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Introduction: Pain that arises spontaneously is considered more clinically
relevant than pain evoked by external stimuli. However, measuring spontaneous
pain in animal models in preclinical studies is challenging due to methodological
limitations. To address this issue, recently we developed a deep learning (DL)
model to assess spontaneous pain using cellular calcium signals of the primary
somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like
a “black box”, where their decision-making process is not transparent and is
di�cult to understand, which is especially evident when our DL model classifies
di�erent states of pain based on cellular calcium signals. In this study, we
introduce a novel machine learning (ML) model that utilizes features that were
manually extracted from S1 calcium signals, including the dynamic changes in
calcium levels and the cell-to-cell activity correlations.

Method: We focused on observing neural activity patterns in the primary
somatosensory cortex (S1) of mice using two-photon calcium imaging after
injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons.We extracted
features related to the ratio of up and down-regulated cells in calcium activity
and the correlation level of activity between cells as input data for the ML model.
The ML model was validated using a Leave-One-Subject-Out Cross-Validation
approach to distinguish between non-pain, pain, and drug-induced analgesic
states.

Results and discussion: The ML model was designed to classify data into
three distinct categories: non-pain, pain, and drug-induced analgesic states. Its
versatility was demonstrated by successfully classifying di�erent states across
various pain models, including inflammatory and neuropathic pain, as well as
confirming its utility in identifying the analgesic e�ects of drugs like ketoprofen,
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morphine, and the e�cacy of magnolin, a candidate analgesic compound. In
conclusion, our ML model surpasses the limitations of previous DL approaches
by leveraging manually extracted features. This not only clarifies the decision-
making process of the ML model but also yields insights into neuronal activity
patterns associated with pain, facilitating preclinical studies of analgesics with
higher potential for clinical translation.

KEYWORDS

brain cellular calcium, spontaneous pain, machine learning, animal models, explainable

features

1 Introduction

Pain management, especially for chronic conditions, remains

a significant challenge in the medical field (Bushnell et al., 2013).

Chronic pain not only disrupts daily life and increases distress but

also imposes a substantial socio-economic impact (Annagür et al.,

2014, Petrosky et al., 2018). The current landscape of analgesics,

which includes a range of medications, presents its own issues.

They often fall short in effectively treating chronic pain. In case

of narcotic drugs, opioids being one example, they are associated

with severe side effects, ranging from addiction to life-threatening

conditions. The abuse of them has become a serious public health

crisis, highlighting the urgent need for safer andmore effective pain

management strategies (Hedegaard et al., 2017; Blanco et al., 2020).

Given these challenges, there is a pressing demand for innovative

approaches to understand and treat chronic pain more effectively.

The challenge in developing pain medicines arises from

discrepancies between animal tests and human studies (Mogil and

Crager, 2004; Mogil, 2009). In many pain conditions, patients

predominantly experience spontaneous pain (Galer et al., 2000;

Staud et al., 2007; Latremoliere and Woolf, 2009; Maier et al., 2010;

Hanagasi et al., 2011). However, animal studies often focus on pain

that is evoked by specific external stimuli. Although spontaneous

pain is more problematic than evoked pain in real life (Murai et al.,

2016), yet current research methodologies cannot fully capture this

spontaneous pain so that numerous studies have focused only on

evoked pain. This may overlook critical aspects of spontaneous

pain, potentially hindering the development of effective treatments.

Aligning research with the actual experiences of patients is of

paramount importance in development of appropriate treatments

(Rice et al., 2008).

In recent research, chronic pain models have been validated for

spontaneous pain through various methods, including the Grimace

Scale, Conditioned Place Preference (CPP), and observations

of nocifensive behaviors. However, these traditional approaches

often lack accuracy and objectivity, particularly in chronic pain

scenarios. For instance, chronic pain in animals typically manifests

through intermittent signs like flinching, which are sporadic

and challenging to measure objectively (Mogil et al., 2010). The

effectiveness of the Grimace Scale diminishes in chronic states

(Langford et al., 2010; De Rantere et al., 2016), and while CPP

provides some insights, it faces challenges in both quantifying pain

and distinguishing between analgesic effects and preference itself,

limiting its accuracy (King et al., 2009). Additionally, the utility of

CPP depends on factors such as the integrity of both the reward and

the learning and memory systems, which can restrict its suitability

for certain disease models. Recognizing these limitations, our study

adopts a machine learning model that analyzes spontaneous pain

from calcium imaging data, thus addressing the shortcomings of

conventional methods and enhancing the objectivity and reliability

of pain assessment in animal models.

Leveraging advancements in computational techniques, ML

has become a key tool in pain research, outperforming prior

methods in analyzing complex calcium imaging data (Singh et al.,

2016; Boissoneault et al., 2017; Lötsch and Ultsch, 2018; Jones

et al., 2020). Previously, we developed a DL model for assessing

spontaneous pain (Yoon et al., 2022). DL is adept at detecting

complex patterns in pain data, often missed by human analysis,

thereby offering a more explicit detection of pain. However, DL

approach had limitations, particularly in its lack of transparency

(Salahuddin et al., 2022), which made it difficult to detect

malfunctions of neural circuits. In this study, we adopted machine

learning (ML) approach to gain deeper insights into the patterns

of S1 calcium signals associated with spontaneous pain, as the

ML approaches are anticipated to offer enhanced transparency

and intuitive understanding. This is due to the explicit and user-

friendly nature of ML, facilitating effective correction of biases and

errors within the system (Mi et al., 2021). Therefore, developing

a ML model for spontaneous pain assessment could offer several

advantages over DL, such as improved transparency for early

malfunction detection and enhanced adaptability in modifying

features to correct errors.

