction

This article aims to predict the navigation position of ship

trajectory based on navigating variables (Xnav) and environmental

variables (Xenv). Data gathering of navigating variables is mostly

based on AIS, which includes longitude, latitude, speed, course, and

so on. Data gathering of environmental variables is mostly based

on sensors, which include wind, propeller pitch, rudder, and so on.

Equation (1) is a set of ship navigation status and the environmental

situation at time t.

xt = {Xnav(t),Xenv(t)} (1)

The current and historical navigational states have an impact

on the position at sea of the ship in the upcoming moments during

the sailing process. The sequence of navigation and environmental

variables are shown asXnav = {Xnav(t),Xnav(t−1), . . . ,Xnav(t−m)}
and Xenv = {Xenv(t),Xenv(t−1), . . . ,Xenv(t−m)}, wherem denotes

the time step used in the prediction trajectory. To predict the future

position of ship trajectory at time t+1, themathematical expression

is formulated as Equation (2),

ŷt+1 = f (xt , xt−1, . . . , xt−m) (2)

where ŷt+1 denotes predicted position of longitude and latitude,

and f (·) denote the predicting function.

2.2 Overview of prediction framework

The proposed prediction framework of ship trajectory consists

of three major segments that are shown in the diagram in Figure 1.

Module 1 is data processing, which includes data cleaning for data

exceptions, duplication, errors, and missing values from raw data.

This process also provides training and testing data for Modules 2

and 3. Module 2 is model building and training, where DAE2ENet

is trained by incorporating LSTM-based E2E structure, local

attention, and global attention. Module 2 also includes the fine-

tuning process of DAE2ENet parameters based on training data.

Module 3 is prediction and validation, which includes comparison

experiments with baseline models, and ablation experiments with

proposed models.
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FIGURE 1

Overview of prediction framework for ship trajectory.

2.3 Methodological design of DAE2ENet

The LSTM-based E2E structure extracts interactional

information between sequences efficiently based on inputs. Since

it becomes difficult to understand the dependence on information

flowing control, the attention mechanism has been used to learn

the dependence of input and output information. Therefore,

this article proposes dual attention be incorporated into the E2E

structure, where global attention is used to capture relationships

from input to output, and local multi-head self-attention is used

to extract dependent information in the input sequence. Figure 2

shows the visualization of the proposed model.

In the encoder block, we employ a forward network with two

parallel LSTM cells in the hidden layer to pursue sequence data in

the input layer. After the hidden layer, hidden states are aggregated

by global attention, and dependent information with different

relevant weights between input sequence and output value. In the

decoder block, multi-head self-attention is employed to explore

potential relationships among sequences of input information and

generate representations of the relevance between input feature

vectors. In the output layer, encoder states depending on global

attention and local self-attention are concatenated for final output

via MLP. In the encoder, the input sequence is given a new

shape to the array without changing the data through the reshape

operation, as input to the LSTM unit of the decoder. In the decoder,

Add&Norm is used to add up the inputs and outputs for the

multi-head attention mechanism and perform layer normalization

operations. After Add&Norm, fully connected layer is to map the

features extracted by the multi-head attention mechanism to the

final output space as shown in Figure 2.

2.3.1 LSTM-based E2E
The DAE2ENet reconstructs the decoder based on the

LSTM-based E2E structure and combines it with dual attention

mechanisms. Figure 2 shows the overall structure of the DAE2ENet

model, and Figure 3 shows the structure of LSTM-based E2E as well

as the operational structure of the LSTM cell. During the whole

information flow of the encoding block, the LSTM transfers the

input sequence into vector representation according to forward

direction. LSTM is an RNN based on a gating strategy. It can

effectively solve information loss caused by gradient vanishing in

traditional RNNs.

• xt represents the input sequence, which is given in Equation

(1).

• ht and h′t represent the hidden state of the LSTM cell.

• ŷt+1 represents the output sequence, which is given in

Equation (2).

• The symbol σ refers to sigmoid activation function.

• Ct represents the cell state of the LSTM cell.

The calculation process for three gate mechanisms is listed as

follows.

