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A nine-week feeding trial was conducted to evaluate the effects of replacing 
wheat bran (WB) with palm kernel cake (PKC) or fermented palm kernel cake 
(FPKC) on the growth performance, intestinal microbiota and intestinal health 
of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) (initial 
weight 7.00  ±  0.01  g). Eleven isonitrogenous and isolipidic experimental diets 
were formulated by replacing 0, 20, 40, 60, 80, and 100% of dietary WB with 
PKC or FPKC. Replacement of WB with PKC concentrations up to 80% had no 
significant effect on the growth rate of tilapia or feed utilisation (p  >  0.05). FPKC 
improved the growth performance of tilapia, with optimum growth achieved at 
40% replacement level (p  <  0.05). Complete replacement with PKC significantly 
decreased the activity of lipase and trypsin, and reduced the height of muscularis 
and the height of villus (p  <  0.05). However, FPKC significantly increased amylase 
activity and villus height (p  <  0.05). The apparent digestibility of dry matter and 
energy decreased linearly with increasing levels of PKC substitution, while 
FPKC showed the opposite trend (p  <  0.05). PKC replacement of WB by 20% 
significantly reduced serum diamine oxidase activity and endothelin levels 
and increased intestinal tight junctions (p  <  0.05). However, FPKC significantly 
decreased diamine oxidase activity and increased intestinal tight junctions 
(p  <  0.05). PKC completely replaced WB, up-regulating the expression of pro-
inflammatory factors (il-1β) (p  <  0.05). When 40% of WB was replaced with 
FPKC, the expression of pro-inflammatory factors (il-1β and il-6) was decreased 
significantly (p  <  0.05). Completely replacement of WB with PKC reduced the 
abundance of Firmicutes and Chloroflexi, while FPKC reduced the abundance of 
Fusobacteriota and increased the levels of Actinobacteriota. WB can be replaced 
with PKC up to 80% in tilapia feeds. However, the high percentage of gluten 
induced intestinal inflammation, impaired gut health, and reduced dietary 
nutrient utilisation and growth performance. Complete replacement of WB with 
FPKC promoted intestinal immunity. It also improved dietary nutrient utilisation 
and growth performance. However, the optimal growth was achieved at a 40% 
replacement level.
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1 Introduction

The rapid development of China’s farming industry has led to an 
increasing demand for feed grain. In 2022, the amount of feed grain 
used in China’s farming industry was 299.3 million tons, accounting 
for 65.9% of the total feed consumption. It is projected that by 2030, 
the total demand for feed grain in China’s farming industry will reach 
331.03 million tons (1). However, China’s limited land resources and 
the pessimistic prospects for increasing domestic food production 
have led to a heavy dependence on imported grains from various 
countries (2). Food competition between humans and farmed 
animals is a growing problem in China. In particular, there is fierce 
competition for wheat and the by-products of wheat processing 
(wheat bran [WB] and Wheat flour), which are commonly used as 
animal feed ingredients but are also popular foods for humans. 
Therefore, to protect national food security, there has been intense 
interest in the development of non-grain protein ingredients to 
replace WB in animal feed (3, 4). WB is a by-product of wheat 
processing and is widely used as a feed ingredient. However, the price 
of WB has been increasing in recent years, which has become an 
important factor restricting its application (3).

Among the many non-grain proteins available, palm kernel cake 
(PKC) has attracted significant interest for used as an aquatic feed 
due to its large-scale production and low price, as well as nutrient 
composition (5–7). PKC is mainly produced in Southeast Asia and 
African countries as a by-product of de-husking palm kernel for oil 
extraction (8). The global production of PKC is more than 10 million 
tonnes per year and is growing at a rate of about 10% (9). PKC has 
become the fifth largest protein meal commodity in the world, after 
soybean meal, rapeseed meal, sunflower meal, and cottonseed meal, 
and has a high feeding value (10). It is comparable to WB in crude 
protein content, which constitutes about 14.5% to 19.6% (5, 11, 12). 
It is currently used to supplement ruminant and livestock feeds (13–
16). Existing studies have shown that PKC can be used to supplement 
feeds for Nile tilapia (Oreochromis niloticus) (17), red hybrid tilapia 
(Oreochromis sp) (18) and asian-african catfish (Clarias macrocephalus 
× C. gariepinus) (7) up to 20%. However, its supplementation in 
aquatic animal feeds is limited by its low crude protein content and 
high levels (approximately 42%) of non-starch polysaccharides 
(NSPS) (19, 20). However, NSPs adhere to the digestive tract, thereby 
hindering nutrient absorption (21). The amino acid imbalance in 
PKC, with very low levels of methionine, lysine, histidine, and 
threonine, are another limitation (22, 23). Currently, it has been 
proven by numerous scholars that balancing the amino acid profile 
in animal feed is essential for animal growth (24–27).

Currently, enzymatic hydrolysis and microbial fermentation are 
routinely used to promote PKC (8, 18, 28). However, we found that 
PKC can only be added to aquatic animals up to about 20% even after 
enzymatic hydrolysis or microbial fermentation (8, 18). At present, 
studies have shown that the effect of bacterium enzyme synergistic 
fermented of feed ingredients is better than the effect of bacterial or 

enzyme treatment alone, and the former shows obvious advantages 
in improving the nutritional value of feeds and feeding effect (29, 30). 
The synergistic effect of combining bacterium enzyme synergistic 
fermented overcomes the shortcomings of pure fermentation or 
enzymatic digestion of feed. The co-fermentation not only degrades 
the macromolecular constituents completely, but also generates 
useful metabolites, degrades anti-nutritional factors, improves the 
flavour and palatability of feeds, promotes animal feed intake, and 
increases the nutritive value of feeds and their utilisation (31). 
Currently, bacterial enzyme co-fermentation is widely used in a 
processing variety of raw materials (32–34). However, studies related 
to bacterium enzyme synergistic fermented involving PKC have yet 
to be reported.

