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A machine learning model to
predict heart failure readmission:
toward optimal feature set

Sonia Jahangiri*, Masoud Abdollahi, Ehsan Rashedi and

Nasibeh Azadeh-Fard*

Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY,

United States

Background:Hospital readmissions for heart failure patients remain high despite

e�orts to reduce them. Predictivemodeling using big data provides opportunities

to identify high-risk patients and inform care management. However, large

datasets can constrain performance.

Objective: This study aimed to develop a machine learning based prediction

model leveraging a nationwide hospitalization database to predict 30-day heart

failure readmissions. Another objective of this study is to find the optimal feature

set that leads to the highest AUC value in the prediction model.

Material and methods: Heart failure patient data was extracted from the

2020 Nationwide Readmissions Database. A heuristic feature selection process

incrementally incorporated predictors into logistic regression and random forest

models, which yields a maximum increase in the AUCmetric. Discrimination was

evaluated through accuracy, sensitivity, specificity and AUC.

Results: A total of 566,019 discharges with heart failure diagnosis were

recognized. Readmission rate was 8.9% for same-cause and 20.6% for all-cause

diagnoses. Random forest outperformed logistic regression, achieving AUCs

of 0.607 and 0.576 for same-cause and all-cause readmissions respectively.

Heuristic feature selection resulted in the identification of optimal feature sets

including 20 and 22 variables from a pool of 30 and 31 features for the same-

cause and all-cause datasets. Key predictors included age, payment method,

chronic kidney disease, disposition status, number of ICD-10-CM diagnoses, and

post-care encounters.

Conclusion: The proposed model attained discrimination comparable to prior

analyses that used smaller datasets. However, reducing the sample enhanced

performance, indicating big data complexity. Improved techniques like heuristic

feature selection enabled e�ective leveraging of the nationwide data. This

study provides meaningful insights into predictive modeling methodologies and

influential features for forecasting heart failure readmissions.
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1 Introduction

Hospital readmission is considered an accountability measure and quality

indicator for healthcare in the United States (Low et al., 2015). The Centers for

Medicare and Medicaid Services (CMS) implemented the Hospital Readmissions

Reduction Program (HRRP) in October 2012 as part of the Affordable

Care Act (ACA) (Qiu et al., 2022). This program mandates CMS to adjust

hospital reimbursements based on their readmission rates (Qiu et al., 2022).
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Focusing on six specific medical conditions, including heart failure

(HF), myocardial infarction (MI), Chronic obstructive pulmonary

disease (COPD), Coronary artery bypass graft (CABG) surgery,

total hip/knee arthroplasty (THA/TKA), and pneumonia, CMS has

initiated public reporting of 30-day risk-standardized readmission

(National Quality Form, 2008; CMS, 2023). HF affects over 26

million individuals globally, resulting in more than one million

hospitalizations annually in the United States (Sarijaloo et al.,

2021). The prevalence of HF is steadily increasing due to the aging

population. Data from 2015 to 2018 shows ∼6 million American

adults aged 20 years and above were diagnosed with HF (Virani

et al., 2021). Forecasts indicate that this number is expected to

surge to eight million by 2030, leading to associated costs of $55

billion (Savarese and Lund, 2017). Post-discharge readmission or

mortality poses significant challenges to healthcare for patients with

HF.Within 30 days of discharge, up to 25% of HF patients may face

readmission, with an associated mortality risk of∼10% (Krumholz

et al., 2009). Despite nationwide efforts focused on decreasing

readmission rates for HF exacerbations, evidence indicates that 30-

day readmission and mortality for these patients are still rising

(Gupta et al., 2018).

Data plays a crucial role in healthcare extracting invaluable

knowledge and insights (Auffray et al., 2016). The abundance of

patient information collected from diverse sources has given rise

to data analytics as a powerful tool for comprehending intricate

medical conditions (Shameer et al., 2017; Jahangiri et al., 2024).

Given the significance of reducing readmission rates, numerous

studies have been conducted to explore the factors influencing

readmission rates among HF patients. For instance, in a recent

study by Sharma et al., an HF readmission prediction model (a

tree-based classifier) was developed using factors like sex, age,

emergency department visits, and so on, achieving a c-statistics

of 0.65 (Sharma et al., 2022). Similarly, Mortazavi et al. devised a

random forest (RF) model that incorporated the aforementioned

factors, comorbidity, race, and severity index, resulting in a c-

statistics of 0.62 and a precision of 0.32 (Mortazavi et al., 2016).

Several other studies on the same subject (Philbin and DiSalvo,

1999; Ross et al., 2008; Awan et al., 2019a,b) yielded performance

levels of <0.66. Furthermore, there is a rising trend in the number

of studies around this topic recently. For instance, within the last

12 months, there were several studies employing machine learning

(ML) methods to forecast the risk of readmission for patients with

HF (Ru et al., 2023; Tong et al., 2023; Scholten et al., 2024). C-

statistics of the developed models in these studies were in the range

of 0.59–0.63. However, most of these studies have been limited

by their use of small datasets with <50,000 samples, potentially

impeding the generalizability of their findings. To address this

gap in the existing literature, it is essential to employ larger

datasets collected at a national level. The Nationwide Readmissions

Database (NRD) stands out as one of the most suitable datasets,

encompassing nationwide data, and its recent sample size for HF

patients in 2020 exceeds 500,000 discharge records.