• Forget gate calculates the information that needs to be

forgotten at time t, using the previous hidden state ht−1,

previous cell state Ct−1, and current input xt . ft denotes state

of forget gate as Equation (3).

ft = σ ([ht−1, xt] ·Wf + bf ) · Ct−1 (3)

• Input gate calculates the information that needs to be

transferred at time t. In the LSTM cell, there are two input

gates. The first gate uses the sigmoid function in Equation (4)

to map the states ht−1 and xt . The second gate also obtains

the state from ht−1 and xt , which uses the tanh function as

Equation (5).

it = σ ([ht−1, xt] ·Wi + bi) (4)
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FIGURE 2

Network structure and organization of DAE2ENet.

FIGURE 3

Network structure and organization of LSTM-based E2E.

C̃t = tanh([ht−1, xt] ·WC + bC) (5)

Then, cell state can be obtain according to Equation (9).

Ct = it · C̃t + Ct−1 · ft (6)

• Output gate calculates the current hidden state using the

current cell state. Equation (6) shows the calculation formula

for transforming state ht−1 and xt into information Ot .

Equation (7) show current hidden state using Ot−1 and Ct via

tanh function.

Ot = σ (Wo · [ht−1, xt]+ bo) (7)

ht = Ot · tanh(Ct) (8)

Finally, the brief output function calculated by the LSTM unit

can be depicted as Equations (9) and (10),

ht = LSTMCell(xt , ht−1,Ct−1, θ) (9)

h′t = LSTMCell(ht , h
′
t−1,C

′
t−1, θ

′) (10)

where LSTMCell(·) represents a set of calculation rules for

each gate mechanism. Notations θ and θ
′ are the set of training

parameters, which contain {Wf ,Wi,WC,Wo, bf , bi, bC, bo}.

2.3.2 Design of dual-attention mechanism
The attention mechanism has become a standard paradigm in

deep learning to solve information overloading and re-allocating

problems in sequential models (see Figure 4). An attention

mechanism using a key-value pair is included in DAE2ENet, which
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FIGURE 4

The basic calculation process of attention mechanism.

contains three components: query, key, and value. The query and

key vectors are calculated through dot-product to obtain the basic

attention score between each current qi and different ki, and the

softmax function is used to map this score αi. The weight αi and

value vi are calculated through multiplication to obtain the final

attention score based on weighted summation. The calculations are

given in Equations (11)–(13).

s(qi, ki) =
qi · ki√

D
(11)

where D represents the dimension of the query vector, s(qi, ki)

represents the score function for qi and ki.

αi = softmax(s(qi, ki)) =
exp(s(qi, ki))

k∑
j=1

exp(s(qj, kj))

(12)

att(αi, vi) =
n∑

i=1

αivi (13)

According to Figure 4 and Equation (13), the product of the

values vector vi and weight αi obtained by Equation (12) is the

attention value between the query vector and the key vector.

Based on the basic attention mechanism, we design dual

attentions in DAE2ENet as shown in Figure 2. For the encoder,

all the hidden states are inputted to calculate attention, which is

considered global attention (see Figure 5A). The value of global

attention is calculated by inputting the states h′ of the encoder and
the decoding state h′

decoder
of the decoder asH. The calculations of

Aglobal are given in Equation (14)

Aglobal = att(softmax(Hq,H
T
k ),Hv) (14)

where Hq, Hk, Hv denote the query, key, and value vectors

of global attention. For the decoder, multi-head self-attention is

adopted to calculate the relationships of the input sequence, which

is considered as local attention (see Figure 5B). In multi-head

attention calculation, a group of attention vectors Qτ ,Kτ ,Vτ can

be obtained by input Xt , and the header value of headτ is calculated

as Equation (15)

headτ = att(softmax(Qτ ,Kτ ),Vτ ) (15)

The calculations Alocal of all headers are concatenated as

Equation (16),

Alocal = concat(head1, . . . , headτ , . . . , headg) ·WMH (16)

where WMH is used for the weight parameter that can be

learned during training, and concat(·) refers to the concatenation

function, which is used to connect the outputs of multi-header

self-attention.

Finally, the predicted value of ŷt+1 can be obtain by Equation

(17).

ŷt+1 = MLP(concat(Aglobal, FCNN(Alocal))) (17)

where FCNN denotes fully-connected neural networks, and

MLP denotes multi-layer perceptron neural networks.