The Genetically Improved Farmed Tilapia (GIFT) project has 
boosted the fish growth rate, increased the feed utilisation rate, and 
yielded economic benefits worldwide (35, 36). A large number of 
studies have analysed the nutritional value of the GIFT strain of 
tilapia. However, the effect of PKC or fermented palm kernel cake 
(FPKC) replacement of WB has yet to be reported. If PKC and FPKC 
can be reasonably developed and utilized to replace WB, it is of great 
significance to reduce China’s dependence on imported food, 
maintain national food security, alleviate the shortage of feed 
resources, and solve the contradiction between human and animal 
competition for food, and promote the sustainable development of 
aquaculture. Therefore, this study was conducted to comprehensively 
evaluate the effects of PKC or FPKC replacement WB on growth 
performance, intestinal microbiota, and intestinal health of tilapia, 
and to elucidate the effect of fermentation on PKC. The results 
provide a theoretical basis for enhanced utilisation of PKC and FPKC 
in aquatic animal feeds.

2 Materials and methods

2.1 Experimental diets

PKC and FPKC were provided by Tongwei Agricultural 
Development Co., Ltd. (Tongwei Co., Ltd., Chengdu, China). The 
fermentation process and the preparation of the bacterial and enzyme 
solutions were carried out strictly according to the methods provided 
by Vland Biotech (Qingdao, China). Details of the fermentation 
process are given in the Supplementary Material. The nutrient levels 
of PKC and FPKC are presented in Table 1.

The experimental diets were based on fish meal, chicken meal, 
and soybean meal as protein sources and soybean lecithin and 
soybean oil as fat sources. Referring to the study of Li et al. (37), PKC 
and FPKC were used to replace 0%, 20%, 40%, 60%, 80%, and 100% 
of WB in the basal diets, respectively. A total of 11 isonitrogenous and 
isolipidic diets (30% crude protein and 7% crude lipid) were 
formulated (Table 2). The ingredients other than fats and oils were 
crushed and sieved through a 40-mesh sieve, and the ingredients 
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were accurately weighed and thoroughly mixed according to the 
formula. Soybean lecithin and soybean oil were then added, stirred, 
and mixed well again, and finally, the appropriate amount of water 
was added, and pellets with a diameter of 2.50 mm were obtained by 
a double-screw extruder (F-26 type; South China University of 
Technology, Guangzhou, China). The feed was dried in an 
air-conditioned room for 48 h until the moisture content was about 
10% and then stored in a refrigerator at −20°C for reserve. The 
corresponding molecular weight distributions of the proteins are 
shown in Supplementary Figure S1.

2.2 Fish and experimental procedure

The experimental fish were purchased from Lianjiang branch of 
Hainan Baolu Aquatic Technology Co., Ltd. (Guangdong, China) 
and were temporarily reared for a fortnight, during which time they 
were fed commercial diets (Jiakang feed, Xiameng, China) to 
acclimatize them to the experimental conditions. Then 1,155 healthy, 
uniformly sized (7.00 ± 0.01 g) tilapia were randomly divided into 11 
groups (3 replicates per group, 35 fish per net cage 
(1.2 m × 0.8 m × 1.0 m)). All cages were set up outdoors in two 
neighboring concrete tanks (5.8 m × 5.4 m × 2.1 m). During the 
culture period, the water quality was maintained at a natural 
temperature of 25–31°C, with dissolved oxygen >6.0 mg/L and 
ammonia nitrogen <0.02 mg/L. The culture experiment lasted for 
9 weeks, and the fish were fed twice a day (08,00 and 17,00) until 
apparent satiation (most of the fish were not grabbing for food), and 
the amount of feed fed was recorded.

2.3 Sample collection

Digestibility tests were conducted during feeding trials according 
to the method described by Liu et al. (38). Y2O3 (99.9%, Sinopharm 
Chemical Reagent Co., Ltd., Shanghai, China) was used as an 
indicator for the experimental feed. The fecal collection was started 
2 weeks after the fish were acclimatized to the experimental feed. 
Feces were collected daily from the bottom of the cages using a 
100-mesh fishing net 2–5 h after feeding the fish. Intact feces were 
then selected and placed in the corresponding centrifuge tubes and 
finally dried at 65°C for 6 h and stored at −20°C for use. The fecal 
collection was continued for 7 weeks to ensure that fecal samples met 
the requirements for testing. At the end of the feeding trial, all fish 
were fasted for one day. Fish were then sampled after anesthetizing 
with eugenol (1:12000) (Shanghai Reagent Corporation, Shanghai, 
China). The number and total weight of fish in each net cage were 
recorded for the calculation of growth-related indices. Blood was 
collected from three randomly selected fish from each net cage using 
a 1 mL syringe, and the blood was injected into a 2.0 mL centrifuge 
tube, placed in a refrigerator at 4°C for 12 h, and centrifuged at 
3500 r/min for 10 min at 4°C. The upper layer of serum was taken and 
stored in the refrigerator at −80°C. Four fish hindguts were randomly 
taken from each net cage and fixed in a 4% paraformaldehyde 
solution for subsequent histological analysis. Two fish foreguts and 
hindguts were randomly collected from each net cage and placed in 
enzyme-free blast tubes, which were quickly placed in liquid nitrogen 
and then transferred to a − 80°C refrigerator for storage for digestive 
enzyme activity and intestinal microbiota analysis. The hindgut of 3 
fish per net cage was randomly collected and placed in RNA later 
solution and stored in a refrigerator at −80°C for relevant mRNA 
expression analysis.

2.4 Chemical composition analysis

The chemical compositions of the feed ingredients, experimental 
diets, and feces were determined with reference to the AOAC standard 
methods (39). The samples were dried in an oven at 105°C until 
constant weight, and the dry matter contents of the samples were 
measured. The crude lipid contents of the samples were determined 
by the Soxhlet method. The crude protein contents of the samples 
were determined by the Kjeldahl method. The gross energy of the 
feeds and feces were determined by oxygen bomb calorimetry. The 
crude ash contents were determined by the high-temperature burning 
method (550°C, 16 h). The yttrium contents of the feeds and feces 
samples was determined by inductively coupled plasma emission 
spectroscopy. The amino acid composition of the raw materials was 
determined using an automated amino acid analyser after 22 h of 
hydrolysis with 6 N HCI acid at 110°C (Hitachi L-8800, Tokyo Japan). 
The protein macromolecules were determined by sodium dodecyl 
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with 
reference to Bian’s method (40).

