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ABSTARCT 

Kerberos system is a powerful and widely implemented authentication system. Despite this fact it 

has several problems such as the vulnerability to dictionary attacks which is solved with the use of 

public key cryptography. Also an important security feature that is not found in Kerberos is perfect 

forward secrecy. In this work the lack of this feature is investigated in Kerberos in its original 

version. Also a public key based modification to Kerberos is presented and it is shown that it lacks 

the prefect forward secrecy too. Then some extensions are proposed to achieve this feature. The 

extensions are based on public key concepts (Diffie-Hellman) with the condition of keeping the 

password based authentication; this requires little modifications to the original Kerberos. Four 

extensions are proposed; two of them modify the (Client-Authentication Server) exchange 

achieving conditional perfect forward secrecy, while the remaining two modify the Client-Server 

exchange achieving perfect forward secrecy but with increased overhead and delay.  

 

 الخلاصة
لكن ىناك عدة مشاكل يعاني منيا ىذا النظام، . ىو نظام قوي و فعال و مستخدم بصورة واسعة Kerberosنظام 

 public)ىجمات القاموس و قد تم حل ىذه المشكمة بالاعتماد عمى التشفير بالمفتاح العام  أمامإحداىا ضعفو 

key.)  السرية  أو)التامة  الأماميةميمة غير متوفرة في ىذا النظام وىي السرية  أمنيةلكن ىناك خاصية
احد دراسة  إلى بالإضافةلا  أمىذا البحث يقوم بدراسة النظام من ناحية وجود ىذه الخاصية . (المستقبمية التامة

، ويظير البحث افتقار (public key)التشفير بالمفتاح العام  باستخدام  الأصميالمحورة عن النظام  الأنظمة
التعديلات عمى نظام ثم يقدم البحث مقترحات تتضمن بعض  .و المحسن ليذه الخاصية الأصميالنظامين 

(Kerberos ) التعديلات تستند عمى مبادئ التشفير بالمفتاح العام . التامة الأماميةمن اجل تحقيق السرية
(public key ) بشرط المحافظة عمى خاصية التعريف بالاعتماد عمى كممة السر و ىذا ( ىممان-ديفي)طريقة

ان منيا تتعديلات، اثن أربعةيعرض البحث  .يمة التطبيقو س الأصمييضمن كون التعديلات قميمة عمى النظام 
، الشرطية الأماميةمحققة السرية ( Client-Authentication Server)الحوار بين العميل و خادم التعريف تغير 

التامة لكن  الأماميةمحققة السرية ( Client-Server) الحوار بين العميل و الخادم الأخريانبينما تغير الاثنتان 
 .التأخيرمع زيادة 

 

KERBEROS, Public Key, Forward Secrecy, Authentication, Diffie-Hellman, Security 
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INTRODUCTION 

Kerberos is an authentication system developed at Massachusetts Institute of Technology (MIT) as 

part of Project Athena [Miller et al,1987]. There are two versions of this system: Kerberos v4 and 

Kerberos v5. The later solved some of the problems found in v4. It is based on symmetric 

encryption and trusted third party. Several problems are found in Kerberos, but dictionary attacks is 

the most known attack and the one that has got a lot of attention in trying to reduce its risk. One of 

the proposed extensions to solve this attack, known as Public Key Cryptography for Initial 

Authentication in Kerberos (PKINIT), modifies the basic protocol to allow public-key 

authentication; in the process, it adds a fair amount of complexity to the protocol [Cervesato et 

al,2008]. Other solutions are the use of the Secure Remote Password (SRP) protocol [Wu,1999], 

and the Public key based Kerberos for Distributed Authentication (PKDA) [Sirbu and 

Chuang,1997]. Other directions that are taken by some researchers is to use Elliptic Curve 

Cryptography (ECC) and Elliptic Curve Diffie Hellman (ECDH) as the public key mechanism in 

Kerberos [Zhu et al, 2008][Ozkan, 2003] and the same mechanisms can be used in the extensions 

that will be proposed in this paper. 

