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Objectives: To establish a radiomics model for distinguishing between the

benign and malignant mammary gland nodules via combining the features

from nodule and mammary regions on DCE-MRI

Methods: In this retrospective study, a total of 103 cases with mammary gland

nodules (malignant/benign = 80/23) underwent DCE-MRI, and was confirmed by

biopsy pathology. Features were extracted from both nodule region and

mammary region on DCE-MRI. Three SVM classifiers were built for diagnosis of

benign and malignant nodules as follows: the model with the features only from

nodule region (Nmodel), with the features only frommammary region (Mmodel)

and the model combining the features from nodule region and mammary region

(NM model). The performance of models was evaluated with the area under the

curve of receiver operating characteristic (AUC).

Results: One radiomic features is selected from nodule region and 3 radiomic

features is selected from mammary region. Compared with N or M model, NM

model exhibited the best performance with an AUC of 0.756.

Conclusions: Compared with the model only using the features from nodule or

mammary region, the radiomics-based model combining the features from

nodule and mammary region outperformed in the diagnosis of benign and

malignant nodules.
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Introduction

Breast cancer is the most prevalent cancer and the second leading

of the death caused by cancer among women overall (1). Early

diagnosis and treatment contributed to decreasing the death rate

and improving the prognosis of patients with breast cancer (2).

Pathological examination is an invasive examination for clinical

diagnosis of breast cancer. Breast MRI and especially dynamic

contrast enhanced MRI (DCE-MRI) can provide morphological and

anatomical information due to its advantage on soft tissue imaging

with high contrast. Compared with mammography and ultrasound,

DCE-MRI exhibited a superior sensitivity and negative likelihood

ratios with higher pretest probabilities to rule out malignancy (3).

Previous study had proved the potential of DCE-MRI in the diagnosis

prognosis and treatment response evaluation of breast cancer (4, 5).

Traditional recognition of benign and malignant lesions by

radiologists relied on the subjective evaluation according to the

morphological features and enhanced time course. In addition, the

varying tissue contrast at different time points made it a challenge for

computer aided image analysis. The advances in computer-aided

image analysis contributed to non-invasive evaluation for breast

cancer (6, 7). The radiomics based methods can extract high-

dimensional and imperceptible features and dig out intratumor

heterogeneity that has significant prognostic value. The performance

of radiomics-based methods had been validated in diagnosis, staging,

determining molecular subtype and predicting lymph node metastasis

and disease-free survival of breast cancer (8–10).

Recently, the inadequacy of the features only from intra-tumoral

region attracted the attention. To improve the performance of

methods, some studies investigated the value of the features from

peritumoral region (11, 12). Considering the increased blood supply

in the patients with breast cancer, we aimed to combine the features

from intra- nodules and mammary region for precise diagnosis of

benign and malignant breast lesions in the present study.

Materials and methods

Patient enrollment

This retrospective study included patients with breast nodules in

March 2018 from to April 2022, and was approved by a local review

committee. Each patient offered informed consent before enrollment.

The patients were enrolled according to following criteria: 1) female;

2) no treatment for breast surgery and puncture; 3) no history of

other malignancies. All the patients were diagnosed by

histopathology. The histological grading and subtypes percentage of

patients in Table 1. Finally, 23 patients with benign nodules and 80

with malignant nodules were eligible for the study.
MRI protocol

All patients underwent MR scan on a 3.0 Tesla scanner

(Magnetom Skyra, Siemens, Germany). A standardized protocol

containing three MRI sequences were applied in this study: 1) Axial

T2-weighted TIRM with TR/TE = 4000/53 ms, matrix size = 256 ×
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256, pixel size = 1.4 × 1.4 mm2, slice thickness = 4.0 mm, slice spacing

= 0.8 mm; 2) axial pre-contrast T1-weighted FLASH with TR/TE =

6.00/2.46 ms, matrix size = 370 × 448, pixel size = 0.8 × 0.8 mm2, slice

thickness = 1.6 mm, slice spacing = 0.3 mm, flip angle = 15°; 3) axial

DCE T1-weighted VIBE with TR/TE = 5.08/1.68 ms, matrix size = 280

× 352, pixel size = 1.0 × 1.0 mm2, slice thickness = 4.0 mm, slice

spacing = 0.8 mm, flip angle = 15°. Each dynamic frame repeated

thirty-five times without time gap, and the total of dynamic scan was

around 15 minutes. The gadolinium-based contrast agent was injected

using a power injector with a patient-weight-independent dose of 0.2

mmol/kg and a rate of 2.0 ml/s. This was followed by a saline flush.
Feature extraction and model building

Using the ITK-SNAP software (www.itksnap.org, version 4.0.2),

we delineated two regions of interest (ROI): nodule region and

mammary region. One radiologist with over 10 years` experience in

interpreting mammary MR images delineated the boundary of each

lesion as well as the whole breast on DCE images. Figure 1

illustrated two ROIs from two patients. A total of 72 cases were

randomly selected as the training data set (malignant/benign = 56/

16), and another 31 cases as the independent testing data set

(malignant/benign = 24/7).