The variability in studies that predict heart failure readmission

(HFR) can be attributed to several factors, including the selection

of features used in the predictive models. A thorough literature

analysis reveals over 150 potential features that could be considered

when developing a predictive model for HFR. These features can

be broadly categorized into five classes: (1) demographics

and socioeconomics, (2) clinical information or discharge

information, (3) hospital-related information, (4) comorbidities,

and (5) diagnosis and procedure-related information. Notably,

the literature shows that researchers commonly implemented

features from the demographics, clinical information, and

comorbidities classes in their analysis (Guo et al., 2020; Rahman

et al., 2023). However, studies such as Golas et al. (2018) and

Ashfaq et al. (2019) have highlighted the significance of previously

underexplored predictors as diagnosis and procedure-related

information in predicting HFR. Surprisingly, these factors received

little attention in earlier studies like (Zheng et al., 2015; Mortazavi

et al., 2016; Awan et al., 2019b; Sharma et al., 2022). Consequently,

it remains to be investigated whether considering these factors

alongside others on a large dataset will lead to their identification

as significant predictors. Further research is warranted to explore

their potential impact on HFR prediction.

To bridge the mentioned gaps in the literature, this study aims

to develop a machine learning-based HFR prediction model that

uses a nationwide dataset. The dataset is rich in the number of

records and encompasses a broad spectrum of distinct feature

collections. One particularly notable feature collection within this

dataset relates to diagnostic attributes. Another objective examined

in this study involves employing an innovative process for selecting

significant features in conjunction with ML techniques. This

method’s primary purpose is to assess each feature’s potential

influence on the prediction model by progressively integrating

them into the training process. This technique facilitates the

identification of feature combinations that yield high-performance

metrics. A predictive model that emphasizes such a heuristic

method could lead us to recognize the optimal feature set in HFR

prediction. This study also compared the implementation of three

distinct techniques for addressing imbalanced data challenges,

along with utilizing the feature normalization method for each ML

approach. Ultimately, these mentioned elements result in creating a

prediction model characterized by an optimal selection of features

with a notable Area Under the Receiver Operating Characteristic

Curve (AUC) value.

2 Materials and methods

2.1 The dataset

The NRD is a unique and powerful readmission analysis

database, produced by the Healthcare Cost and Utilization Project

(HCUP). The NRD effectively fills a substantial gap in healthcare

data by providing comprehensive and nationally representative

information on hospital readmissions for all patients, irrespective

of their expected payer for the hospital stay. The primary

objective behind the establishment of such comprehensive data

is to enhance national readmission analyses and offer invaluable

support to health professionals, administrators, policymakers,

and clinicians in their decision-making processes (Agency for

Healthcare Research Quality, 2020).

The study utilized the 2020 NRD dataset, which comprises

discharge-level hospitalization data from 31 geographically diverse

states, representing ∼62.2% of the total U.S. resident population

and about 60.8% of all hospitalizations during the specified
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period. This extensive dataset contains a significant volume of

discharges, estimated to be around 16 million (weighted estimate

of ∼32 million discharges). The NRD dataset includes the

International Classification of Diseases, Tenth Revision (ICD-10)

codes. These codes constitute a comprehensive classification system

incorporating various medical conditions, diseases, symptoms,

injuries, and related health issues (CDC, 2015). In this paper,

we extracted all hospital admissions with ICD-10 codes related

to HF and stored patient information separately. After initial

identification, 566,019 discharges with early HF diagnoses were

found, and specific exclusions were applied, including cases with

zero length of stay, in-hospital mortalities, lack of 30-day follow-

up data (patients discharged in December 2020), and patients

under 18 years old. Subsequently, records with missing values were

removed, resulting in a final dataset comprising 489,442 records

for analysis. Figure 1 depicts the study cohort design derived from

the 2020 NRD data, which serves as the basis for analysis in

our research.

2.2 Data analysis

2.2.1 Data preparation
In the NRD, patients can be monitored over a year using a

unique linkage number. To calculate the time to readmission, we

computed the interval between two admissions, then subtracted

the length of stay for the initial admission from the interval.

The evaluation in this paper specifically concentrated on 30-

day readmissions, extracting two types of readmissions from

the dataset. The first type included all-cause readmissions,

containing readmissions related to HF diagnosis and other

diagnoses. The second type focused on same-cause readmissions,

involving readmissions directly attributed to HF (With the same

ICD-10 codes). The 2020 NRD database comprises discharge-

level files and patient demographics, including age, expected

primary payer, discharge status, and total charges. It also

includes severity-related data for assessing the patient’s condition,

hospital-related information such as bed size and teaching status,

and comorbidities like drug abuse and diabetes. Moreover, it

contains diagnosis and procedure-related information, providing

additional details through ICD-10-CM diagnoses and ICD-10-PCS

procedures generated by HCUP software tools. Considering all this

information, the initial dataset resulted in over 600 features.