2.5 Biochemical indexes analyses

The amylase, lipase, and trypsin in the foregut (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China), and diamine 

TABLE 1 Nutritional composition of PKC and FPKC (%, dry matter basis).

Item PKC FPKC

Crude protein 17.58 18.50

Crude lipid 6.10 4.67

Aspartic acid 1.26 1.36

Threonine 0.49 0.66

Serine 0.63 0.78

Glutamic acid 3.05 3.06

Glycine 0.73 0.84

Alanine 0.73 1.24

Cystine 0.26 0.24

Valine 0.77 0.78

Methionine 0.24 0.24

Isoleucine 0.52 0.60

Leucine 1.07 1.26

Tyrosine 0.31 0.38

Phenylalanine 0.66 0.78

Lysine 0.38 0.58

Histidine 0.18 0.36

Arginine 1.79 1.16

Proline 0.45 0.90

Total amino acid 13.52 15.22

Tryptophan was not detected due to acid hydrolysis.
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oxidase activity and endothelin content (Shanghai Enzyme-Linked 
Biotechnology Co., LTD., Shanghai, China) in serum were 
measured with commercial kits, according to the 
manufacturer’s instructions.

2.6 Histological observation

The hindguts were placed in a 4% formaldehyde solution, and 
then dehydrated with different gradients of ethanol, For the exact 
production process, refer to the method of Zhang et al. (41). Finally, 
the morphological structure of the sectioned intestine was viewed and 
photographed using a fluorescence-inverted microscope (Nikon 
Eclipse Ti-E, Nikon, Japan).

2.7 Gene expression analysis

Total hindgut RNA was extracted using the TransZol Up Plus 
RNA kit (TransGen Biotech, Beijing, China) according to the 
instructions. Total RNA integrity was verified by 1% agarose gel 
electrophoresis, and the concentration of the total RNA was 
measured by a spectrophotometer. RNA was reverse transcribed 
to cDNA using Prime Script™ RT (Takara, Japan) according to 
the kit instructions. Quantitative real-time PCR (qRT-PCR) 

reactions were performed using SYBR® Green Premix Pro Taq HS 
qPCR Kit II (Accurate Biology, China). Actb was used as an 
internal reference gene, and the relative expression levels of the 
target genes were calculated according to the 2-ΔΔCT calculation 
method (42). Gene primer sequences are detailed in the Table 3.

2.8 Intestinal microbiota analysis

Tilapia hindgut samples were sent to Guangzhou Genedenovo 
Biotechnology Co., Ltd. (Guangzhou, China). Intestinal microbiota 
total DNA was extracted by using the HiPure Soil DNA Extraction Kit 
(Magen, Guangzhou China). After quality testing using an ultraviolet 
(UV)-spectrophotometer (Thermo Fisher Scientific, United States). 
Subsequently, the V3-V4 region of the bacterial 16S rRNA gene 
fragment was amplified using universal primers, and the procedure 
was referred to Liu et al. (43).

2.9 Data calculations

The parameters were calculated according to the 
following formulae:

Weight gain (WG) = (W1 − W0)/W0.
Feed intake (FI, %) = F/[(W1 + W0)/2]/d × 100.

TABLE 2 Ingredients and proximate composition of the experimental diets (%, dry matter basis).

Item Control Replacement level of WB with PKC Replacement level of WB with FPKC

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Fish meal 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Chicken meal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rapeseed meal 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Soybean meal 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

Palm kernel cake 0.00 6.00 12.00 18.00 24.00 30.00 – – – – –

Fermented palm kernel cake – – – – – – 6.00 12.00 18.00 24.00 30.00

Wheat bran 28.75 23.00 17.25 11.50 5.75 0.00 23.00 17.25 11.50 5.75 0.00

Wheat flour 22.99 22.99 22.99 23.00 23.02 23.01 22.90 22.81 22.72 22.65 22.56

Soybean oil 4.78 4.51 4.23 3.95 3.67 3.40 4.60 4.41 4.23 4.04 3.85

Soybean lecithin 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

L-lysine 0.20 0.22 0.25 0.27 0.29 0.32 0.22 0.25 0.27 0.29 0.32

DL-methionine 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20 0.20 0.19 0.19

Additive premixa 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20

Othersb 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38

Proximate composition

Dry matter (DM, %) 90.51 90.29 90.55 90.52 90.54 90.92 90.34 90.93 89.69 89.76 90.08

Crude protein (% DM) 30.04 30.34 30.39 30.05 30.27 30.04 30.33 30.36 30.18 30.44 30.28

Crude lipid (% DM) 7.52 7.56 7.59 7.40 7.48 7.42 7.47 7.55 7.33 7.31 7.37

Ash (% DM) 7.06 7.05 7.07 6.96 7.06 6.87 7.18 7.32 7.40 7.55 7.81

Gross energy (KJ/g DM) 21.73 21.75 21.70 21.73 21.63 21.59 21.72 21.52 21.74 21.69 21.44

aAdditive premix (g/kg mixture): vitamin A, 0.20 g; vitamin D3, 0.003 g; vitamin E, 4.40 g; vitamin K3, 0.66 g; vitamin B1, 0.33 g; vitamin B2, 0.88 g; vitamin B6, 0.73 g; vitamin B12, 0.001 g; 
nicotinic acid, 2.89 g; calcium pantothenate, 1.64 g; folic acid, 0.07 g; biotin, 0.003 g; vitamin C, 10.01 g; FeSO4·7H2O, 52.87 g; H3ClCu2O3, 0.65 g; ZnSO4·7H2O, 43.15 g; MnSO4·7H2O, 31.56 g; 
MgSO4·H2O, 44.65 g; Ca(IO3)2, 0.42 g; Na2SeO3, 0.11 g; CoCl2·6H2O, 0.14 g.
bOthers included 1.80% Ca(H2PO4)2, 0.20% NaCl, 0.30% choline chloride, 0.03% vitamin C, 0.05% Y2O3.
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Special growth rate (SGR, %/d) = (lnW1 − lnW0)/d × 100.
Feed conversion ratio (FCR) = F/(W1 − W0).
Survival rate (SR, %) = N1/N0 × 100.
Protein efficiency ratio (PER) = (W1 − W0)/(F × P).
Apparent digestibility coefficient of nutrients (%) = 100 × [1– 

(dietary Y2O3 level/feces Y2O3 level) × (feces nutrient level/dietary 
nutrient level)].