The intensity of images was scaled to [0, 255] with linear

normalization. A total of 851 3D radiomics features (first order

features, shaped-based features, GLCM, GLRLM, GLSZM, GLDM,

NGTDM) were extracted with a bin width of 16 on original and

wavelet images. To remove the unbalance between positive and

negative samples, up-sampling was conducted in the present study.

Using up-sampling data on the training set refers to augmenting

minority samples with random duplication to match the same
TABLE 1 The histological grading and subtypes percentage of patients.

Subtypes Number (percentage)

Benign 23 (22.33%)

Intraductal papilloma 6 (26.09%)

Adenosis of breast 7 (30.43%)

Fibroadenoma of breast 10 (43.48%)

Malignant 80 (77.67%)

Carcinoma in situ 11 (13.75%)

1g 0 (0%)

2g 10 (90.91%)

3g 1 (9.09%)

Invasive carcinoma 69 (86.25%)

1g 0 (0%)

2g 49 (71.01%)

3g 20 (28.99%)
g: histological grading. Histological grading is based on the latest World Health Organization
(WHO) classification of breast cancer: degree of ductal formation, nuclear pleomorphism, and
ability to divide the nucleus, each item is divided into three points according to different levels.
3-5 points: grade 1, 6-7 points: grade 2, 8-9 points: grade 3.
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sample size as the majority samples (malignant/benign = 56/56).

Next, a z-score normalization was applied on the feature matrix.

Since the dimension of feature space was high, the similarity of each

feature pair was compared and one of them was randomly removed

if Pearson correlation coefficient (PCC) of the feature pair was

larger than 0.90. PCC can efficiently and intuitively reduce

dimensionality in large-scale datasets. After this process, the

dimension of the feature space was reduced and each feature was

independent to each other.

Before building the prediction model, the analysis of variance

(ANOVA) was used to select features. ANOVA is a quantitative

analysis method characterized by strong comparability and high

precision. It is suitable for large data samples and can effectively
Frontiers in Oncology 03
identify variables that are statistically significant. F-value was

calculated to evaluate the relationship between features and the

label. We sorted features according to the corresponding F-value

and selected specific number of features. Then, logistic regression

with LASSO was applied for screening of features to reduce the

dimension of the feature space. The use of LASSO effectively

reduces model complexity and enhances generalization

performance. To determine the hyper-parameter of model, cross

validation with 5-fold on the training dataset were applied. Finally,

classifier was built using support vector machine. The hyper-

parameters were set according to the model performance on the

validation data set. The workflow of the radiomics models

(Figure 2). All the processes above were conducted using FAE

(https://github.com/salan668/FAE).
Statistical analysis

The performance of the models was evaluated using receiver

operating characteristic (ROC) curve analysis. The area under the

curve (AUC) was calculated for quantification. The accuracy,

sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) were also calculated at a cutoff

value that maximized the value of the Youden index. The

95% confidence interval was also estimated by bootstrap with

1000 samples. All statistical analyses were implemented on

Python (3.7.6).

Results

In the present study, three models were built for diagnosis of

benign and malignant nodules as follows: 1) the model with the

features only from nodule region (N model); 2) the model with the
FIGURE 2

The workflow of radiomics analysis.
FIGURE 1

The illustration of two ROIs. Left column: nodule region (N-ROI),
right column: mammary region (M-ROI), the first row: benign, the
second row: malignant.
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features only from mammary region (M model); 3) the model

combining the features from nodule region and mammary region

(NM model). In the N and M models, there are 851 features each.

Finally, after feature selection, N model adds 1 feature, M model

adds 3 features and NM model adds 4 features. The extracted

features are shown in Table 2. Compared with N or M model, NM

model exhibited the best performance with an AUC of 0.756

(Table 3, Figure 3).
Discussion

In the present study, we developed a radiomics-based model for

diagnosis of benign and malignant lesions in the patients with

breast cancer. Our results showed that the model combining the

features from nodule and mammary regions outperform among all

the models, and suggest that the complementary information in

mammary region can increase the precision of diagnosis.