3 Numerical experiments

3.1 Data description

The primary trajectory of the ship is depicted in Figure 6A.

This article obtained the historical navigation trajectory from 15

February 2010 to 13 April 2010, which contains two routes. Route

1 (234 trajectories, shown in Figure 6B) is the main route, and

Route 2 (38 trajectories, shown in Figure 6C) is an alternative route

for worse weather conditions. The details of trajectory data are

collected and displayed in Table 1.

The navigation mode of ships on the same route is consistent.

Therefore, the experimental data was randomly divided for both

routes 1 and 2, with 60% going toward the training set and 40%

set aside for testing purposes. The experimental data comes from

AIS data and onboard sensor data, and the status information is

shown in Table 2. Numerical experiments discussed here involve

two main components. Firstly, the main experiment is to use ship

navigation factors for model training and validation. Secondly,

in the discussion section, numerical experiments are conducted

to explore the impact resulting from environmental factors on

predicting ship trajectory.

3.2 Experimental preparation and setting

3.2.1 Model evaluation criterion
Experimental evaluation is an important component of

conducting numerical experiments. During the model training

process, we chose mean squared error (MSE) as a means to quantify

the disparity between the estimated and observed outcomes, and

thereafter adjust the model parameters via the backpropagation

method. This helps improve prediction accuracy by minimizing

errors compared to the true values, thus achieving the purpose

of model training. After the model training is completed, we rely

on root mean square error (RMSE) metrics to measure our model
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A B

FIGURE 5

Dual-attention mechanism of DAE2ENet. (A) Global attention. (B) Local attention.

A B C

FIGURE 6

Visualization diagram of experimental trajectory. (A) Main route of the case ship. (B) Typical course of Route 1. (C) Typical course of Route 2.

TABLE 1 Principal information about the experimental data.

Route Longitude range Latitude range No. of trajectories No. of points Period

Route 1 (−6.60,−6.30) (61.30, 61.60) 234 6,135 Feb 15 to Apr 13, 2010

Route 2 (−6.60,−6.30) (61.30, 61.60) 38 7,362 Feb 15 to Apr 13, 2010

output accuracy. Smaller MSE and RMSE values suggest a stronger

agreement between the predicted and actual results. The Formulas

of MSE and RMSE are given as Equations (18) and (19).

MSE = 1

p

p∑

l=1

(ŷi − yi)
2 (18)

RMSE =

√√√√1

p

p∑

l=1

(ŷi − yi)2 (19)

where p indicates sample quantity, ŷi denotes predicted

positions and yi represents real navigation positions.

3.2.2 Parameter settings of the model
In the experiments, the classic optimization algorithm Adam

(Kingma and Ba, 2015) is used to modify the adjustable variables

in our model architecture, and the learning rate needs to be

determined during operation. The sequence information encoding

section of the model is frequently formed by three LSTM network

structures. The hidden layer is investigated to find the optimal
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TABLE 2 Navigation Status and environmental situation of ship trajectory.

Variable Abbreviation Sampling frequency Description

Navigation status (Xnav) Longitude Lon 1 s The ship’s longitude coordinates.

Latitude Lat 1 s The ship’s latitude coordinates.

Course Cou 1 s Course over ground.

Speed(knots) Spe 1 s Speed over ground.

Environmental situation (Xenv) Wind Angle WA 2 s The angle between the wind direction and the ship’s

heading is called the wind angle.

Wind Speed WS 2 s Wind speed is the rate of airflow in the surrounding

environment during ship navigation.

Starboard propeller pitch SPP 1 s Propeller pitch measures forward travel per

revolution.

Port propeller pitch PPP 1 s

Port Side rudder PSR 1 s A rudder controls a boat’s direction in water, usually

positioned at the stern for turning left or right.

Starboard Side rudder SSR 1 s

value within the range of [16, 320]. The magnitude of this

parameter indicates the degree of non-linearity for fitting the

model. When it is large, the model exhibits overfitting of the

training set. For each epoch, we train 5,120 samples, which is

repeated for 2,000 times. Additionally, to prevent overfitting of

the model, dropout (Srivastava et al., 2014) and regularization

terms were employed during the training process. Through

numerous experiments, the optimized ranges, interval granularity,

and optimal parameter values of the model were determined

in Table 3.