Apparent digestibility coefficient of dry matter (%) = 100 × [1– 
(dietary Y2O3 level/feces Y2O3 level)].

Where W1, W0, N1, N0, F, d, and P are the final average weight 
(g), initial average weight (g), final fish number, initial fish number, 
feed intake per fish (g), feeding days and crude protein content of feed, 
respectively.

2.10 Statistical analysis

All data after confirming normality and homogeneity. To assess 
the effect of two factors (Replacement level (RL) and fermentation or 
not (F)), a two-way ANOVA was first performed (except for the 
control group). A further one-way ANOVA was then performed for 
SM or FSM, respectively, with Duncan’s multiple range test. Finally, 
independent samples t-tests were performed on the equal-alternative 
groups. Differences were considered significant at the p < 0.05 level. 
SPSS 25.0 (Chicago, IL, United  States) was used for 
statistical calculations.

3 Results

3.1 Growth performance

There was no significant difference in SR when PKC replaced WB 
(p > 0.05, Table 4). FBW, WG, SGR, and PER were significantly lower in 
the 100% PKC group than in the 0% ~ 60% PKC group (p < 0.05). FI and 
FCR were significantly higher in the 100% PKC group than in the 
0% ~ 60% PKC group (p < 0.05). As the level of FPKC substituted WB 
increased, FBW, WG, SGR, and PER showed an increasing and then 
decreasing trend, reaching a maximum of 40% (p < 0.05). FI, FCR, and 
SGR in the FPKC substituted group were not significantly different from 
those in the control group (p > 0.05). FBW, WG, and SGR were 
significantly higher in the 60 to 100% FPKC group than in the PKC 
group. There was no significant interaction between RL and F on the 
tilapia growth performance (p > 0.05).

3.2 Digestive enzyme activity

Lipase and trypsin were significantly lower in the 100% PKC 
group than in the 0–60% PKC group (p < 0.05, Table 5). There was 
no significant difference in PKC on amylase (p > 0.05). As the level 
of FPKC substituted WB increased, amylase and trypsin tended to 
increase and then decrease, reaching a significant maximum at 40% 
(p < 0.05). There was no significant difference in FPKC against 

TABLE 3 Primer sequence for real-time quantitative PCR.

Gene Primer sequence (5′ – 3′) Amplicon size (bp) Accession no.

tnf-α F TAGAAGGCAGCGACTCAA 135 NM_001279533.1

R CCTGGCTGTAGACGAAGT

il-1β F GACAGCCAAAAGAGGAGC 136 XM_019365844.2

R TCTCAGCGATGGGTGTAG

il-6 F ATAGCAAGCATCTACACGCATCTCC 92 XM_003453898.2

R GGGCTGCCAGGGAATTGTAAGTC

il-8 F GCACTGCCGCTGCATTAAG 85 NM_001279704.1

R GCAGTGGGAGTTGGGAAGAA

il-10 F CTGCTAGATCAGTCCGTCGAA 94 XM_013269189.3

R GCAGAACCGTGTCCAGGTAA

tgf-β1 F TGCGGCACCCAATCACACAAC 105 XM_025897821.1

R GTTAGCATAGTAACCCGTTGGC

cldn F GTCTGTTTCTGGGCGTGGTGTC 84 XM_019367708.2

R ACTCCGACTGACTCCTCATCTTCC

ocln F GGAGGAAAGCCGCAGTGTTCAG 145 XM_025899615.1

R GTCGTAGGCATCGTCATTGTAGGAG

zo-1 F ACATCGTGCGCTCCAACCAT 123 XM_019358174

R GGCTGGACTGTGCTTGTGGT

actb F CCACACAGTGCCCATCTACGA 111 XM_003443127.5

R CCACGCTCTGTCAGGATCTTCA

tgf-α: tumour necrosis factor-alpha; il-1β: interleukin-1 beta; il-6: interleukin-6; il-8: interleukin-8; il-10: interleukin-10; tgf-β1: transforming growth factor beta 1; cldn: claudin; ocln: occludin; 
zo-1: zonula occludens protein-1. actb: actin beta.
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TABLE 4 Effect of replacing WB with PKC and FPKC on growth performance and feed utilization of tilapia.

Item Final body 
weight (g)

Weight gain Feed intake 
(%)

Specific 
growth rate 

(%/d)

Feed 
conversion 

ratio

Protein 
efficiency 

ratio

Survival rate 
(%)

Replacement level of WB with PKC

0% 62.00 ± 1.21a 7.86 ± 0.17a 2.71 ± 0.02b 3.52 ± 0.03a 1.04 ± 0.01b 3.21 ± 0.04a 98.09 ± 0.95

20% 61.53 ± 2.49a 7.83 ± 0.34a 2.73 ± 0.05b 3.51 ± 0.06a 1.05 ± 0.02b 3.15 ± 0.08ab 98.10 ± 1.90

40% 60.27 ± 0.47a 7.62 ± 0.07a 2.73 ± 0.02b 3.48 ± 0.01a 1.05 ± 0.01b 3.13 ± 0.03ab 100.00 ± 0.00

60% 60.27 ± 0.66a 7.61 ± 0.10a 2.76 ± 0.01b 3.47 ± 0.02a 1.06 ± 0.00b 3.13 ± 0.01ab 99.05 ± 0.95

80% 59.38 ± 0.29ab 7.49 ± 0.04ab 2.85 ± 0.06ab 3.45 ± 0.01a 1.10 ± 0.02b 3.00 ± 0.07bc 97.14 ± 1.65

100% 55.67 ± 1.19b 6.96 ± 0.17b 2.98 ± 0.08a 3.34 ± 0.03b 1.17 ± 0.04a 2.85 ± 0.09c 99.05 ± 0.95

Replacement level of WB with FPKC

0% 62.00 ± 1.21y 7.86 ± 0.17y 2.71 ± 0.02xy 3.52 ± 0.03y 1.04 ± 0.01xy 3.21 ± 0.04xy 98.09 ± 0.95xy