We employed two methods for categorical and continuous

variables to simplify the prediction model and enhance analysis

speed to select the most important ones. Firstly, we used

contingency tables to explore the relationship between categorical

variables and the readmission rate. Secondly, the Logistic

platform was utilized to fit a logistic regression model to

analyze readmission rates while considering continuous variables.

The analysis results included contingency tables with frequency

counts and proportions, chi-square tests and p-values to assess

significance. Through these tests, we selected the most significant

features (considering p-values <0.01) for predicting readmission,

resulting in 31 features for the same-cause dataset and 30 for the

all-cause dataset. This process helped streamline the model and

improve the efficiency of our predictive analysis.

2.2.2 Feature selection
To identify features leading to a high AUC in the readmission

prediction model, a heuristic feature selection approach marked by

a systematic, multistep procedure was employed. In the initial step,

the model was constructed with the inclusion of just one feature,

and its performance was assessed. This step generated 31models for

the same-cause dataset and 30models for the all-cause dataset, each

focusing on a singular feature. Subsequently, the AUC, a widely

acknowledged metric in readmission analysis (Guo et al., 2020),

was calculated for each model, establishing a baseline for individual

feature performance.

Moving forward, a dynamic feature set was formulated,

condensing the feature that demonstrated the highest AUC value

among the single-feature models. The process then transitioned

to evaluating the performance of the model by introducing

combinations of the selected features with each remaining feature,

systematically calculating the AUC value for each pair. This

iterative exploration enabled the continual refinement of the feature

set, identifying pairs with the highest AUC at each step. The

process continued, analyzing the fluctuation of AUC in the HFR

prediction model with the progressive addition of each feature.

The final model selected, with the maximum AUC, served as the

baseline model for subsequent analyses. This iterative approach

systematically selected the most relevant feature sets, unraveling

the nuanced pattern of performance changes with the inclusion of

each feature. The goal of this process is to create a sophisticated and

refined predictive model designed for readmission analysis.

2.2.3 Machine learning models
Only a minority of patients, specifically 8.9 and 20.6%,

experienced readmission to the hospital due to same-cause and

all-cause conditions, respectively. These relatively low percentages

highlight a common issue in medical datasets—imbalanced data.

Such datasets often show a considerable disparity between the

occurrence of outcome events and the cases where outcomes

do not occur. Three distinct techniques, under-sampling, over-

sampling, and SMOTE, were applied to address this issue

within our dataset. Subsequently, a comparative analysis of the

effectiveness of each ML method using these techniques was

conducted. Implementing methods to address class imbalance

increases the prediction model’s sensitivity, thus improving

its capacity to recognize potential outcomes. This means the

model becomes more adept at correctly identifying instances

that might lead to certain results, contributing to better

overall performance.

Following the feature selection phase that identified the most

critical attributes, two ML techniques—Logistic Regression (LR)

and Random Forest (RF)—were employed on both same-cause

and all-cause datasets. LR is a frequently employed technique

in the existing literature for examining readmission (Artetxe

et al., 2018). At the same time, the selection of RF is attributed

to the strong performance of tree-based methods in predicting

readmission, as documented in previous studies (Shams et al.,

2015; Mortazavi et al., 2016). To ensure unbiased assessment,

the dataset was partitioned into three segments: a training set,

validation set, and test set, divided randomly in a 70:15:15 ratio.
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FIGURE 1

Overview of the data extraction process.

The training set facilitated model training, the validation set

enabled hyperparameter exploration (e.g., number of trees in the

forest in RF, or algorithm to use in the optimization problem

in LR), and the test set enabled performance comparison of the

proposed approach. In implementing the ML methods, feature

normalization using standardization was adopted. Both normalized

and unnormalized features were subjected to each algorithm to

evaluate their performance. Consequently, the study involves two

ML techniques, three techniques for handling class imbalance,

and two states regarding feature normalization—resulting in 12

distinct conditions for model implementation. Ultimately, each

condition’s discriminatory ability was compared by calculating

accuracy, sensitivity, specificity, and AUC.

2.3 Software packages

The dataset was loaded, and HF-related information was

extracted using SPSS software version 28.0. Significant feature

selection underwent statistical analysis utilizing JMP software

version 16.1. The implementation code for ML methods,

incorporating sequential feature selection, was scripted in Python

programming environment version 3.9. The execution of Python

code was carried out in the Visual Studio coding environment.

The Python packages employed in our implementation include

Pandas, NumPy, Scikit-learn (Sklearn), Statistics, and Imbalanced-

learn (Imblearn). These packages collectively facilitated the

implementation of ML algorithms and the execution of the feature
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selection process. Specifically, Scikit-learn was utilized for logistic

regression and random forest models.

3 Results

3.1 Study characteristics

During the study period from January to November 2020,

566,019 discharges with primary HF diagnoses were recorded using

ICD-10 codes. After applying exclusion criteria and addressing

missing values, the dataset was refined to a final count of 489,442

records. The code “NRD_VisitLinks” was utilized to track patients

with multiple admissions uniquely, and then data was divided into

two sets based on whether their readmissions were due to the same

cause or any cause. The baseline characteristics of patients in the 30-

day analytical samples for both same-cause and all-cause datasets

are presented in Table 1.