3.2.3 Baseline models
• LR is a continuous probability estimation method

that can be used to solve regression problems when

not compressing nonlinearly with a sigmoid function

(Sheng et al., 2017).

• SVM determines an optimal kernel function in regression

tasks, making the learned function as close as possible to

predicting continuous target variables (Liu et al., 2019).

• BPNN are prevalent methods of forecasting neural networks

with backpropagation (Lehtola et al., 2019).

• RNN is a classic neural network for sequential prediction

(Capobianco et al., 2021).

• LSTM is one of the RNNs incorporating gating mechanisms

(Tang et al., 2022).

• EncDec-ATTN is an encoder-decoder model including

attention mechanism (Capobianco et al., 2021).

• DAE2ENet is the proposed method in this article.

• LAE2EDNet is one of variant DAE2ENet remaining only local

attention.

• GAE2ENet is one of variant DAE2ENet remaining only global

attention.

• DAE2EMLP is one of variant DAE2ENet replacing LSTMwith

MLP.

3.3 Experimental comparisons and
analyses

3.3.1 Comparison of model performance
In comparison with baseline models, we only use navigation

status as input Xnav = {Xnav(t),Xnav(t − 1), . . . ,Xnav(t − m)},
where Xnav(t) = {Lon(t), Lat(t), Spe(t),Cou(t)}. The output is

the predicting position of ŷ(t + 1) = {Lon(t + 1), Lat(t +
1)}. The last column of Table 4 shows the optimal parameter

values of each model during training. When SVM is used for

regression prediction experiments, we chose the Gaussian radial

basis (RBF) function as kernel and selected the penalty coefficient

c = 2.1 for the objective function and the coefficient gamma =
0.02. For neural network models, the optimal parameter of this

column represents the number of hidden layers, number of

hidden units, learning rate, and regularization value, respectively.

According to the results of Table 4, deep learning methods based on

LSTM have achieved better performance compared to traditional

methods (such as LR, SVM, and BPNN). On the other hand,

models incorporating attention mechanisms performed better

than baseline methods. LAE2EDNet and GAE2ENet performed

worse than DAE2ENet, which reveals that incorporating the dual-

attention mechanism boosts overall performance. In addition,

compared with DAE2ENet, the variant model DAE2EMLP also

has poor performance, indicating that when using LSTM as the

encoding and decoding structure, gated mechanisms can more

effectively extract information from sequential data.

3.3.2 Result of ship trajectory prediction
The visual representation of the experimental results is depicted

in Figure 7. Our model of DAE2ENet predicts a route that is

consistent with the actual location of Route 1. Figure 7A displays

the forecast outcomes of each model, while Figure 7D highlights

discrepancies between actual and estimated movement trajectories.

The overall comparison shows that predictions of longitude and
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TABLE 3 Basic information of model hyperparameters.

Hyperparameters Optimization boundary Granularity of intervals Route 1 Route 2

Learning rate (0.0001, 0.1) 0.0001 0.01 0.01

Dropout rate (0.1, 0.5) 0.1 0.5 0.3

Number of LSTM layers (1, 2, 3) 1 2 2

Number of hidden cells (32, 320) 32 128 128

Regularization parameter (0.001, 1) 0.01 0.003 0.001

TABLE 4 Comparison of model performance indicators.

Model Route 1 Route 2 Optimal parameter

MSE RMSE MSE RMSE

Baseline models LR 9.62e-4 0.0177 8.38e-4 0.0167 -

SVM 5.76e-3 0.0413 3.62e-3 0.0345 c = 2.1, gamma = 0.02

BPNN 7.00e-4 0.0057 4.71e-5 0.0053 2, (128, 64), 0.01, 0.002

RNN 6.38e-4 0.0045 2.39e-5 0.0040 2, (128, 128), 0.05, 0.05

LSTM 6.28e-4 0.0042 1.65e-5 0.0036 2, (128, 128), 0.01, 0.002

EncDec-ATTN 2.35e-5 0.0030 1.26e-5 0.0028 2, (128, 128), 0.02, 0.001

Our models DAE2ENet 9.10e-6 0.0016 8.35e-6 0.0019 2, (128, 128), 0.01, 0.003

LAE2ENet 1.09e-5 0.0028 9.38e-6 0.0024 2, (128, 128), 0.01, 0.003

GAE2ENet 7.10e-5 0.0023 1.05e-5 0.0027 2, (128, 128), 0.01, 0.003

DAE2EMLP 2.40e-5 0.0041 2.29e-5 0.0039 2, (128, 128), 0.01, 0.003

The bold values mean the best prediction results can be obtained under current conditions.