Despite the considerable advancementsML has brought to pain

research, particularly in analyzing complex calcium imaging data,

its application in the development of new analgesics introduces

another challenge. Binary classification models, which typically

label data as either “pain” or “no pain,” may oversimplify the

complex nature of pain and condition altered by its treatment

(Lötsch and Ultsch, 2018). The challenge arises when trying

to identify truly novel analgesics that have not been explored

before. Traditional models might not be equipped to recognize

or categorize these new entities effectively. Furthermore, any

medication, including analgesics, inherently carries multiple side

effects (Lamon et al., 2008; Young et al., 2018). An oversimplified

model might misinterpret these side effects, leading to potential

risks in drug development. A recent study has indicated that

multi-class classification systems offer more detailed and accurate

diagnostics than binary classification systems (Mi et al., 2021).
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Consequently, employing a multi-classification method could be

more effective in identifying the varied effects of analgesics.

Our primary goal in this study is to offer a more transparent

and interpretable method for measuring spontaneous pain in

preclinical research. Unlike previous research that predominantly

relied on DL with black-box mechanisms (Yoon et al., 2022), we

adopt a ML approach that emphasizes manual feature extraction.

This methodology aims to provide a clearer understanding of the

reasons behind the classification of S1 calcium signals as “pain”

or “no pain.” Furthermore, by extending beyond the traditional

binary classification and introducing a third-class label, we seek to

achieve a more detailed interpretation of neural activity patterns,

discerning whether the neural activity pattern induced by candidate

drugs mirrors existing analgesics or introduces a new signature.

2 Methods

2.1 Experimental animals and housing
conditions

C57BL/6 male mice were 6 weeks old at the start of the

experiments. To reduce stress, they were grouped in batches

of two to four. The living conditions maintained a 12-h

light/dark rotation, and animals had free access to water and

food. The experimental protocols received approval from Kyung

Hee University Institutional Animal Care and Use Committee

[KHUASP (SE) 22-280], in line with the National Institutes of

Health’s guidelines.

2.2 Experimental models of spontaneous
pain

To establish the complete Freund’s adjuvant (CFA) model

(Yoon et al., 2022), 10 µl of CFA were injected subcutaneously

into the plantar surface of the right hind paw. To establish the

chemotherapy-induced peripheral neuropathy model (Kim W.

et al., 2016), oxaliplatin (6 mg/kg) was treated intraperitoneally.

To establish the nerve injury-induced neuropathic pain model,

the mice underwent partial sciatic nerve ligation (PSL) surgery

(Korah et al., 2022) on the right hind paw. The right sciatic

nerve was exposed at the upper thigh of the mouse, and one-

third to one-half of the nerve diameter was ligated with a 9-

0 suture. To establish Parkinson’s disease (PD) model, mice

were injected intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP, 30 mg/kg) daily for 5 days (Hwang

et al., 2019).

In the assessment of the analgesic effects, morphine was

administered intraperitoneally to the PSL model at a dose of 10

mg/kg and to the PD model at a dose of 5 mg/kg. For the CFA

model, ketoprofen was administered intraperitoneally at a dose of

50 mg/kg. Magnolin was initially administered as a single dose by

intraperitoneal injection to the PSL model, followed by twice-daily

doses for four consecutive days. The single dose was administered

once at 30 mg/kg, and the repeated dose was administered at 30

mg/kg twice a day. All models were administered the analgesics

30min before behavior tests and imaging.

2.3 Behavior tests

The rotarod test was used to assess motor coordination in mice.

Mice were placed on a rotating rod that gradually increased in

speed from 5 to 40 rpm over a period of 300 seconds. The test was

terminated when the mouse fell off the rod. Each mouse was tested

three times with a minimum of 5min between trials.

The von Frey test was used to assess mechanical

hypersensitivity in mice. Mice were placed in individual, clear

plastic cages with mesh floors. A series of von Frey filaments with

bending forces of 2.36, 2.44, 2.83, 3.22, 3.61, 3.84, 4.08, and 4.31 g

were applied to the plantar surface of each hind paw using the

up-down method. The paw withdrawal threshold, defined as the

force at which the mouse consistently withdrew its paw in response

to five consecutive filament applications, was determined for each

animal (Chaplan et al., 1994).

2.4 Immunohistochemistry

At the end of the behavior tests, the mice were deeply

anesthetized with isoflurane and fixed in 4% paraformaldehyde

(PFA) via the left ventricle. Brains were harvested and fixed in

4% PFA overnight at 4◦C and then dehydrated in 30% sucrose

solution until the brains sank. The brains were then cut into 40µm

coronal sections containing Substantia Nigra compacta (SNc) using

a cryostat (Thermo Fisher Scientific, Waltham, MA, USA). The

sections were incubated with 1% hydrogen peroxide for 15min

to eliminate endogenous peroxidase activity, and sections were

blocked for 1 h in a solution containing 3% bovine serum albumin

and 0.3% Triton X-100. They were activated with anti-tyrosine

hydroxylase (TH) antibody (1:1000, Sigma-Aldrich, St. Louis, MO,

USA) for 72 h at 4◦C. They were activated with biotinylated anti-

rabbit IgG (Vector Laboratories, Burlingame, CA, USA) for 1 h and

a solution of avidin-biotinylated peroxidase complex (Vectastain

Elite ABC kit, Vector Laboratories, Burlingame, CA, USA) for

1 h. Sections were stained with 3,3′-diaminobenzidine (DAB, DAB

Substrate Kit, Peroxidase, Vector Laboratories, Burlingame, CA,

USA) for approximately 40 seconds. The stained sections were

attached to aminosilane-coated slide glasses and dehydrated in 70,

80, 90, and 100% ethanol. Slides were blotted with xylene and

mounted using permount. The histological images of SNc were

obtained using a bright-field microscope (Nikon, Tokyo, Japan).