The most discriminatory continuous variables identified by

the logistic regression model (p-value <0.01) and the chi-squared

test identified the most prominent binary variables associated

with readmission. Thirty-one features were selected for the same

cause data; however, 30 were selected for the all-cause dataset.

A description of all the features and their higher-level category

is provided in Table 2. In addition, Table 2 provides a visual

representation of the features added to each dataset, as indicated

by the results of the conducted statistical tests. For example, both

datasets encompassed age and length of hospital stay, whereas

comorbidity associated with depression was exclusively present in

the all-cause dataset.

3.2 Hyperparameters

As described in the methodology, the dataset was divided into

three segments: training, validation, and test sets. The training

set was employed for model training, the validation set played a

pivotal role in determining optimal hyperparameters for each ML

method, and the test set was used in evaluating model performance.

An in-depth analysis of the validation set led to the identification

of the best hyperparameters for logistic regression, with settings

such as solver = “lbfgs” and max_iter = 500. Similarly, for the

random forest method, a set of key parameters emerged, including

n_estimators= 100, max_features= “sqrt,” min_samples_leaf= 5,

min_samples_split= 5, and n_jobs=−1.

3.3 Feature selection and classification
performance

The outcomes from the feature selection procedure and an

application of ML methods, are displayed in Table 3. Feature

normalization yielded superior outcomes in the case of the LR

method; nevertheless, its effectiveness did not transition to the RF

method. Hence, the results of LR with normalization and the results

of RF without normalization are presented. In a comprehensive

assessment, the RF method demonstrated superior performance

compared to the LR across both the same-cause and all-cause

datasets. Specifically, in the same-cause dataset, RF exhibited an

accuracy of 0.633 and an AUC of 0.607, outperforming LR with

an accuracy of 0.603 and an AUC of 0.593. Similarly, within the

all-cause dataset, the predictive discriminatory capability of RF

in forecasting readmission surpassed that of LR, with an AUC of

0.576. Also, the results of utilization imbalanced data overcoming,

including under-sampling, over-sampling, and SMOTE techniques,

can be seen in Table 3. The detailed performance of the best

performing models also has been presented in Appendix A1.

3.4 Feature reduction and model
refinement

As previously outlined, the heuristic feature selection process

involves incrementally introducing features to the model based on

the resulting higher AUC. Figures 2, 3 illustrate the features selected

at each step, accompanied by accuracy, sensitivity, specificity,

and AUC metrics for each corresponding model. Inference can

be drawn that, for the same-cause dataset, the initial steps of

feature selection highlighted three pivotal attributes: age, payment

method, and chronic kidney disease. In the context of the all-

cause dataset, early steps emphasized the significance of variables

such as the number of ICD-10-CM diagnoses during discharge,

patient disposition, chronic kidney disease, and other post-care

encounters, which carry substantial influence on the predictive

model. These figures also effectively illustrate the fluctuations

observed in each calculated metric. In the early stages, the metrics

display significant variation, which gradually diminishes as each

feature is progressively integrated into the model. Furthermore,

the feature set that encompasses 90% of the AUC range is visually

represented by the light green area in Figures 2, 3.

4 Discussion

This study leveraged nationwide hospitalization data and

machine learning techniques to develop prediction models

for 30-day HFR. The results demonstrate the feasibility of

achieving reasonable discrimination, with AUC values up to

0.607, for forecasting readmission using a dataset of around

500,000 discharge records. The findings highlight age, payment

method, and chronic kidney disease as pivotal predictors of

same-cause readmissions. For all-cause readmissions, significant

features included the number of diagnoses, disposition status,

chronic kidney disease, and post-care encounters. While model

discrimination was comparable to other studies, the scale of the

dataset and inclusion of diagnosis information provide distinctive

value. This research contributes meaningful insights on influential

variables and modeling approaches for leveraging expansive

datasets to predict readmission and inform care management for

heart failure patients.

The discrimination achieved by the RF and LR models

developed in this study, with AUC values up to 0.607, are in

line with prior analyses that attained AUCs in the range of 0.6–

0.66 for predicting HFR (e.g., Philbin and DiSalvo, 1999; Awan

et al., 2019a,b). Likewise, the readmission models for other medical

settings (e.g., ICU readmission prediction models) have roughly
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TABLE 1 Baseline characteristics for some of the features, (mean ± SD) for continuous variables; n (%) for categorical variables.