A B C

D E F

FIGURE 7

Prediction results of the trajectory for Route 1. (A) Model predicted results Route 1. (B) Prediction results of the turning phase. (C) Prediction results

of straight stage. (D) Model predicted error value of Route 1. (E) Prediction error value of turning phase. (F) Prediction error value of straight stage.
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A B C

D E F

FIGURE 8

Prediction results of the trajectory for Route 2. (A) Model predicted results Route 2. (B) Prediction results of the turning phase. (C) Prediction results

of straight stage. (D) Model predicted error value of Route 2. (E) Prediction error value of turning phase. (F) Prediction error value of straight stage.

latitude obtained by DAE2ENet have the smallest errors compared

to other models. Figures 7B, C show more details about the

performance of DAE2Net in predicting turning and straight

navigation. Especially during ship turning, its prediction error

gradually increases in the longitudinal direction due to changes in

the navigation status of the ship. However, the prediction result

of our model is more stable and has less error compared to

other models. Qualitative and numeric analyses provide additional

confirmation of the functionality and implementation ability.

Route 2 is used as validation, and the results are shown in

Figure 8. Route 2 has larger turning angles, which makes prediction

more difficult. As shown in Figure 8D, the prediction errors of

BPNN and LSTM have greater volatility and worse prediction

performance, especially during navigation turning. DAE2ENet

shows lower prediction errors with smaller variations and indicates

superior generality and reliability for trajectory prediction.

3.4 Discussion and implications

During navigation, ships are not only influenced by their

navigation factors (Xnav={Lon, Lat,Cou, Spe}), but also affected

by environmental factors (Xenv={WS,WA, SPP, PPP, PSR, SSR}).
In this section, we incorporated environmental factors into

DAE2ENet as shown in Table 2. and investigated the effect of

environmental factors on our model. The investigation data used

four categories and six types of environmental factors.

In this investigation, ship navigation status Xnav was added

sequentially to the three groups of environmental situations to

TABLE 5 RMSE of cumulative combinations for di�erent variables.

Category Input feature
variables

RMSE

Route 1 Route 2

C1 = {Xnav} {Lon, Lat,Cou, Spe} 0.0016 0.0019

C2 = {Xnav ,Xenv} C1 ∪ {WA,WS} 0.0013 0.0030

C3 = {Xnav ,Xenv} C2 ∪ {SPP, PPP} 0.0027 0.0042

C4 = {Xnav ,Xenv} C3 ∪ {PSR, SSR} 0.0034 0.0051

The bold values mean the best prediction results can be obtained under current conditions.

explore the repercussions of external factors on maritime route

predictions. The results are shown in Table 5. When Route 1

is combined with ship navigation Xnav and Xenv={WS,WA},

the RMSE value is minimal. For Route 2, the RMSE value is

minimal without consideration of environmental factors. When

combined with propeller pitch Xenv={SPP, PPP} and rudder angle

Xenv={PSR, SSR}, the prediction accuracy of the model decreased.

The findings reveal that in the actual trajectory prediction process,

environmental factors are unnecessary to maintain a positive effect

on the prediction efficiency.

To further investigate the various impacts of environmental

variables regarding the prediction results of two different routes,

we discussed the changes in global attention weights of the two

different routes when combined with Xenv={WS,WA} as shown in

Figure 9. In the case of Route 1 (see Figure 9A), the visual results

show that the weights are changing at different positions, which
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A

B

FIGURE 9

Investigation of attention weight scores in trajectory prediction for di�erent factors. (A) Case of Route 1. (B) Case of Route 2.

helps us to improve the model’s ability to predict accurately with

consideration of WS and WA factors. In case of Route 2 (see

Figure 9B), the distribution of attention weights at different time

steps is more focused, which results in better prediction results for

the model without considering WA andWS factors.