The number of dopaminergic neurons was counted using a deep

learning-based auto detection algorithm, and manually verified

(Kim D. et al., 2023).

2.5 Procedure for two-photon calcium
imaging

All surgical operations were conducted under combined

anesthesia with Zoletil (30 mg/kg) and xylazine (10 mg/kg). A

cranial window, measuring 2 × 2mm, was crafted above the

left S1 cortical hind paw region (positioned laterally by 1.5mm

and posteriorly by 0.5mm from Bregma) to facilitate longitudinal

calcium observations. We utilized a surgical blade (#11) for this.
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The S1 was injected with the Adeno-associated virus showcasing

GCaMP6s (from the University of Pennsylvania Gene Therapy

Program Vector Core). After the viral injection, a thin cover glass

(sourced from Matsunami, Japan) was placed over the cranial

window, sealed securely with Vetbond (3M) and dental cement.

Over a period of 2 weeks, the mice underwent acclimatization

on a treadmill while their heads were stabilized, spending

40min daily. The imaging process used a two-photon microscope

(FVMPE-RS, Olympus, Tokyo, Japan) with a water immersion

objective lens (XLPlan N 25, NA = 1.05, Olympus, Tokyo, Japan).

The GCaMP6s indicator was excited by900 nm light provided by a

Ti: sapphire laser system (Chameleon, Coherent, USA). Capturing

of the imaging frames was done via the FLUOVIEW (FV31S-SW,

Olympus, Tokyo, Japan) at a rate of approximately 5 Hz.

2.6 Motion and activity analysis during
calcium imaging

Mouse movements were recorded at a video camera (MC-

D030B, CREVIS, Korea) with infrared illumination (DR4-56R-

IR85, LVS, Korea) by a custom program written in LabVIEW

(National Instruments, USA) and were synchronized with two-

photon imaging by a trigger generated in the program. The

recorded video had 30 frames per second, with a frame size of

640 × 480 pixels. To quantify movements, the intensity difference

of each pixel between frames was computed and summed across

all pixels. If the accumulated value of a frame surpassed a

threshold set by a blinded experimenter, the frame was categorized

as movement-positive.

2.7 Preprocessing of calcium imaging data

2.7.1 Motion correction and detection of
regions-of-interests

Motion within the imaging data was rectified employing the

Turboreg algorithm (Biomedical Imaging Group, Swiss Federal

Institute of Technology, Lausanne, Switzerland). The CNMF-

E algorithm (Zhou et al., 2018) was employed to identify

regions-of-interests (ROIs), which were subsequently examined

manually. Spatial ROI details were transferred to ImageJ, with

the mean fluorescence for each ROI computed relative to

each frame.

2.7.2 Denoising and normalization
Prior to applying normalization methods, raw fluorescence

signals were filtered with a Gaussian window of size 29 to mitigate

noise. Subsequently, both delta F and Z-score normalization

methods were applied to the data. For each ROI within a single

recording session, baseline fluorescence was defined as the 30th

percentile of the corresponding signal.

Delta F defined as follows:

F (x) = (X − µ)/µ

and Z score defined as follows:

F (x) = (X − µ)/σ

where m and s indicate mean and standard deviation of

baseline signals.

2.8 Application of machine learning

2.8.1 Manual feature extraction
Handcrafted feature extraction defined as follows:

D=

(

Xi
∑n

i Xi

)

A−

(

Xi
∑n

i Xi

)

B

For ROI i in a total of n ROIs, the delta F or Z score signals X

are calculated for both session A and session B. Baseline activity

is defined using either session A or session B depending on the

evaluation target. The difference in calcium activity (D) between

matched ROIs in sessions A and B is then calculated, resulting in a

vector of size n. Ratios are calculated separately for values of D >

0.3 and smaller than −0.2, each serving as a distinct feature. The

value of X depends on the chosen normalization method (delta F

or Z score) and the presence of movement (movement, stationary,

or total). As each X calculation method generates two features (up-

regulated and down-regulated), this results in a total of 12 features.

Additionally, the average pairwise correlation between each ROI

within a single session is incorporated as the final feature, bringing

the total number of features to 13.

2.8.2 Dimensional reduction, class labeling, and
cross-validation

For principal component analysis (PCA), the scikit-learn

library condensed input data dimensions from 13 to 6. All six

principal components were utilized. Baseline, sham, and vehicle

control data were labeled as non-pain; CFA, PSL, oxaliplatin,

and MPTP-induced pain data as pain. Analgesics and analgesic

candidates were allocated as the third class. Leave-one-subject-out

(LOSO) was adopted for cross-validation (CV). Data from one

mouse was reserved for testing, while the remaining data was used

for training.