 

A security feature that is not found in Kerberos is “perfect forward secrecy”, which means that the 

compromise of long term secret keys leads to the compromise of all past session keys [Menezes et 

al,1996], a problem that is considered serious in some environments, and it is the main focus of this 

work. The reason is that it was not a feature in the original design, so it uses long term symmetric 

keys to encrypt the session keys. The details of the protocol will be shown in section 2. In section 3, 

one of the extensions presented in PKINIT will be shown for comparison with the extensions that 

will be proposed in this paper in section 4 to add perfect forward secrecy to Kerberos. A 

comparison is made between the proposed extensions in section 5. 

 

KERBEROS V5 

It is well known that Kerberos is based on symmetric encryption and trusted third party. Figure (1) 

shows the exchanges of the original Kerberos v5. The client (C) shares with the authentication 

server (AS) a long term key; and truly speaking the secret is a password (KU shared between the 

“User” on the client machine and AS). 

 

 The password is used to encrypt a timestamp and sent by the client to AS which decrypts 

and checks for time synchronization, this step is used to authenticate the user. 

 AS sends a key (KC,TGS) to be used between the client (C) and ticket granting server (TGS), 

this key is sent encrypted using KU. AS also sends the client a ticket granting ticket (TGT) 

which contains the same key, (KC,TGS), encrypted using a long term key shared between AS 

and TGS. Steps 1 and 2 represent the authentication phase exchange. 

 The next phase, steps 3 and 4, are carried between the client (C) and TGS. In this phase the 

client authenticates itself to TGS by sending a timestamp encrypted using KC,TGS. The client 

also sends the ticket TGT granted by AS, also it sends the name of the server S that it wants 

to communicate with. 

 TGS decrypts the ticket TGT using the key shared with AS (KAS,TGS), and it extracts the key 

KC,TGS. Then it decrypts the message sent by the client and checks the timestamp to see the 

authenticity of client. Then TGS creates a session key (KC,S) to be used between C and S. In 

this exchange the key (KC,TGS) is used to authenticate C to TGS in step 3 and used in step 4 

to encrypt the session key KC,S. TGS also sends the client a ticket (TKTS) to be used with 

the server (S). This ticket TKTS contains the same key, (KC,S), encrypted using a long term 

key shared between TGS and S. 

  Steps 5 and 6 represent the last phase at which the exchange occurs between the client and 

server. In step 5 the client authenticates itself to the server by sending a timestamp 

encrypted under the session key (KC,S). The client also sends TKTS to the server. 
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 The server decrypts TKT and extracts the key (KC,S), and use this key to check the 

authenticity of client message. Then the server authenticates itself to client by sending a 

timestamp encrypted under the same session key. 

 

Since the client passes through steps 3 and 4 for each server it wants to contact, the key (KC,TGS) is 

sometimes called a multisession key, because KC,TGS is used to encrypt many session keys. The 

concept of perfect forward secrecy is lost by encrypting the session keys using the multisession 

keys, and by encrypting the multisession keys using the password derived keys. So the compromise 

of multisession key causes the compromise of all session keys encrypted under it. Also the 

compromise of the password derived key (KU) causes the compromise of the multisession key and 

consequently the session keys. 
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Fig. 1 Original Kerberos v5 Exchange 

PKINIT 

Public-Key Kerberos PKINIT [Zhu and Tung, 2006] is an extension to Kerberos v5 that uses public 

key cryptography to avoid shared secrets between a client and AS; it modifies the authentication 

exchange but not other parts of the basic Kerberos v5 protocol. The long-term shared key (KU) in 

the traditional exchange is typically derived from a password, which limits the strength of the 

authentication to the user’s ability to choose and remember good passwords; PKINIT does not use 

KU and thus avoids this problem. 

 

In PKINIT, the client (C) and AS each has a pair of public-private key (PKC, SKC) and (PKAS, 

SKAS). CertC and CertAS are certificates that prove the authenticity of PKC and PKAS because they 
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are signed by a trusted Certificate Authority. PKINIT can operate in two modes namely public key 

encryption mode and Diffie-Hellman mode. The keys are used during the authentication phase only. 

But they are used in different ways according to the mode. The Diffie-Hellman mode is investigated 

here and shown in Figure (2) because it achieves conditional perfect forward secrecy. 