Features Same-cause 30-day readmission All-cause 30-day readmission

Yes No Yes No

Total 8.91% 91.09% 20.65% 79.35%

Demographic characteristics

Age (years) 68.5± 14.6 71.7± 14 70.1± 14.1 71.7± 14.1

LOS (days) 5.4± 5.1 5.6± 6.1 5.9± 6.6 5.5± 5.9

Gender (female) 42.10% 47.20% 45.16% 47.10%

Payment method

Medicare 68.19% 72.50% 71.85% 72.20%

Medicaid 18.74% 11.40% 15.21% 11.20%

Private insurance 8.13% 10.90% 8.60% 11.20%

Self-pay 2.40% 2.50% 2% 2.70%

Other 2.54% 2.70% 2.34% 2.70%

Disposition of patient

Routine 48.22% 49.86% 45.97% 50.69%

Short-term hospital 1.00% 0.9% 1.11% 0.85%

Home health care 33.88% 31.75% 34.14% 31.37%

Other 16.9% 17.49% 18.78% 17.09%

Control/ownership of the hospital

Government, nonfederal 11.84% 10.78% 11.1% 10.82%

Private, non-profit 73.33% 75.58% 73.95% 75.75%

Private, invest-own 14.83% 13.64% 14.95% 13.43%

Comorbidities

Drug_Abuse 9.91% 4.80% 7.56% 4.70%

Lung_Chronic 45.60% 39.40% 44.93% 38.70%

Diab_CX 42.80% 37.10% 42.13% 36.50%

Dementia 5.30% 7.90% 6.65% 7.90%

Alcohol 5.36% 4.08% NA NA

HTN_UNCX 4.16% 5.29% 4.37% 5.40%

Depress NA NA 13.04% 11.82%

Diagnosis codes

DXCCSR_MBD021 7.91% 3.43% 5.60% 3.37%

DXCCSR_GEN003 59.58% 51.26% 57.50% 50.57%

DXCCSR_CIR005 42.50% 35% NA NA

DXCCSR_RSP008 40.85% 34.53% 40.32% 33.73%

DXCCSR_MBD024 19% 14.63% NA NA

DXCCSR_END003 42.85% 37.20% 42.17% 36.54%

DXCCSR_GEN002 41.49% 36.02% 40.64% 35.43%

DXCCSR_FAC010 2.71% 4.69% 2.79% 4.96%

DXCCSR_NVS011 6.13% 8.86% NA NA

DXCCSR_MBD001 2.61% 1.29% 2.15% 1.22%

DXCCSR_BLD003 NA NA 28.30% 23.36%

DXCCSR_END005 NA NA 51.10% 46.78%

DXCCSR_CIR011 NA NA 57.62% 54.08%
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TABLE 2 Features included in the model, along with their categories.

Feature type Feature Definition Dataset

Demographics AGE Patient’s age Same, all

FEMALE Patient’s gender (binary, “1” is female) Same, all

PAY1 Payment method Same, all

PL NCHS Patient’s location (based on NCHS urban-rural code) Same, all

ZIPINC QRL Estimated median house income in the patient’s zip code Same, all

Resident Patient’s local (binary, “1” is the patient comes from the same state as

the hospital)

Same, all

Discharge Information DMONTH Patient’s discharge month Same, all

DISPUNIFORM Disposition of patients Same, all

LOS Length of the hospital stay Same, all

TOTCHG Patient’s inpatient total charges All

I10_NDX Number of ICD-10-CM diagnoses on this discharge Same, all

I10_NPR Number of ICD-10-PCS procedures on this discharge Same

I10_SERVICELINE Service line based on ICD-10-CM/PCS codes Same

APRDRG_Risk_Mortality All patient refined DRG: risk of mortality subclass Same, all

Hospital-related Information H_CONTRL Control/ownership of the hospital Same, all

HCUP_ED HCUP indicator of emergency department record Same, all

Comorbidities CMR_DRUG_ABUSE Drug abuse Same, all

CMR_LUNG_CHRONIC Chronic pulmonary disease Same, all

CMR_DIAB_CX Diabetes with chronic complications Same, all

CMR_DEMENTIA Dementia Same, all

CMR_ALCOHOL Alcohol abuse Same

CMR_HTN_UNCX Hypertension, uncomplicated, and complicated Same, all

CMR_DEPRESS Depression All

Diagnosis-related information DXCCSR_MBD021 Stimulant-related disorders Same, all

DXCCSR_GEN003 Chronic kidney disease Same, all

DXCCSR_CIR005 Myocarditis and cardiomyopathy Same

DXCCSR_RSP008 Chronic obstructive pulmonary disease and bronchiectasis Same, all

DXCCSR_MBD024 Tobacco-related disorders Same

DXCCSR_END003 Diabetes mellitus with complication Same, all

DXCCSR_GEN002 Acute and unspecified renal failure Same, all

DXCCSR_FAC010 Other aftercare encounter Same, all

DXCCSR_NVS011 Neurocognitive disorders Same

DXCCSR_MBD001 Schizophrenia spectrum and other psychotic disorders Same, all

DXCCSR_BLD003 Aplastic anemia All

DXCCSR_FAC010 Other aftercare encounter All

DXCCSR_MBD021 Stimulant-related disorders All

similar range of AUC (Fialho et al., 2012; Viegas et al., 2017).