2.8.3 False labeling management
To eliminate false labels, a classification model was trained with

all data, followed by recursive testing. Data labeled as pain, within

the bottom 10% for pain estimation, were deemed mislabeled and

removed for further training.

2.9 Statistical methods

Analyses were conducted using GraphPad Prism 8 (GraphPad

Software, Inc.) and Python (utilizing the scipy library). All data

were presented as mean ± standard error mean (SEM). Statistical

tests were performed with an unpaired t-test or Mann-Whitney

test as appropriate. The statistical techniques used to generate each

figure are described in the figure legend.
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FIGURE 1

The experimental scheme. (A) The experimental scheme for each model. (B) Diagram of injection procedure for AAV-hsyn-GCaMP6s virus in S1
cortex neuron. (C) Diagram of the two-photon calcium imaging set-up. The head-fixed mouse was placed on a treadmill, and the left S1 neuron of
the mouse was imaged with a two-photon microscope while simultaneously being recorded with a camera. (D) Representative image of S1 neuron
ROI detection using the CNMF-E algorithm (left). Example of an average calcium traces in total ROIs from each imaging session (right).

3 Results

3.1 Establishment of various types of
spontaneous pain mouse models

We established representative inflammatory, chemical,

neuropathic, and PD pain models to ensure that our ML model

could cover a wide range of spontaneous pain models. We

administered drugs or conducted surgery according to the

protocols proposed for the pain models (Figure 1A). Subsequently,

to verify the successful establishment of the pain models and

the effectiveness of the administered analgesic dosages, we

conducted mechanical hypersensitivity tests to assess the presence

of evoked pain (Supplementary Figure 1). We then performed

two-photon calcium imaging to determine the neural activity

patterns of spontaneous pain. To express a calcium indicator for

two-photon imaging, surgery was performed to inject GCaMP6s

into the S1 of mice (Figure 1B). Afterwards, we placed the

mice on a treadmill with their heads immobilized and recorded

the calcium activity of layer 2/3 neurons in the left S1 of the

mice while recording their movements with an infrared camera

(Figure 1C). We detected the ROI of the video data using

the CNMF-E algorithm and manually inspected additional

ROIs (Figure 1D).

3.2 Manual feature extraction from S1
neuronal activity

After obtaining calcium signals from various pain models, we

initially focused on extracting key features from these S1 signals

to determine the presence of spontaneous pain. Several studies

have reported changes in S1 neuronal activity in chronic pain

conditions, notably an increase in excitatory neuronal activity (Kei

et al., 2011; Eto et al., 2012; Cichon et al., 2017). Importantly,

under our experimental conditions, the mice exhibited random

movements, and their neuronal activity was distinctly different

whenmoving compared to when stationary, as shown in Figure 2A.

Therefore, we hypothesized that the differences in neuronal activity

during movement vs. stationary states could contain distinct and

informative patterns.

Therefore, we first arranged each neuron, that is, the ROI,

by comparing their Z-scores to the baseline and sorted them

from the most up-regulated to the most down-regulated. When

separated into movement (Figure 2B, top) and stationary states

(Figure 2B, bottom) and displayed as heatmaps, the up- and

down-regulated ROIs were distinctly visible. We set a uniform

threshold across all data, defining neurons as up-regulated, down-

regulated, or stable if they exceeded this predetermined threshold

(see methods for details). We then depicted the dynamics of

neuronal activity during baseline, pain, and drug-induced analgesic

conditions, displaying the results for both movement (Figure 2C,

top) and stationary states (Figure 2C, bottom) in separate. In

the pain state, both up- and down-regulated neuronal activity

ratios were increased when the mice were walking on the

treadmill (Figure 2D, top). The neuronal activity in the S1 during

drug-induced analgesic states, particularly with morphine and

ketoprofen, was noteworthy for its distinctive patterns. Notably,

the S1 neuronal activity pattern in the drug-induced analgesic

state either resembled or even intensified compared to the pain

state (Figure 2D, top). For instance, morphine administration

resulted in higher up-regulated neuronal activity ratio. On the
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FIGURE 2

Manual feature extraction from calcium traces. (A) Plot of calcium traces of individual ROIs during an approximately 4min imaging session. Only 8
representative ROIs are displayed. The light blue shade indicates the periods when mice have movement. The scale bar for the graph is displayed in
the top right corner. (B) Calcium traces of all ROIs are displayed as a heatmap, distinguishing between movement and stationary periods. The ROIs
are sorted in descending order of activity level. Therefore, the top part of each heatmap corresponds to up-regulated neurons from the baseline,
while the bottom part corresponds to down-regulated neurons. (C) Pie charts show the cell ratio of up-regulated, down-regulated, and stable
neurons in non-pain baseline, pain, and drug-induced analgesic states. The top represents analysis during movement, and the bottom during
stationary states. (D) Similar to (C), the cell ratio in each state is displayed as a violin plot. Drug-induced analgesic states are plotted separately for
morphine and ketoprofen. (E) An example of correlation analysis is represented as a heatmap. The intersection of pairs of ROIs is marked with their
correlation coe�cient. (F) The average correlation coe�cient of all ROI pairs is calculated as the correlation feature value for a single session. The
correlation feature values for each state are presented as violin plots. The data are presented the mean ± SEM; N.S., not significant; **P < 0.01; ***P
< 0.001 as determined by an unpaired t-test.

other hand, when the mice were stationary, up-regulated neuronal

activity ratios did not show a statistically significant difference

(Figure 2D, bottom left). Conversely, down-regulated neuronal

activity ratios increased in the pain state and returned to baseline

in the drug-induced analgesic state (Figure 2D, bottom right).