 

Diffie-Hellman [Diffie and Hellman,1976] key agreement provided the first solution to allow two 

parties, without shared keys, to establish a secret key by exchanging messages over unsecured 

channel. But it does not achieve authentication. Authentication is achieved here using the 

certificates. The key (KC,TGS = g
ab

) cannot be derived from Diffie-Hellman (D-H) exponents g
a
 and 

g
b
 which are sent publicly. Which means that AS will not send the key to the client encrypted under 

any key. So the compromise of the client’s long term key (SKC) will not help to get the key 

(KC,TGS). This provides perfect forward secrecy. But (KC,TGS) is also found in TGT encrypted under 

the long term key (KAS,TGS) shared between AS and TGS. This yields the fact that the compromise 

of (KAS,TGS) causes (KC,TGS) to be compromised, meaning that perfect forward secrecy is not 

achieved. That’s why we call it conditional perfect forward secrecy, because under the assumption 

that (KAS,TGS) is shared between two well protected servers, the possibility of compromise is small 

but not impossible. 

 

This extension involves several time consuming operations at both the client side and AS side 

because the goal was to deal with dictionary attacks on passwords. 
  

Client Side 

 Evaluating g
a
. 

 Digital signature creation using SKC. 

 Digital signature verification of CertAS. 

 Digital signature verification using PKAS. 

 Evaluating g
ab

. 

 

AS Side 

 Digital signature verification of CertC. 

 Digital signature verification using PKC. 

 Evaluating g
b
. 

 Evaluating g
ab

. 

 Digital signature creation using SKAS. 

 

PROPOSED EXTENSIONS 

The PKINIT using Diffie-Hellamn achieves conditional perfect forward secrecy, but it involves 

many public key operations and the requirement of certificate authority. This adds many changes to 

the original Kerberos. In the following sections some extensions are proposed to achieve perfect 

forward secrecy or conditional perfect forward secrecy with as little changes to Kerberos as 

possible. The extensions also consider the reduction of public key operations as possible. Four 

extensions are proposed, two of them modify the Client-AS exchange achieving conditional perfect 

forward secrecy, while the remaining two modify the Client-Server exchange achieving perfect 

forward secrecy. The solutions assume the password based authentication even that it has some 

weaknesses, but it stills the main authentication approach in most systems, so certificates are 

avoided. By that we minimize the changes made to Kerberos which simplifies its implementation in 

the future. 
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Fig. 2 Diffie Hellman based PKINIT exchange 

Changing The Client-AS Exchange (First Extension Group) 

The first extension group changes the exchange between the client and the authentication server 

(AS); this group has two extensions which are presented in part A and B below. 

 

A) The extension uses the same concept of PKINIT with Diffie-Hellman but without the use of 

certificates. Figure (3) shows this extension, where only steps 1 and 2 are modified. The idea is 

to get (KC,TGS) without being sent encrypted under a long term key. To accomplish this, the 

client generates private information (a) and sends public information (g
a
). AS generates (b) and 

sends (g
b
). Then both calculate g

ab
, while no one other than the two can find this value because 

the publicly known info is only g
a
 and g

b
, this achieves perfect forward secrecy. h(g

a
) represents 

the hash of g
a
, and is sent encrypted under KU such that AS can be sure of the authenticity of g

a
. 

On the other hand h(g
a
 ,g

b
 ) is sent encrypted under KU to prove the authenticity of g

b
 to the 

client, and to acknowledge the reception of g
a
. The hash is sent instead of the information itself 

because it is smaller in size. The size of the hash output depends on the algorithm used and not 

on the size of input information. Some hash functions that can be used are MD5, SHA-1, and 

SHA-2. The recommended one is the SHA-2 in its various sizes. Also the National Institute of 

Standards and Technology (NIST) has launched a public competition to develop a new 

cryptographic secure hash algorithm, which NIST is naming "SHA-3" which is expected to be 

finally presented in year 2012 [William, 2008]. 
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Like PKINIT in previous section, this approach achieves conditional perfect forward secrecy, 

since KC,TGS is sent encrypted using KAS,TGS inside the TGT. Since certificates are not required it 

gives some advantages concerning the computational load on the two parties, and the 

communication cost. The time consuming operations are given below: 

 

Client Side 

 Evaluating g
a
. 