20% 63.97 ± 0.63y 8.15 ± 0.09y 2.61 ± 0.04xy 3.57 ± 0.01y 0.99 ± 0.02xy 3.33 ± 0.05xy 99.05 ± 0.95x

40% 72.01 ± 4.20x 9.29 ± 0.60x 2.51 ± 0.10y 3.75 ± 0.09x 0.94 ± 0.05y 3.55 ± 0.19x 93.34 ± 0.95xy†

60% 66.16 ± 1.76xy† 8.46 ± 0.25xy† 2.62 ± 0.03xy† 3.62 ± 0.04xy† 0.99 ± 0.02xy† 3.36 ± 0.05xy† 95.24 ± 1.90xy

80% 67.02 ± 1.86xy† 8.59 ± 0.26xy† 2.83 ± 0.14x 3.65 ± 0.04xy† 1.07 ± 0.05x 3.09 ± 0.14y 87.62 ± 6.67y

100% 67.34 ± 1.01xy† 8.64 ± 0.15xy† 2.72 ± 0.07xy 3.65 ± 0.02xy† 1.02 ± 0.03xy† 3.23 ± 0.08xy† 90.47 ± 3.43xy

Two-factors ANOVA

RL 0.188 0.191 0.012 0.162 0.009 0.016 0.203

F <0.001 <0.001 0.003 <0.001 <0.001 <0.001 0.004

RL × F 0.093 0.084 0.515 0.071 0.364 0.386 0.311

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.

TABLE 5 Effect of replacing WB with PKC and FPKC on digestive enzyme activity of tilapia.

Item Amylase (U/mgprotein) Lipase (U/gprotein) Trypsin (U/mgprotein)

Replacement level of WB with PKC

0% 8.56 ± 0.96 1.23 ± 0.12ab 259.15 ± 9.90a

20% 7.53 ± 1.41 1.32 ± 0.01a 255.40 ± 29.30a

40% 6.91 ± 0.77 1.29 ± 0.07ab 263.24 ± 14.82a

60% 6.36 ± 0.50 1.12 ± 0.04ab 258.64 ± 3.74a

80% 7.50 ± 0.75 1.02 ± 0.15bc 218.27 ± 2.14ab

100% 7.72 ± 0.66 0.75 ± 0.04c 207.37 ± 5.59b

Replacement level of WB with FPKC

0% 8.56 ± 0.96z 1.23 ± 0.12 259.15 ± 9.90y

20% 10.34 ± 0.79yz 1.24 ± 0.08 279.20 ± 20.73xy

40% 15.05 ± 1.69x† 1.18 ± 0.21 305.97 ± 0.43x†

60% 10.09 ± 1.49yz 1.33 ± 0.05† 264.75 ± 2.59xy

80% 11.86 ± 0.50xyz† 1.28 ± 0.05 276.66 ± 19.98xy

100% 12.88 ± 0.85xy† 1.28 ± 0.06† 243.04 ± 1.85y†

Two-factors ANOVA

RL 0.100 0.082 0.006

F <0.001 0.014 <0.001

RL × F 0.139 0.018 0.437

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y,z Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.
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lipase (p > 0.05). amylase, lipase, and trypsin were significantly 
higher in the 100% FPKC group than in the 100% PKC group 
(p < 0.05). There was a significant interaction effect of RL and F on 
lipase (p > 0.05).

3.3 Apparent digestibility

The apparent digestibility of dry matter and energy was 
significantly lower in the PKC than in the 0% PKC group for each 
substitution group (p < 0.05, Table 6), however, the opposite trend 
was observed in the FPKC group (p < 0.05). there was no 
significant difference in the apparent digestibility of crude protein 
and crude protein between the PKC and FPKC groups (p > 0.05). 
There was no significant difference between PKC and FPKC 
groups for crude protein and crude lipid apparent digestibility 
(p > 0.05). 20% ~ 100% FPKC group had significantly higher 
apparent digestibility of dry matter and energy than the PKC 
group (p < 0.05). there was a significant interaction effect of RL 
and F on the apparent digestibility of dry matter, energy, and 
crude lipid (p < 0.05).

3.4 Intestinal morphology

Muscularis thickness was significantly lower in the 100% PKC 
group than in the 0 and 20% PKC groups (p < 0.05, Table 7 and 
Figure 1). villus height was significantly lower in the 100% PKC 
group than in the 0% ~ 80% PKC group (p < 0.05). villus height was 
significantly higher in the FPKC substitution groups than in the 

0% FPKC group (p < 0.05). There was no significant difference in 
the effect of FPKC on muscular thickness (p > 0.05). villus height 
was significantly higher in the 20, 80, and 100% FPKC groups than 
in the PKC group (p < 0.05). There was no significant interaction 
effect of RL and F on muscular thickness and villus height 
(p > 0.05).

3.5 Intestinal mucosal barrier status

Diamine oxidase and endothelin were significantly lower in the 
20% PKC group than in the 0, 80, and 100% PKC groups (p < 0.05, 
Table  8). The FPKC substitution groups had significantly lower 
diamine oxidase than the 0%FPKC group (p < 0.05). Endothelin was 
significantly lower in the 20% FPKC group than in the 0% FPKC 
group and each of the substitution groups (p < 0.05). There was a 
significant interaction effect of RL and F on diamine oxidase 
(p < 0.05). With the increase of PKC and FPKC replacement WB 
levels, cldn, ocln, and zo-1 mRNA expression levels showed a trend of 
increasing and then decreasing, and all of them reached the 
maximum at 20% (p < 0.05, Figure 2). cldn, ocln, and zo-1 mRNA 
expression levels were significantly higher in the 40% FPKC group 
than in the 40% PKC group (p < 0.05). There was a significant 
interaction effect of RL and F on ocludin (p < 0.05).

3.6 Intestinal immune status

The tnf-α, il-6, tgf-β1 and il-10 mRNA expression in the PKC 
replacement group was not significantly different from that of 0% 

TABLE 6 Effect of replacing WB with PKC and FPKC on nutrient apparent digestibility of tilapia.