In addition, we calculated the Pearson correlation over time

between ROIs within an imaging session. When plotted as a

heatmap (Figure 2E), various correlation coefficients emerged

among the ROIs. We averaged the correlation values across all

ROIs to define the correlation feature of that particular imaging

session. We observed that the level of correlation feature among

individual cells was similar in non-pain and pain states, but

a marked difference was evident in the drug-induced analgesic

state (Figure 2F).

Many of the aforementioned metrics showed distinct

differences in pain, non-pain, and drug-induced analgesic states,

whether this metric is adequate for classification needs to be

considered. For instance, while there was a statistically significant

difference in features between groups (Figure 2D), the area under

curve metrics (AUC) for distinguishing pain from non-pain at

the level of individual imaging sessions were not as robust as the

statistical significance (Table 1). For example, the down-regulated

cell ratio during movement, normalized by delta F, which shows

the highest discrimination ability, distinguishes between pain

states and both baseline and drug-induced analgesic states with an

AUC performance of 0.68. This can be considered a fairly decent

performance; however, it still fails to apply to certain drugs. As can

be seen in the top right graph of Figure 2D, morphine does not get

distinguished from pain.

These results imply that while simple features of neuronal

activity hold statistical significance between groups, their reliability

at the AUC metric level for pain and analgesic effects detection is
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TABLE 1 Summary of pain classification performance of features.

Feature # Normalization
method

Neuronal
dynamics

Movement
state

Baseline vs.
pain

Pain vs.
analgesics

Pain vs. analgesics +
baseline

1

Z score

Up

Movement 0.63 0.63 0.58

2 Stationary 0.58 0.56 0.58

3 Total 0.64 0.59 0.59

4

Down

Movement 0.67 0.67 0.67

5 Stationary 0.63 0.60 0.63

6 Total 0.65 0.58 0.63

7

delta F

Up

Movement 0.68 0.62 0.61

8 Stationary 0.62 0.52 0.60

9 Total 0.68 0.58 0.62

10

Down

Movement 0.71 0.59 0.68

11 Stationary 0.63 0.57 0.61

12 Total 0.69 0.52 0.65

13 Correlation 0.51 0.65 0.52

relatively low. Moreover, the state of analgesia induced by drugs

does not represent a non-pain state but rather exhibits distinct

patterns specific to each analgesic.

3.3 Machine learning approach for pain
classification

Manually extracted features showed statistically significant

differences across non-pain, pain, and drug-induced analgesic

states. However, we found that the S1 patterns in drug-induced

analgesic state did not simply return to the normal non-pain state,

but instead exhibited a unique pattern. Consequently, at the level

of each manually extracted feature, it was not possible to distinctly

classify the pain state, with non-pain and drug-induced analgesic

states often grouped together. To address this issue, in this study,

we propose a novel three-class classification model that considers

the drug-induced analgesic state as a third class, instead of a simple

binary classification model. This is crucial as it prevents the drug-

induced analgesic state from being misinterpreted as pain states,

by distinctly identifying the unique neural patterns seen under the

influence of analgesic drugs.

As mentioned above, we extracted features for pain assessment

from the dynamics of neural activity relative to the baseline and

from the correlation characteristics between activities of each

neuron (Figure 3A, left). To minimize redundancy among the total

13 features (see methods for details) and prevent overfitting in

the ML model, we performed PCA, consequently narrowing down

the number of features to six. When we plotted the data of each

class using the top two principal components in a two-dimensional

scatter plot (Figure 3A, middle), we found it still challenging to

clearly distinguish each class. Consequently, we put these data

into a ML model composed of dense layers to train the model to

differentiate each class (Figure 3A, right).

The drug-induced analgesic state was considered a separate

class from non-pain class as well as pain class. The separability

of the drug class from other classes can be anticipated in various

scenarios (Figure 3B, left bottom). Next, considering the nature of

spontaneous pain data, we could guarantee that pain was present

during our recording of neuronal activity, which might lead to

false labeling. To exclude this false labeling, we initially trained the

ML model with all the data and recursively retested the training

set data. We regarded the bottom 10 percent of data, which was

least classified as pain, as false labels and removed them from

the training set. For model validation, we employed a Leave-One-

Subject-Out Cross-Validation (LOSO-CV) approach, where all data

obtained from a single mouse was treated as the test set (Figure 3B,

right, bottom). Lastly, we ensured the separation of the test set

information during the PCA fitting and model training processes

to maintain the integrity of our validation process.