The scale of the dataset likely contributed to the ability to reach

this level of performance. However, it is notable that despite

a nationwide sample exceeding 480,000 records, discrimination

did not substantially surpass results from studies using under

2,000 patients. This suggests inherent challenges in forecasting

readmission that persist even with expansive data. The complexity

of factors influencing outcomes for heart failure patients impedes

predictive modeling. Computational enhancements and more

robust feature selection could help maximize the value of large

datasets for enhancing model performance. Overall, while the

discrimination achieved is on par with past analyses, the outcomes
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TABLE 3 Performance metrics for each of the ML methods by considering under-sampling, over-sampling, and smote methods, selected features for each of the conditions by order of selection.

LR-
normalized

Feature set No RF-not
normalized

Feature set No

Same- cause

(30-day)

Under ACC 0.6 AGE, GEN003, I10_NPR, ZIPINC_QRTL, PL_NCHS, PAY1,

DMONTH, END003, MBD021, RSP008, DISPUNIFORM,

I10_NDX, MBD001, I10_SERVICELINE, CMR_DIAB_CX,

NVS011, LOS, APRDRG_Risk_Mortality, CIR005,

H_CONTRL, GEN002, HCUP_ED, CMR_HTN_UNCX,

MBD024, FAC010, FEMALE

24 0.605 AGE, PAY1, DISPUNIFORM, GEN003, DMONTH,

I10_NPR, I10_NDX, FEMALE, CMR_LUNG_CHRONIC,

ZIPINC_QRTL, GEN002, CMR_HTN_UNCX,

CMR_DRUG_ABUSE, FAC010, HCUP_ED,

CMR_DEMENTIA, RESIDENT, H_CONTRL, CIR005,

CMR_DIAB_CX

20

SEN 0.582 0.609

SPE 0.602 0.605

AUC 0.592 0.607

Over ACC 0.603 AGE, GEN003, I10_NPR, RSP008, MBD021, PAY1,

DMONTH, GEN002, MBD001, APRDRG_Risk_Mortality,

MBD024, FAC010, NVS011, DISPUNIFORM,

ZIPINC_QRTL, PL_NCHS, I10_SERVICELINE, END003,

CIR005, LOS, H_CONTRL, CMR_LUNG_CHRONIC,

CMR_DIAB_CX, CMR_ALCOHOL, FEMALE, HCUP_ED,

CMR_DRUG_ABUSE

27 0.633 AGE, PAY1, DISPUNIFORM, GEN003, RSP008,

I10_SERVICELINE, FAC010, MBD001, MBD021,

CMR_ALCOHOL, CMR_DEMENTIA, RESIDENT,

NVS011

13

SEN 0.576 0.511

SPE 0.605 0.645

AUC 0.591 0.578

Smote ACC 0.599 AGE, GEN003, I10_NPR, RSP008, ZIPINC_QRTL,

DMONTH, MBD021, DISPUNIFORM, CIR005, PAY1,

PL_NCHS, I10_NDX, I10_SERVICELINE, H_CONTRL,

MBD024, END003, CMR_HTN_UNCX, GEN002, LOS,

FAC010, CMR_DRUG_ABUSE, MBD001, NVS011,

HCUP_ED, CMR_DEMENTIA

25 0.632 AGE, PAY1, DMONTH, GEN003, RESIDENT 5

SEN 0.585 0.496

SPE 0.601 0.645

AUC 0.593 0.571

All- cause (30-day) Under ACC 0.577 I10_NDX, FAC010, GEN003, AGE, DISPUNIFORM,

RSP008, BLD003, PAY1, ZIPINC_QRTL, CIR011, MBD021,

HCUP_ED, DMONTH, TOTCHG, END003, RESIDENT,

PL_NCHS, LOS, H_CONTRL, CMR_DEMENTIA,

GEN002, END005, MBD001, CMR_HTN_UNCX

24 0.574 I10_NDX, DISPUNIFORM, FAC010, GEN003, PAY1,

RSP008, CMR_HTN_UNCX, CMR_DRUG_ABUSE,

RESIDENT, MBD021, MBD001, AGE, LOS,

APRDRG_Risk_Mortality, H_CONTRL, DMONTH,

CMR_DEMENTIA, BLD003, CMR_LUNG_CHRONIC,

ZIPINC_QRTL, FEMALE CMR_DEPRESS

22

SEN 0.573 0.579

SPE 0.579 0.572

AUC 0.576 0.576

Over ACC 0.576 I10_NDX, FAC010, GEN003, AGE, DISPUNIFORM,

RSP008, PAY1, ZIPINC_QRTL, BLD003, MBD021, CIR011,

DMONTH, RESIDENT, LOS, TOTCHG, H_CONTRL,

MBD001, APRDRG_Risk_Mortality, CMR_DEMENTIA,

CMR_HTN_UNCX, HCUP_ED, GEN002, PL_NCHS,

END003, CMR_LUNG_CHRONIC

25 0.563 I10_NDX, DISPUNIFORM, FAC010, GEN003, RSP008,

CMR_DRUG_ABUSE, RESIDENT, CMR_HTN_UNCX

8

SEN 0.572 0.563

SPE 0.577 0.563

AUC 0.575 0.563

Smote ACC 0.572 I10_NDX, FAC010, GEN003, DISPUNIFORM, AGE,

RSP008, PAY1, ZIPINC_QRTL, BLD003, CIR011, MBD021,

END005, LOS, CMR_LUNG_CHRONIC, RESIDENT,

MBD001, DMONTH, HCUP_ED, H_CONTRL,

CMR_DRUG_ABUSE, END003, GEN002, CMR_DIAB_CX,

CMR_DEMENTIA, CMR_HTN_UNCX

25 0.499 AGE, PAY1 2

SEN 0.58 0.602

SPE 0.569 0.472

AUC 0.575 0.537
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FIGURE 2

A Graphical representation of feature addition order at each step of the heuristic feature selection process for the optimal 30-day same-cause