Item Dry matter (%) Energy (%) Crude protein (%) Crude lipid (%)

Replacement level of WB with PKC

0% 69.43 ± 0.01a 81.45 ± 0.02a 85.92 ± 1.00 85.63 ± 3.10

20% 68.63 ± 0.01b 81.35 ± 0.02b 85.92 ± 0.95 83.34 ± 0.77

40% 65.36 ± 0.03e 79.45 ± 0.02e 83.16 ± 1.15 83.79 ± 0.45

60% 67.53 ± 0.02c 80.18 ± 0.02c 84.76 ± 1.25 87.09 ± 0.75

80% 65.93 ± 0.03d 79.77 ± 0.01d 83.62 ± 1.41 87.21 ± 0.98

100% 62.37 ± 0.01f 77.43 ± 0.02f 82.49 ± 1.59 84.05 ± 0.71

Replacement level of WB with FPKC

0% 69.43 ± 0.01z 81.45 ± 0.02z 85.92 ± 1.00 85.63 ± 3.10

20% 72.19 ± 0.01w† 83.19 ± 0.01w† 84.88 ± 0.96 84.30 ± 0.26

40% 70.91 ± 0.03x† 82.53 ± 0.02x† 84.11 ± 1.31 84.42 ± 0.58

60% 73.51 ± 0.02v† 83.71 ± 0.02v† 85.41 ± 1.18 85.25 ± 0.80

80% 70.42 ± 0.01y† 82.16 ± 0.02y† 84.13 ± 1.60 85.65 ± 0.46

100% 73.93 ± 0.01u† 84.14 ± 0.01u† 86.54 ± 0.81 88.40 ± 0.61†

Two-factors ANOVA

RL <0.001 <0.001 0.579 <0.001

F <0.001 <0.001 0.209 0.244

RL × F <0.001 <0.001 0.378 <0.001

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y,z Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.
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FIGURE 1

Effect of replacing WB with PKC and FPKC on hindgut histology of tilapia. (A) control; (B) 20% PKC; (C) 40% PKC; (D) 60% PKC; (E) 80% PKC; (F) 100% 
PKC; (G) 20% FPKC; (H) 40% FPKC; (I) 60% FPKC; (J) 80% FPKC; (K) 100% FPKC; Blue arrows: muscular thickness (μm); Yellow arrows: villus height 
(μm); The magnification was ×200, and the minimum scale (lower right) was 100  μm.

PKC (p > 0.05, Figures  3A,B). 80% ~ 100% PKC significantly 
up-regulated il-1β mRNA expression level (p < 0.05). FPKC 
substitution level lower than 40% down-regulated il-1β and il-6 
mRNA expression levels (p < 0.05), and tnf-α, tgf-β1 and il-10 
mRNA expression was not significantly different from the 0% FPKC 
group (p > 0.05). il-1β mRNA expression levels were significantly 
lower in each FPKC substitution group than in the PKC group 
(p < 0.05). RL and F had significant interaction effects on il-1β and 
il-6 mRNA expression (p < 0.05).

3.7 Intestinal microbiota

3.7.1 α-diversity analysis
Chao1 and Ace indices were significantly lower in the 40% PKC 

group than in the 0% PKC group (p < 0.05, Table  9). There were no 
significant differences in Shannon and Simpson for PKC (p > 0.05). Chao1 
and Ace were significantly lower in the 40% and 100% FPKC than in the 
control group (p < 0.05). Simpson was significantly higher in the 100% 
FPKC was significantly higher than that of the 0% FPKC group (p < 0.05). 

TABLE 7 Effect of replacing WB with PKC and FPKC on the intestinal histomorphology of tilapia.

Item Muscularis thickness (μm) Villus height (μm)

Replacement level of WB with PKC

0% 49.50 ± 0.50a 246.87 ± 4.07a

20% 48.17 ± 2.03a 253.46 ± 13.07a

40% 46.75 ± 1.45ab 256.90 ± 0.18a

60% 46.40 ± 1.58ab 260.58 ± 16.65a

80% 43.26 ± 3.14ab 257.09 ± 5.23a

100% 39.41 ± 3.62b 208.04 ± 3.40b

Replacement level of WB with FPKC

0% 49.50 ± 0.50 246.87 ± 4.07z

20% 56.29 ± 5.39 325.90 ± 12.66x†

40% 51.64 ± 5.00 313.73 ± 14.71xy

60% 51.87 ± 2.97 306.81 ± 9.60xy

80% 50.30 ± 0.73 310.62 ± 3.42xy†

100% 50.63 ± 2.38 284.05 ± 3.99y†

Two-factors ANOVA

RL 0.245 0.002

F 0.002 <0.001

RL × F 0.866 0.526

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y,z Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.
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Shannon and Simpson were significantly higher in 100% FPKC than that 
in 100% PKC (p < 0.05). RL and F had no significant interaction effect on 
Shannon, Simpson, Chao1, and Ace (p > 0.05).

3.7.2 Microbial composition
The dominant groups of tilapia gut microorganisms at the phylum 

level were Fusobacteriota, Bacteroidota, Proteobacteria, and 

Firmicutes (Figure  4A). The top  10 dominant genera in terms of 
relative abundance at the phylum level were analyzed for differences, 
and there were no significant differences between Fusobacteriota and 
Actinobacteriota in the PKC group (p > 0.05, Figure 4C). Firmicutes 
were significantly lower in 100% PKC than in 0% PKC (p < 0.05). 
Chloroflexi was significantly lower in the 100% PKC than in the 20% 
PKC group (p < 0.05). Fusobacteriota was significantly lower in 100% 

TABLE 8 Effect of replacing WB with PKC and FPKC on intestinal permeability of tilapia.

Item Diamine oxidase (U/mL) Endothelin (ng/mL)

Replacement level of WB with PKC

0% 22.49 ± 1.11a 54.01 ± 0.40a

20% 13.06 ± 0.57b 52.35 ± 0.29b

40% 13.81 ± 0.66b 53.68 ± 0.67ab

60% 21.11 ± 0.90a 53.68 ± 0.29ab

80% 22.85 ± 0.88a 54.57 ± 0.57a

100% 20.16 ± 1.94a 55.01 ± 0.22a

Replacement level of WB with FPKC

0% 22.49 ± 1.11w 54.01 ± 0.40x

20% 12.02 ± 0.21z 51.13 ± 0.59y

40% 15.52 ± 0.16y 52.90 ± 0.38x

60% 18.18 ± 1.00xy 53.24 ± 0.51x

80% 16.56 ± 0.74xy† 53.12 ± 0.22x

100% 19.56 ± 1.54x 53.23 ± 0.57x†

Two-factors ANOVA

RL <0.001 <0.001

F 0.009 <0.001

RL × F 0.010 0.628

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y,z Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.