3.4 Validation of a spontaneous pain
detection by the suggested ML model

To assess the effectiveness of our three-class ML classification

method, we first determined if non-pain and pain states could be

distinctly identified from one another. The results showed that

our ML model was able to significantly distinguish between non-

pain and drug-induced analgesic state from the pain state. In the

CFA model, distinct S1 neural activity patterns were detected on

both day 1 and day 3 following CFA injection into the hind paw

(Figure 4A). On the other hand, in the oxaliplatin model following

intraperitoneal injection, slight differences in S1 neural activity

patterns were detected on day 3, differing from those reported

in evoked pain (Li et al., 2015). By day 7, marked differences in

activity patterns were detected (Figure 4B). These findings suggest

that spontaneous pain induced by oxaliplatin may have a slower
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FIGURE 3

Analytical workflow of the machine learning analysis. (A) This part represents the analysis procedure from raw data to pain prediction. Features are
manually extracted from calcium traces. Thirteen manually extracted features were reduced to six through PCA, and the first and second principal
components were used to create a 2D scatter plot. The diagram simplifies the structure of the machine learning model. Detailed information on the
architecture of ML model is provided separately in the methods section. (B) The procedure for training and evaluating the machine learning model is
sequentially presented.

onset compared to evoked pain. In the PSL model, which is

one of the models for neuropathic pain, significant differences in

neural activity patterns were observed on both day 3 and day 10

(Figure 4C). As a result of verifying the classification performance

for non-pain and pain states, all data except for day 3 of oxaliplatin

showed a high level of performance (Figures 4D–F).

We tried to apply this ML method to evaluate spontaneous

pain in PD model. It is known that patients with PD have a very

poor quality of life due to pain, but no preclinical studies have

measured spontaneous pain in PD (Kuopio et al., 2000; Buhidma

et al., 2020). It is also difficult to measure with CPP because the

reward system can be impaired (Huston et al., 2013). Therefore, we

tried to use ML methods to measure spontaneous pain in PD. First,

we identified the PD model by injecting the neurotoxin MPTP,

which resulted in a decrease in dopaminergic neurons located in the

substantia nigra and a decrease in motor function (Figures 5A, B).

When we measured the spontaneous pain of the PD model using

MLmethods, we found that the pain state was clearly distinguished

from baseline, and the PD model injected with morphine also

showed pain levels similar to baseline (Figure 5C). We observed

significant differences in neural activity patterns when spontaneous

pain was judged by ML techniques in a PD model (Figures 5D,

E), suggesting that ML analysis methods can be used to determine

spontaneous pain in PD, and that spontaneous pain exists in PD.

3.5 Validation and application of the ML
model in the e�cacy assessment of
analgesics

We also used ML classification models to determine the

effectiveness of analgesics in each pain model. Ketoprofen, an

anti-inflammatory drug, was used to treat inflammatory pain

caused by CFA injections. Similarly, morphine, an opioid drug

commonly used in clinical practice, was used for managing

neuropathic pain induced by PSL (Cooper et al., 2017). Significant

changes in neuronal activity patterns were observed following

intraperitoneal injections in two models. In the CFA model, these

changes were detected after administering ketoprofen, as shown in

Figure 6A. Similarly, in the PSLmodel, notable alterations in neural

activity were observed following the administration of morphine,

illustrated in Figure 6B.

Next, we employed ML analysis to evaluate the analgesic effects

of magnolin. Magnolin is a major component of the magnolia

family and is known to have anti-inflammatory, antibacterial, and

anti-allergic effects (Chae et al., 1998; Kim et al., 1999; Wang et al.,

2019). Among these effects, inhibition of ERK/RSK2 signaling,

which is involved in the chronification of pain, suggests that

magnolin has potential as an analgesic (Kondo and Shibuta, 2020).

We analyzed neuronal activity using our ML model after both
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FIGURE 4

Detection of spontaneous pain for each pain model. The predicted pain value of (A) CFA (10 µl, s.c.) model (n = 13 per group), (B) oxaliplatin (6
mg/kg, i.p.) model (n = 7 for vehicle group of day 3, n = 9 for oxaliplatin group of day 3, and n = 6 for both group of day 7), and (C) PSL model (n = 9
for sham group of day 3, n = 16 for PSL group of day 3, n = 8 for sham group of day 10, and n = 16 for PSL group of day 10). Classification
performance in pain condition of (D) CFA model, (E) oxaliplatin model, and (F) PSL model. The data are presented the mean ± SEM; *P < 0.05, **P <

0.01, ***P < 0.001 by unpaired t-test.

single and repeated administrations of magnolin in the PSL model

(Figure 6C). However, our findings indicate that magnolin, under

the current administration protocols, does not effectively attenuate

spontaneous pain in the PSL model.

Moreover, significant differences in neural activity patterns

were observed after intraperitoneal injection of morphine in

the PD model. These results suggest that morphine is effective

for providing analgesia in the PD model (Figure 6D). Our

analysis of the classification performance for pain and drug states

demonstrated excellent results across all datasets, with the notable

exception of datasets involving single administrations of magnolin,

as depicted in Figures 6E–H. The difficulty in differentiating pain

states following single administrations of magnolin is speculated to

be due to its low analgesic efficacy.

4 Discussion

In this study, we developed an ML algorithm to detect

spontaneous pain in animals. The algorithm uses calcium activity

data from S1 neurons recorded using two-photon microscopy.

We extracted information on the relative up and down-regulated

ratio of up and down-regulated cells in calcium activity and the

correlation level of activity between cells as features for input data

for the ML model. The proposed ML model reliably classified

spontaneous pain and analgesic efficacies in mouse models of

inflammatory and neuropathic pain. We also demonstrated that

a mouse model of PD induced by MPTP injection exhibits

spontaneous pain, which showed different dynamics from evoked

pain. These results indicate that the suggested ML algorithm is

a novel tool for measuring spontaneous pain in animals and can

contribute to the development of clinically relevant pain treatments

in preclinical settings.