models. The figure at the (top) depicts the random forest model, while the figure at the (bottom) represents the logistic regression model. The light

green area illustrates the feature set that includes 90% of the AUC range. The X-axis represents the number of features, and the Y-axis represents the

AUC values.

underscore the need to refine predictive modeling methodologies

for HFR using big data resources.

The significant predictors identified through the feature

selection process in the top-performing model align with the

findings of Awan et al. (2019b), who similarly identified age and

chronic kidney disease as important factors. Additionally, the

results are consistent with studies by Philbin and DiSalvo (1999)

and Shams et al. (2015), which recognized insurance status and

age as salient features. For all-cause readmissions, the top model

emphasized the number of diagnoses, disposition status, chronic

kidney disease, and post-care encounters. These features bear

similarity to those deemed impactful in previous studies, including

the number of procedures, discharge disposition, and secondary

diagnoses (Golas et al., 2018; Sharma et al., 2022; Rahman et al.,

2023). However, few studies have pointed to post-care encounters

as a significant predictor. The distinctions in key features between

this analysis and prior literature may stem from the scale and

diversity of the nationwide dataset, allowing for the emergence

of previously underrecognized predictors. Overall, while there is

overlap with some commonly identified predictors, the findings

also highlight new factors and the potential value of large datasets

for revealing novel drivers of readmissions. Further validation is

warranted to confirm the generalizability of these discharge-related

and diagnostic features in predicting heart failure readmissions.
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FIGURE 3

A graphical representation of feature addition order at each step of the heuristic feature selection process for the optimal 30-day all-cause models.

The figure at the (top) depicts the random forest model, while the figure at the (bottom) represents the logistic regression model. The light green area

illustrates the feature set that includes 90% of the AUC range. The X-axis represents the number of features, and the Y-axis represents the AUC values.

Analyzing medical data presents a distinct challenge due to

its sophisticated nature, encompassing multidimensional patient

profiles, diverse conditions, and complicated interdependencies

(Rehman et al., 2022). When dealing with a large amount of

medical data, especially in the context of big data, analyzing

such information becomes a significant challenge. This study’s

dataset is notably extensive, encompassing information from over

500,000 patients. This substantial volume of data adds complexity

to the analysis process and the development of predictive

models. Consequently, identifying trends among patients within

the extensive dataset becomes a challenge, leading to models

exhibiting unsatisfactory performance metrics. To further analyze

the impact of the large sample size, the dataset was reduced

by randomly selecting 5,000 records, ∼1% of the full dataset.

The best-performing ML methods were applied to this smaller

subset, and the result of this analysis can be seen in Table 4.

Given the class imbalance issue in the sampled dataset, under-

sampling, over-sampling, and SMOTE techniques were employed

on this dataset too. Additionally, the data division into training,

validation, and test sets maintained a consistent 70:15:15 ratio,

aligning with the main dataset description. Surprisingly, sampling

just 1% of the records enhanced the predictive performance

of the best models by ∼10% in some cases, measured by

AUC. This suggests that while big data provides extensive
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TABLE 4 Discrimination power of the best-performing ML methods on full-size data and reduced sample data with randomly selected 5,000 records.

Method Sample size Accuracy Sensitivity Specificity AUC

Same-cause (30-day) LR 489,442 0.6 0.582 0.602 0.592

5,000 0.67 0.588 0.68 0.634

RF 489,442 0.605 0.609 0.605 0.607

5,000 0.757 0.529 0.786 0.658

All-cause (30-day) LR 489,442 0.577 0.573 0.579 0.576

5,000 0.66 0.65 0.662 0.656

RF 489,442 0.574 0.579 0.572 0.576

5,000 0.71 0.5 0.762 0.631

FIGURE 4

Comparison between sample size and AUC for some of the studies in the literature and our proposed model using both reduced sample size (our

study 1) and full sample size (our study 2).

information, it may also introduce complexities that constrain

predictive modeling.

Many past studies analyzing HFR were confined to small

datasets, typically comprising just thousands of patients (Zhou

et al., 2016). For instance, Mortazavi et al. (2016), Xiao et al.

(2018), Awan et al. (2019b), and Sharma et al. (2022) leveraged

sample sizes of 5,393, 1,653, 9,845, and 10,757 patients, respectively.