FIGURE 2

Effect of replacing WB with PKC and FPKC on intestinal tight junction-related gene expression of tilapia. a,b,c Means in the same bars with different 
superscript letters are significantly different (p  <  0.05) for groups with PKC; x,y,z Means in the same bars with different superscript letters are significantly 
different (p  <  0.05) for groups with FPKC; †p  <  0.05, FPKC versus PKC for diets with the same replacement level; cldn: claudin; ocln: occludin; zo-1: zona 
occludns protein 1.
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FPKC than in the 0, 20% FPKC, and 100% PKC groups (p < 0.05). 
Actinobacteriota was significantly higher in 20 and 100% FPKC than 
in 0% FPKC (p < 0.05). RL and F had a significant interaction effect on 
Fusobacteriota (p < 0.05).

The top 10 dominant genera in terms of relative abundance at the 
genus level were analyzed for differences (Figure 4B). Cetobacterium 

was significantly lower in the 100% FPKC than in the 0 and 40% FPKC 
groups (p < 0.05, Figure 4D). There was no significant difference in 
Cetobacterium by PKC (p > 0.05). Cetobacterium was significantly 
lower in the 100% FPKC group than in the 100% PKC group (p < 0.05). 
RL and F had a significant interaction effect on Cetobacterium 
(p < 0.05).

FIGURE 3

Effect of replacing WB with PKC and FPKC on intestinal inflammation-related gene expression of tilapia. Data are expressed as mean ± SEM (n  = 3); 
a,b,c Means in the same bars with different superscript letters are significantly different (p  < 0.05) for groups with PKC; x,y,z Means in the same bars 
with different superscript letters are significantly different (p  < 0.05) for groups with FPKC; †p  < 0.05, FPKC versus PKC for diets with the same 
replacement level; tnf-α: tumour necrosis factor alpha; il-1β: interleukin-1 beta; il-6: interleukin- 6; il-8: interleukin-8; tgf-β1: transforming growth 
factor β1; il-10: interleukin-10.
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TABLE 9 Effect of replacing WB with PKC and FPKC on alpha-diversity index of tilapia intestinal flora.

Shannon Simpson Chao1 Ace Goods coverage

Replacement level of WB with PKC

0% 2.69 ± 0.26 0.67 ± 0.05 531.21 ± 50.65a 547.43 ± 47.37a 1.00

40% 2.82 ± 0.27 0.68 ± 0.05 395.72 ± 28.49b 412.94 ± 19.76b 1.00

100% 2.40 ± 0.12 0.65 ± 0.03 421.83 ± 21.75ab 429.90 ± 31.57ab 1.00

Replacement level of WB with FPKC

0% 2.69 ± 0.26 0.67 ± 0.05y 531.21 ± 50.65x 547.43 ± 47.37x 1.00

40% 2.93 ± 0.20 0.68 ± 0.02xy 383.27 ± 10.71y 398.27 ± 10.65y 1.00

100% 3.40 ± 0.23† 0.78 ± 0.01x† 376.73 ± 40.57y 402.19 ± 43.98y 1.00

Two-factors ANOVA

RL 0.899 0.345 0.732 0.731 0.721

F 0.031 0.077 0.328 0.490 0.067

RL × F 0.067 0.067 0.570 0.829 0.079

Data are expressed as mean ± SEM (n = 3). a,b,c Means in the same column with different superscript letters are significantly different (p < 0.05) for groups with PKC. x,y Means in the same 
column with different superscript letters are significantly different (p < 0.05) for groups with FPKC. †p < 0.05, FPKC versus PKC for diets with the same replacement level.

FIGURE 4

Effect of replacing with PKC and FPKC on intestinal microbial of tilapia. (A) phylum level; (B) genus level; (C) Relative abundance is significantly different 
at the phylum level (Top 10); (D) Relative abundance is significantly different at the genus level (Top 10). Data are expressed as mean  ±  SEM (n  =  3); a,b,c 
Means in the same bars with different superscript letters are significantly different (p  <  0.05) for groups with PKC; x,y Means in the same bars with 
different superscript letters are significantly different (p  <  0.05) for groups with FPKC; †p  <  0.05, FPKC versus PKC for diets with the same replacement 
level.
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4 Discussion

In this study, complete replacement of WB with PKC negatively 
affected the growth of tilapia. Ng and Chen (7) reported that dietary 
supplementation with 20% PKC had no significant effect on the 
growth performance of Hybrid Asian-African Catfish. In contrast, 
supplementation with more than 20% palm meal decreased the 
growth and utilisation efficiency. Studies involving Nile tilapia have 
shown that dietary addition of 25% PKC did not affect its growth; 
however, the growth and food conversion rate declined when the 
PKC concentration was increased (6). A high degree of PKC 
substitution reduced the growth performance of tilapia due to the 
high levels of indigestible NSPS (19, 20). NSPS are sticky and adhere 
to the digestive tract, thus hindering nutrient absorption (5), 
Numerous studies have shown that the addition of high levels of 
NSPs to feed reduced the utilisation of nutrients and decreased the 
growth of fish (44, 45). In contrast, the replacement of WB with 
FPKC improved the growth performance of tilapia. Optimal growth 
was observed at a substitution level of 40%. Further, weight gain 
and specific growth rate were significantly higher in the FPKC 
group than in the PKC group at 60 to 100% substitution levels. This 
result was consistent with the findings of Wattanakul et al. (8), who 
reported that the addition of 12.5% FPKC to red tilapia (Oreochromis 
niloticus × O. mossambicus) feed yielded the best growth 
performance and feed utilisation. These results suggest that FPKC 
is a better alternative to WB than PKC. Studies have shown that 
fermentation not only degrades macromolecules completely 
(Supplementary Figure S1) but also generates useful metabolites, 
degrades anti-nutritional factors, improves feed flavour and 
palatability, promotes animal feed intake, and increases feed 
nutritional value and feed utilisation (31), Thus, the growth 
performance of tilapia can be improved. However, Ng et al. (18) 
reported that the growth of red hybrid tilapia was reduced by the 
addition of 20% and 40% fermented palm meal to red hybrid tilapia 
feed. However, this finding was inconsistent with the results of the 
present study and may be related to the fermentation of the raw 
material (46).