 Evaluating g
ab

. 

 

AS Side 

 Evaluating g
b
. 

 Evaluating g
ab

. 
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Fig. 3 Client-AS Modified Kerberos Proposed Exchange 

B)  A simple modification to the previous extension is to send the public D-H exponents (g
a
) 

and (g
b
) encrypted under KU, as shown in figure (4). This adds additional security in the sense 

that D-H security is based on the concept that knowing (g
a
) and (g

b
) it is impossible to find g

ab
. 

Here, (g
a
) and (g

b
) are not public so the problem becomes harder on the adversary. This 

modification keeps the same advantages of the previous solution with small increase in 

computational time caused by the encryption and decryption of (g
a
) and (g

b
). Since (g

a
) is sent 

encrypted under KU then AS will be sure of the authenticity of (g
a
), so it is not necessary to 

calculate h(g
a
) and send it encrypted under the same key. In the same manner in the second step 

it is not required to send the hash of (g
b
) encrypted under KU. The message in the first step is 

smaller in size than in the previous extension by the size of h(g
a
). On the other hand the second 
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step is of same size as previous extension because h(g
a
,g

b
) has the same size as h(g

a
) by the 

definition of hash functions. 
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Fig. 4 Client-AS Modified Kerberos Proposed Exchange With Encrypted Public Exponents 

 

Changing The Client-Server Exchange (Second Extension Group) 

This group changes the messages exchanged between the client and the server, it also has two 

possible algorithms presented in A and B below. 

 

A) In this algorithm the steps 1 to 4 of the handshake are kept the same as the original Kerberos. 

The change occurs in the handshaking between the client and server to get the session key as 

shown in figure (5). Here the session key is derived using D-H which adds perfect forward 

secrecy, because the session key cannot be compromised when any one of (KU , KC,TGS , 

KAS,TGS, KTGS,S ,or KC,S ) is compromised. This is more secure than the previous one due to 

perfect forward secrecy and due to the fact the session key is only known by the two 

communicating parties, client and server. Where the role of other parties (AS and TGS) is only 

authenticating the client. While in previous cases the AS and TGS are involved in the 

generation of the session keys. 

 

The hash values are used as in subsection 4.1 to achieve message authenticity of g
a
 and g

b
 and 

to acknowledge the reception of g
a
. 

 

The computational load on the client is the same as in previous section. But the overhead in 

computation is now on the server and not on AS as above. 
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Client Side 

 Evaluating g
a
. 

 Evaluating g
ab

. 

 

Server Side 

 Evaluating g
b
. 

 Evaluating g
ab

. 
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Fig. 5 Client-Server Modified Kerberos Proposed Exchange 

 

 

B) Simple modifications can be made in a similar way to the modifications in part B of previous 

subsection 4.1. This is shown in figure (6). The Diffie-Hellman computations are the same as in 

part A, but the data to be symmetrically encrypted is larger in size which means more 

computational time. But this time increase is very small when compared with public key 

operations.  
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Fig. 6 Client-Server Modified Kerberos Proposed Exchange With Encrypted Public Exponents 

 

COMPARISON BETWEEN FIRST AND SECOND GROUP 

To make the comparison the two groups presented in section 4.1 and 4.2, the following assumptions 

are considered: M clients, N servers, one AS, and one TGS. Figure (7) shows the keys generated for 

each client. The comparison will be taken from security and performance perspectives. 

 

From A Security Perspective 

For the first proposed extension the KC,TGS is generated using D-H, KC,TGS = g
ab

. This key is the 

base for all the keys for each client (KC1,S1, KC1,S2,…, KC1,SN, and session keys), so the compromise 

of KU1 will not compromise the derived keys because KC1,TGS is not dependent on it. But this 

extension achieves conditional perfect forward secrecy because KC1,TGS  is sent encrypted inside the 

TGT encrypted under KAS,TGS so the compromise of the later key compromises KC1,TGS and then all 

other keys (KC1,S1, KC1,S2,…, KC1,SN, and session keys) are compromised. The compromise of 