The information related to sample sizes and the corresponding

AUC values for each of these studies, as well as for our study,

encompassing both the full and the reduced sample sizes, can be

found in Figure 4. As shown in this Figure, discrimination achieved

by these studies topped out at 0.65 AUC, with a sample size of

<11,000 records. Our full sample modeling with around 500,000

records achieved similar discrimination to past literature, reducing

the sample to 5,000 records notably improved AUC to 0.658. This

indicates that the study introduces a novel modeling approach that

achieves robust predictive performance using a large nationwide

dataset. This success is attributed to two main factors: a systematic

heuristic feature selection technique that identifies important

features from high-dimensional data and applying advanced ML

algorithms with suitable sampling and normalization techniques.

These specialized analytic strategies effectively leverage the big
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dataset, resulting in strong discrimination for predicting HFR and

overcoming inherent complexities.

The light green regions in Figures 2, 3 present the range of

features required to maintain 90% of the AUC range. For 30-day

same-cause readmission modeling, the full feature set contained

20 variables and achieved an AUC of 0.607 using RF. However,

limiting the features to a set of just 15 variables yielded an

AUC of 0.601, capturing 90% of the maximal discriminative

ability. Similarly, in developing the 30-day all-cause readmission

model, the complete feature space had 22 variables, resulting

in an AUC of 0.576. Yet, using a reduced feature set of 12

variables could attain an AUC of 0.572, equivalent to 90% of

the AUC range. This demonstrates that compromising just 10%

of the maximum AUC performance can substantially decrease

the number of features from 20 to 15 for same-cause and

24 to 12 for all-cause readmission prediction. The ability to

condense the feature space whilemaintainingmost of the predictive

power facilitates more efficient modeling. Overall, the light green

highlighted regions in the figures provide evidence that nearly the

full discriminative capacity can be retained using a parsimonious

feature subset, allowing for streamlined model development with

minimal impact on predictive performance. Selecting an optimal

feature set that balances discrimination and efficiency will be

important in translating these models into usable clinical tools.

This study has certain limitations worth acknowledging.

First, using a single dataset from the NRD, while providing

nationwide representation, constrains generalizability. Validation

with external datasets could strengthen reliability. Second,

the data lacks detail on outpatient medications, procedures,

and healthcare utilization that could provide valuable insights.

Incorporating such granular clinical information could enhance

predictive modeling. Third, the study was limited to adult patients

over 18 years old, and findings may not be generalizable to

pediatric populations. Fourth, more complex machine learning

methods like neural networks were not explored and could

potentially lead to higher predictive performance than the

RF and LR models used in this analysis. While this study

provides meaningful contributions to predictors and modeling

approaches for HFR, the limitations highlight opportunities

for additional research to confirm reproducibility, integrate

supplementary data sources, expand to broader populations,

implement more rigorous validation, and investigate advanced

modeling techniques.

5 Conclusion

This study aimed to employ ML models utilizing nationwide

data to predict readmissions in patients discharged following

heart failure. Timely identification of readmission risk among

heart failure patients is essential for preventing complications

and reducing mortality. Therefore, a heuristic feature selection

process, alongside LR and RF methods, was utilized as a key

component in the predictive model for readmissions. Our HFR

prediction model equips healthcare providers with proactive

tools to intervene and reduce emergency hospital readmissions,

ultimately leading to improved patient outcomes and reduced

healthcare costs. The principal findings of this study are: (1) among

the 489,442 patients admitted for HF during 2020, 8.91% were

readmitted with the same diagnosis, and 20.65% were readmitted

with any diagnosis. (2) using statistical techniques, 31 and 30

features were selected as significant in analyzing readmission for

the same-cause and all-cause datasets, respectively. (3) Among

the notable features, 10 are linked to diagnosis-related data.

Notably, patients readmitted to the hospital displayed significant

rates of certain conditions: around 59% had Chronic Kidney

Disease, ∼40% had Chronic Obstructive Pulmonary Disease

and Bronchiectasis, and about 42% had Diabetes Mellitus. (4)

Through the application of heuristic feature selection, 20 and

22 features were identified as significant in the HFR prediction

model for same-cause and all-cause datasets. (5) The proposed

design accurately predicts readmissions for discharged HF patients

with an AUC score of 0.607 and 0.576 for same-cause and

all-cause datasets, respectively. (6) RF outperformed LR in

various scenarios by employing three techniques to counter

the imbalanced data challenge. (7) age, payment method, and

chronic kidney disease for the same-cause dataset and the

number of ICD-10-CM diagnoses, patient disposition, chronic

kidney disease, and other post-care encounters for the all-cause

dataset are the selected features in the early steps of the feature

selection process.
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Appendix

Appendix A1 Detailed performance of the best models.

Labeling ML model Imbalanced method ACC SEN SPE AUC Pre F1-Score

Same-cause (30-day) LR Over-sampling 0.603 0.576 0.605 0.591 0.593 0.586

RF Under-sampling 0.605 0.609 0.605 0.607 0.605 0.609

All-cause (30-day) LR Under-sampling 0.577 0.573 0.579 0.576 0.575 0.573

RF Under-sampling 0.574 0.579 0.572 0.576 0.572 0.575
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