DCE-MRI can exhibit blood supply characteristics of the lesions

via observing the signal changes among multi-phases (13). The

features from enhanced images were closely associated with

hemodynamic characteristics, including density and distribution

of micro-vessels, vascular proliferation or neovascularization

around the lesions (14). Tekpli et al, proved the advantage of

DCE-MRI in noninvasively assessing the degree of hypoxia and

neovascularization in the tumor microenvironment of breast cancer

patients (15). Additionally, it has been validated as a sensitive

imaging technique for precise diagnosis of breast lesions and a

potential surrogate to pathological biopsy (16). Yu et al. developed

and validated the performance of radiomics-based signature in

predicting axillary lymph node metastasis and disease-free

survival in patients (8). Ya et al. assessed the impact of difference

in parameters at different time points in predicting value oof lymph

node metastasis of breast cancer (17). The invisible higher-order
Frontiers in Oncology 04
features on DCE-MRI contributed to precise diagnosis and

prediction of treatment.

The progression of breast cancer not only has the effect of tumor

cells, but also includes the microenvironment that can promote

tumor development (18). Breast cancer invades surrounding tissues

during progression, leading to remodeling of the peritumoral

structure (19). The peritumoral area composed of parenchymal

tissue around the tumor can be considered as the representative of

the tumor microenvironment, the subtle changes of which can be

detect by DCE-MRI. The radiomics features which reflected the

changes of peritumoral environment can thus be used as

the indicators for the density of infiltrating lymphocytes around

the tumor (20–22). As researchers found the defects in the

radiomics research that only extracted features from primary

tumor, the role of peritumoral region attracted more attention

due to its association with tumor infiltration, vascular

proliferation and lymphovascular invasion (12, 23–26). The

increase of peritumoral interstitial fibrosis is related to the high

invasiveness of the tumor (27), and the presence of peritumoral

lymphovascular invasion (LVI) is closely associated with higher

distant metastasis rate and mortality (28). Our results also suggested

that the model combining the features from the nodule and

mammary regions performed best compared with the model

using the features only from the nodule region.

However, the distance between peritumoral tissue and the

lesion was various, leading to a challenge in clinical application

(29, 30). Shin et al, found the difference of proximal, middle and

distal peritumoral stroma in differentiating between low-risk and

high-risk breast cancer (29) on apparent diffusion coefficient

images. Capillary proliferation and neovascularization were a

principal manifestation in the patients with breast cancer (31).

The features from peritumoral region cannot reflect the wide

distribution of abnormal blood vessel growth. There was no exact

threshold to classify lesion and peritumoral region. Guo et al, also

found that the difference in distance of peritumoral region can

impact the performance of AI model in distinguishing malignant

from benign nodules (32). Consequently, we extracted the features

from mammary regions in the present study, avoiding the

uncertainty caused by various definition of tumoral region.

This study had several limitations. First, this study is a single-

center study with a small sample size. Future work aimed to test

the model on a multi-center dataset. Secondly, only one sequence

was used to extract features. Diffusion-weighted imaging and

pharmacokinetic images also had predictive value in diagnosis of
TABLE 2 The selected features from two ROIs .

ROI Feature Name

nodule region (N-ROI) N_wavelet-LHL_glcm_MCC

mammary region (M-ROI)

M_wavelet-LLH_firstorder_Maximum

M_wavelet-HHH_firstorder_Mean

M_wavelet-HHH_firstorder_Mean
TABLE 3 The performance of SVM classifiers with features from different ROI.

Model AUC 95% CI Cutoff MCC ACC Youden Sen Spe PPV NPV

N 0.696 [0.385-1.000] 0.564 0.713 0.903 0.571 1.000 0.571 0.889 1.000

M 0.589 [0.329-0.849] 0.171 0.345 0.807 0.244 0.958 0.286 0.821 0.667

NM 0.756 [0.482-1.000] 0.263 0.713 0.903 0.571 1.000 0.571 0.889 1.000
frontie
N, the model with the features only from nodule region; M, the model with the features only from mammary region; NM, the model combining the features from nodule and mammary regions;
AUC, area under the curve; CI, confidence interval; MCC, Matthews correlation coefficient; ACC, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative
predictive value.
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benign and malignant nodules. Finally, the impact of the features

from mammary region was still unclear on predicting molecular

subtype, treatment response and overall survival. More studies

would be conducted to dig out the value of the features from

mammary region in prevention and treatment of breast cancer.
Conclusion

In conclusion, we applied a radiomics-based method to

diagnose nodules on DCE-MRI. Compared with the models only

using the features from nodule or mammary region, the model

combining the features from nodule and mammary region

outperformed in diagnosis of benign and malignant nodules.
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