KAS,TGS is not always considered a problem since it may be difficult to achieve because it is shared 

between AS and TGS which can be highly secured. And in many cases these two parties are 

implemented in the same server which reduces the risk of compromise. A possible enhancement is 

to periodically change this shared key, thus compromise of KAS,TGS will compromise only the keys 

created during the period of validity of this key (before it changes). This is not a difficult change 

since it involves two parties only, AS and TGS. 
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For the second extension, the session key is the one generated using D-H while all other keys 

remain as in the original Kerberos, K= g
ab

 . So the compromise of any key (KU , KC,TGS , KAS,TGS , or 

KC,S ) will not compromise the session key K. This gives perfect forward secrecy. 
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Fig. 7 Key Generation Steps in Environment With M Clients, N Servers, one AS, and one TGS 
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From A Performance Perspective 

The computational load on all parties can be found by locating the public key operations 

(exponentiations). For the first extension where KC,TGS= g
ab

 and according to the model shown in 

the figure: 

 

 Each client will evaluate g
a
 and g

ab
 once for the entire login time, so it sums to 2 operations 

by each client. 

 AS will evaluate g
b
 and g

ab
 once for each client which means 2M operations. 

 All other parties have no comparable computational load. 

 

For the second extension where the final session key between client and server is g
ab

: 

 

 Each client will evaluate g
a
 and g

ab
 once for each server, which gives 2N operations by each 

client. 

 AS and TGS have no comparable computations. 

 Each server will evaluate g
b
 and g

ab
 once for each client, then each server has to do 2M 

operations. 

 

It is clear that the first extension has overall lower computations than the second extension. The 

first has less load on both the clients and servers, with higher load on the AS. So in general the first 

case outperforms the second one, keeping in mind that the former gives only conditional perfect 

forward secrecy, while the later gives perfect forward secrecy. But there are three main points that 

must be taken into account. 

 

The first point that must be considered is that the first extension has a high load on the AS, but in 

the second extension the load is the same as in original Kerberos, and it is negligible when 

compared with public key operations. The high load on AS can be a serious problem in some 

situations, because AS may become a bottleneck. This case can happen on the system startup, 

where all clients try to authenticate themselves to AS at the same time. 

 

The second point is the fact that not all clients will communicate with all servers. So the load in first 

extension is mainly on AS and is highly constant at 2M. While in second extension the load is 

mainly on clients and servers. The load on client depends on its communication demand, i.e. load 

increases linearly with the number of server it needs to connect. The load on server depends on the 

clients’ demands, i.e. load increases linearly with the number of clients needing to communicate 

with that server. And in general it is not likely that these communication requests occur 

simultaneously, i.e. the requests are generally randomly distributed in time and among servers. As 

opposed to the requests to AS which may happen simultaneously. This distribution gives a reduced 

effect on the servers at any moment. 

 

The last point is that the second group of extensions gives the clients and servers the flexibility to 

agree to use the extension or stay in the original Kerberos mode. This is a per session decision 

between client and server to achieve perfect forward secrecy or to achieve higher performance with 

lower security. 
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CONCLUSIONS AND FUTURE WORK 

Throughout this work, analysis of Kerberos has been made in its original and PKINIT forms. The 

analysis focuses on the concept of perfect forward secrecy and on the performance of the 

algorithms. Two extensions have been proposed to achieve perfect forward secrecy without 

changing the authentication based on passwords, which differentiates them from PKINIT. 

 

The two extensions proposed are similar in the basic idea that they use Diffie-Hellman to achieve 

the goal, but they differ in the steps where the change is done. The first extension makes the change 

at the Client-AS phase and achieves conditional perfect forward secrecy while the other extension 

achieves perfect forward secrecy by changing the last phase. In general, the first one outperforms 

the second, while the second has better security. 

 

There are many implementation details that are out of the scope of this work, but are important to 

discuss. These details include the size of the keys used and the software implementation of the 

operations in addition to other optimizations in the cryptographic operations. 

 

Another issue to be investigated is how to expand the Kerberos system to be used over larger 

networks that are separated by firewalls and proxies, a problem that original Kerberos suffers from. 

 

An interesting issue is to develop a system that integrates several authentication systems based on 

different cryptographic operations, such as the certificate authorities, SSL, and Kerberos. 
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