According to the comparative analysis of two sets of

experiments, the attention mechanism can affect the sequence

information obtained from the output by adjusting the attention

weight, thereby enhancing the sequence of information related to

the future and obtaining better prediction results. However, if the

feature information of the input data is insufficient or unclear,

the attention mechanism might lead the model to concentrate on

inaccurate or irrelevant information, leading to a decrease in model

performance.
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4 Conclusions

In this article, we propose a dual-attention-based end-to-end

neural network to pursue the sequential prediction task of ship

trajectory. The proposed DAE2ENet introduces global attention in

the encoder layer and local multi-head self-attention in the decoder

layer. The global attention mechanism is employed to mine the

potential relevance between input and output sequences, and the

multi-head self-attention mechanism is used to capture spatial-

temporal correlations among sequential feature data. Compared

with previous studies, this article mainly contributes to the fields

of machine learning and ship navigation from two perspectives.

For technique perspective, DAE2ENet provides a novel network

structure for time-series analysis and sequential prediction. From

an application perspective, DAE2ENet provides a fusion process of

AIS data and sensor data, and sufficiently improve the performance

of trajectory prediction. Through experimental comparisons and

investigations, DAE2ENet and its ablation variants outperformed

baseline models including classic and state-of-art neural networks.

The numerical results show that DAE2ENet improved the

accuracy by around 45–70% in RMSE compared to EncDec-

ATTN, LSTM, and RNN, and also obtained higher accuracy by

around 30–60% in RMSE compared to LAE2ENet, GAE2Enet, and

DAE2EMLP.

There are two limitations of this study. One is the impact

of environmental factors on trajectory prediction. However,

DAE2ENet can obtain sufficient accuracy in trajectory prediction

without consideration of environmental factors. It is still necessary

to improve DAE2ENet by incorporating these factors to enhance

prediction accuracy. The other limitation is that dynamic

navigation routes were not included to extend the applicability

of DAE2ENet.

Data availability statement

The original contributions presented in the

study are included in the article/supplementary

material, further inquiries can be directed to the

corresponding authors.

Author contributions

LZ: Conceptualization, Data curation, Formal analysis,

Methodology, Software, Visualization, Writing – original draft.

YZ: Conceptualization, Formal analysis, Methodology, Project

administration, Software, Supervision, Visualization, Writing –

original draft, Writing – review & editing. WZ: Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing. TL: Formal analysis, Funding

acquisition, Project administration, Resources, Validation, Writing

– review & editing. CC: Formal analysis, Funding acquisition,

Project administration, Resources, Validation, Writing – review &

editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the National Key R&D Program of China (Grant

No. 2023YFB4302300), the National Natural Science Foundation

of China (Grant Nos. 52131101 and 51939001), and the Science

and Technology Fund for Distinguished Young Scholars of Dalian

(Grant No. 2021RJ08).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Baichen, J., Jian, G., Wei, Z., and Xiaolong, C. (2019). Vessel trajectory prediction
algorithm based on polynomial fitting kalman filtering. J. Signal Process. 35, 741–746.
doi: 10.16798/j.issn.1003-0530.2019.05.002

Capobianco, S., M, M. L., Nicola, F., Paolo, B., and Peter, W. (2021). Deep learning
methods for vessel trajectory prediction based on recurrent neural networks. IEEE
Transact. Aerospace Electron. Syst. 57, 4329–4346. doi: 10.1109/TAES.2021.3096873

Chen, J., Jixin, Z., Hao, C., Zhao, Y., and Wang, H. (2023). A tdv attention-
based bigru network for ais-based vessel trajectory prediction. iScience 26:106383.
doi: 10.1016/j.isci.2023.106383

Cho, K., van Merrienboer, B., Çaglar Gülçehre, Bougares, F., Schwenk, H., and
Bengio, Y. (2014). “Learning phrase representations using rnn encoder-decoder for
statistical machine translation," in 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), eds A. Moschitti, B. Pang, and W. Daelemans (Doha:
Association for Computational Linguistics), 1724–1734.

Enrica, A., Paolo, B., M, M. L., and Peter, W. (2018). Detecting anomalous
deviations from standard maritime routes using the ornsteinâĂŞuhlenbeck process.
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