The measurement of spontaneous pain in the preclinical

level of analgesic development is critical for translation to

clinical applications (Bushnell et al., 2013). Due to this demand,

behavioral assays for measuring spontaneous pain, such as the

CPP and the GS, have been developed. Each of these methods

based on animal behaviors has limitations. For instance, CPP

(King et al., 2009) requires learning and memory capabilities,

as well as an intact reward system, complicating its use in pain

research within models of Alzheimer’s or PD (Huston et al.,

2013). In contrast, the method we propose does not have these

dependencies since it utilizes brain signals. As an example, we

confirmed for the first time the presence of spontaneous pain

in a mouse model of PD and verified the analgesic effects of

morphine in this pain model (Figure 5D). The applicability of

the method proposed in this study extends beyond the confines

of traditional spontaneous pain measurement techniques, offering

a versatile tool that promises to advance research across a

broader spectrum of pain models. In addition, the spontaneous

pain measurement technique proposed in this study can be

used in conjunction with existing methods, allowing for mutual

complementarity.
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FIGURE 5

Establishment of MPTP-induced PD model and detection of spontaneous pain. (A) Representative images and quantification of TH+ cells reduction
in SNc of MPTP (30 mg/kg, i.p.) -induced PD model (n = 8 per group). (B) Reduced motor function (n = 8 per group), and (C) increased mechanical
allodynia response and morphine (5 mg/kg, i.p.) -induced analgesic e�ect in the PD model (n = 9 for vehicle group, n = 8 for MPTP and MPTP +

morphine group). (D) The predicted pain value of MPTP-induced PD model in pain condition (n = 10 for baseline group and n = 17 for MPTP group).
(E) Classification performance in pain condition of MPTP-induced PD model. The data are presented the mean ± SEM; *P < 0.05, ***P < 0.001 by
unpaired t-test.

To detect spontaneous pain through brain signal observation,

we selected the S1 cortex for its integral role in pain processing,

acting as a crucial hub that processes nociceptive information.

Pain signals reach the S1 cortex through several pathways:

directly from the spinal cord (Cai et al., 2023), from the spinal

cord via the thalamus (Basbaum et al., 2009), and through the

spino-parabrachial-thalamic route (Krout and Loewy, 2000; Deng

et al., 2020; Bak et al., 2021; Li et al., 2023) and relays these signals

to the anterior cingulate cortex (Singh et al., 2020). Across various

chronic pain models, which are commonly associated with the

occurrence of spontaneous pain, the S1 cortex has demonstrated

a critical role in pain processing. In the nerve injury model,

alterations in neural activity were observed to vary according

to the subtype. Pyramidal neurons exhibited increased neural

activity, while local inhibitory interneurons were regulated in a

direction that overall increased net activity, depending on the

specific interneuron subtype (Cichon et al., 2017). Similar patterns

are seen in the CFA pain model, with increased synchronized

neuronal activity and connectivity evident within the S1 cortex

(Okada et al., 2021). In oxaliplatin-induced neuropathic pain, the

down-regulation of Kv2.2 potassium channels in the somatosensory

cortex correlates with increased neuronal and cortical excitability

(Thibault et al., 2012). These findings across different models align

with recent research, indicating the importance of S1 activity in

detecting spontaneous pain.

In previous research, our team developed an algorithm that uses

DL to detect pain from S1 calcium signals (Yoon et al., 2022). In

the current study, we introduced an ML model that, while aiming

to achieve similar goals as our prior research, offers a range of

distinct benefits. Firstly, as a black box model, the previous DL

model of ours could not provide information about which features

from the calcium signal contribute to pain detection. This lack of

interpretable explanation makes it difficult to identify malfunctions

in the model and does not offer insights into the modulation

of neurons for pain alleviation. In contrast, an ML model that

uses interpretable manually extracted features can easily improve

performance by modifying or adding features, and it provides

physiological information about pain representation in S1 neurons.

Finally, from a general perspective, ML as a shallower model

compared to DL has a lower risk of overfitting and its simplicity

and faster data processing speed allow it to be embedded in small

mobile devices for fast and real-time pain detection performance

(Petrosky et al., 2018; Salman and Liu, 2019).

An approach utilizing ML for assessing spontaneous pain

is notable not just for its ability to report the presence or

absence of pain. It also enables the observation of brain activity

patterns during both pain episodes and periods of drug-induced

analgesia. Particularly in this study, by utilizing manual feature

extraction in conjunction with ML techniques, we observed brain

signal patterns that can be intuitively understood by humans,
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FIGURE 6

Detection of analgesic e�ect of spontaneous pain in each pain model. The predicted pain value of (A) CFA model injected with ketoprofen (n = 13
for CFA group and n = 7 for CFA + ketoprofen group), (B) PSL model received saline or morphine via intraperitoneal (i.p.) injection (n = 11 per group),
(C) PSL model i.p. injected with magnolin (n = 7 per group), and (D) MPTP-induced PD model i.p. injected with morphine (n = 16 for MPTP group
and n = 14 for MPTP + morphine group). Classification performance under analgesic conditions for (E) CFA + ketoprofen model, (F) PSL + morphine
model, (G) PSL + magnolin, and (H) MPTP + morphine model. CFA model data are presented the mean ± SEM; N.S., not significant; *P < 0.05, **P <

0.01 by Mann-Whitney test. The remaining data are presented as unpaired t-test.

unlike those derived from DL models. Previous studies reported

that neuronal activity of the S1 was increased in chronic pain

(Kim S. K. et al., 2016; Ishikawa et al., 2018; Bak et al., 2021),

and diverse modulation of inhibitory interneurons contribute to

hyperactivity in pyramidal neurons (Cichon et al., 2017). The

activity patterns in pain states in the current study aligned with

these previous findings. However, our analysis also revealed the

novel aspects that had not previously been reported. We found

that S1 neurons had different patterns based on the interplay

between upregulated and downregulated neuronal activity, as well

as between active movement and stationary states. Interestingly, it

was observed that when the mice remained stationary, neuronal

activity under the influence of both ketoprofen and morphine

reverted to normal levels. In contrast, during movement, neuronal

activity under each drug exhibited a distinct pattern, not simply

returning to the baseline. Furthermore, the analysis highlighted

the correlation between cells, marking it as a newly identified and

potent feature for differentiating the analgesic effects of various

drugs. These results enhance our understanding of the complexities

involved in pain management and the effectiveness of analgesic

drugs, particularly in relation to movement and stationary states,

offering new perspectives for future research in this field.

In PD, pain symptoms often remain underestimated although

they significantly reduce the quality of life in patients (Defazio

et al., 2008; Beiske et al., 2009). Despite the significant impact

that pain can have on PD patients, preclinical research on

PD pain has been limited due to the difficulty of measuring

spontaneous pain in animal models of PD (Buhidma et al., 2020).

For example, PD exhibits disruption of the dopaminergic reward

system (Kapogiannis et al., 2011), which makes it difficult to apply

CPP, a common preclinical pain assessment method. In this study,

we propose a ML-based method for measuring spontaneous pain

in PD models. Our model was able to reliably detect spontaneous

pain inMPTP-injected PDmousemodels, and it also confirmed the

analgesic effect of morphine. We believe that our proposed model

can provide a valuable tool for preclinical research on PD pain. By

enabling more accurate and reliable measurement of spontaneous

pain, our model can help to advance our understanding of the

causes and symptoms of pain in PD models, accelerate the

development of new pain therapies, and improve the quality of life

for PD patients.

The study of magnolin in pain management is noteworthy

due to its unique targeting of ERK signaling, a pathway known

for its role in pain modulation (Kondo and Shibuta, 2020).

Magnolin is known to target the ERKs/RSK2 signaling pathway

(Lee et al., 2015), inhibiting cell migration and invasion, and has

been suggested as a biological target in pain management (Giraud

et al., 2021). In this study, magnolin treatment initially did not show

a statistically significant difference in analgesic efficacy compared

to the control group, unlike morphine and ketoprofen. However,

after repeated doses twice daily for 4 days, a significant analgesic

effect was observed (Figure 6C). The results observed following the

initial injection of magnolin suggest a discrepancy in its analgesic

effectiveness between evoked and spontaneous pain (Cao et al.,
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2012; Kim N. et al., 2023). These results lead us to suggest that it

would be more appropriate to test repeated dosing of magnolin

in clinical trials. While there are no clinical trial results yet for

the analgesic effects of magnolin, this case study demonstrates the

ability of the ML model to assess analgesic effects on spontaneous

pain of a candidate drug to various drug dosages. This information

can be used to optimize drug dosage for clinical trials.

The use of ML to analyze brain signals enables the detection of

spontaneous pain and analgesic effects that have been difficult to

detect with conventional analysis methods alone. However, there

might be skepticism about whether the classification by ML truly

detects spontaneous pain or merely identifies other artifacts. This

limitation arises from the fact that chronic pain models exhibit

not only pain but also various other differences when compared

to control groups, and that S1 brain signals are involved in a wide

range of functions beyond just pain (Roudaut et al., 2012; Abraira

and Ginty, 2013; Kim et al., 2017). Despite potential skepticism,

our study demonstrates the sufficient utility of ML classifications in

achieving the intended objectives. This conclusion is based on three

key aspects. Firstly, S1 neurons display distinct patterns in chronic

pain situations, as evidenced by various studies demonstrating

critical role of the S1 in pain sensation and processing across

different species, including humans (Omori et al., 2013; Kim et al.,

2017; Bak et al., 2021). Secondly, the use of diverse pain models in

our training set increases the likelihood of detecting a common pain

pattern, suggesting that our ML model is recognizing a consistent

pain signature rather than model-specific anomalies. Lastly, the

primary purpose of our research was not solely to capture the pain

itself, but rather to effectively classify different pain models and

analgesic responses. In this study, we have conducted extensive

validation of our ML model using a variety of pain models and

analgesics, highlighting its practical relevance and adequacy in

meeting the objectives of preclinical analgesic screening.

5 Summary

We have developed an ML model to more precisely

measure spontaneous pain and analgesic effect in mice, utilizing

calcium signals in the S1 region. This ML model employs

manually extracted features, such as dynamic variations in

calcium levels and inter-cellular activity correlations, to categorize

data into three distinct pain states: non-pain, pain, and drug-

induced states. Our extensive testing across various pain models

and medications demonstrates the heightened accuracy of

the ML model in detecting both pain and analgesic effects.

This ML model addresses the interpretability and analysis

challenges inherent in the previous DL model. Its improved

capabilities mark a significant step forward in expediting the

development of novel therapies, thereby advancing the field of

pain research.
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