The activity of intestinal digestive enzymes determines the 
efficiency of feed nutrient utilisation and growth rate of fish (47, 
48). In the study, the complete replacement of WB with PKC 
significantly reduced the activities of lipase and trypsin, which 
were highly consistent with the growth performance, suggesting 
that high degree of replacement with PKC may inhibit the growth 
of tilapia by decreasing intestinal digestion and absorption. This 
may be related to the high levels of NSPS (19, 20). The impact of 
NSPs on the activity of intestinal digestive enzymes is strongly 
related to their physico-chemical properties. Some soluble 
non-starch polysaccharides (SNSPs) can increase the viscosity of 
chyme, thereby inhibiting the activity of digestive enzymes (49), 
NSPs may also reduce the activity of digestive enzymes by binding 
or by wrapping around the substrate (50). Amylase activity was 
unaffected by the concentration of PKC-substituted WB, 
suggesting that this omnivorous fish has an adequate number of 
metabolic pathways to digest carbohydrates (8). However, FPKC 
increased the activity of tilapia digestive enzymes, especially 
amylase, which was consistent with the findings of Wattanakul 
et al. (8) who found that FPKC increased the digestive enzyme 
activity of red tilapia. Fermentation degrades the anti-nutritional 

factors in the feed, and the macromolecules are transformed into 
small molecules that can be  easily absorbed by the animals 
(Supplementary Figure S1) (51).

The apparent digestibility of nutrients reflects the degree of 
digestion in the fish, and thus indirectly indicates the activity of 
digestive enzymes (52). The apparent digestibility of dry matter 
and the energy were significantly reduced by the addition of PKC 
to red hybrid tilapia feeds (18). This finding is consistent with the 
results of the present study, where the apparent digestibility of dry 
matter and the energy decreased linearly with increasing levels of 
PKC substitution. This is consistent with the changes in the 
activity of the intestinal digestive enzymes. The reduction in 
apparent digestibility of dry matter and the energy can 
be attributed to undigested cellulose in plant proteins (53). PKC 
contains about 12% cellulose (20). However, plant-based 
ingredients, due to their high cellulose content, may accelerate the 
movement of chyme through the gut, thus reducing the apparent 
digestibility of dry matter and the energy in fish feed (54). 
Conversely, the FPKC substitution of WB significantly increased 
the apparent digestibility of dry matter and the energy compared 
with that of the PKC. This is inconsistent with the findings of Ng 
et al. (18) who found that in red hybrid tilapia feed, the apparent 
digestibility of dry matter and energy was significantly reduced 
with the addition of fermented or enzyme-treated PKC. This may 
be related to the processing of the raw material (46).

Feed ingredients inevitably affect the development and 
morphology of the fish gut, and therefore gut morphology is often 
used to assess the potential physiological effects of feeds on fish 
(55). In this study, the complete replacement of WB with PKC 
significantly altered the gut morphology of tilapia. A decrease in 
villus height indicates a decrease in the internal digestive area of 
the intestine, whereas a decrease in muscularis thickness indicates 
a decrease in intestinal peristalsis. Both of these morphological 
parameters interfere with intestinal digestion and absorption (56, 
57). A high level of PKC substitution inhibited intestinal digestion 
and absorption, which led to decreased growth performance. 
However, the replacement of WB by FPKC increased the villus 
height significantly than in the control group. The degradation of 
anti-nutritional factors by fermentation alleviated the damage to 
the intestinal structure induced by PKC in tilapia, thus improving 
the intestinal health of the fish.

It is well known that gut health is critical to the growth and 
health of fish. Nonetheless, studies have shown that gut health is 
influenced by the composition of the diet consumed (58). The 
intestinal mucosa contains chemical, mechanical, biological, and 
immune barriers (59). The intestinal mucosal barrier effectively 
prevents invasion by toxins, antigens, and pathogens (60). It 
contributes to the maintenance of intestinal health. In general, 
serum diamine oxidase activity and endothelin concentrations are 
strong indicators of intestinal mucosal permeability. Elevated 
concentrations or activities of these indicators suggest intestinal 
mucosal damage (58, 61). In this study, the substitution of WB 
with 20% PKC significantly reduced serum diamine oxidase 
activity and endothelin concentrations. Notably, The fermentation 
of PKC significantly decreased the diamine oxidase activity 
compared with the control group. The result indicated that FPKC 
strongly increased the integrity of intestinal mucosa. In addition, 
the structural integrity of the intestinal tight junction is closely 
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related to the intestinal mucosal barrier function (62). The levels 
of occludin, zo-1, and claudin genes, which are related to the tight 
junction structure, represent the integrity of the intestinal mucosal 
barrier (63, 64). In this study, the replacement of WB with low 
levels of PKC significantly up-regulated the expression of cldn, 
ocln, and zo-1, while high levels of PKC yielded the opposite 
result. However, FPKC significantly increased the expression of 
structural genes related to tight junctions (cldn, ocln, and zo-1) in 
the intestine, suggesting that FPKC is more effective in 
maintaining the integrity of the intestinal barrier.

The intestinal inflammatory response is strongly related to 
intestinal health and is generally determined by the expression of 
pro- and anti-inflammatory factors (42). In this study, PKC 
replacement had no significant effect on tnf-α and il-6 gene 
expression. However, il-1β is one of the key factors expressed in 
response to intestinal inflammation. il-1β, which is mainly 
synthesized and secreted by macrophages, is a major 
pro-inflammatory factor released in early inflammatory response. 
It is involved in activating the proliferation of T and B cells and 
promoting the production of inflammatory factors (65). In this 
study, excessive PKC significantly promoted the expression of the 
pro-inflammatory factor (il-1β) and inhibited the expression of the 
anti-inflammatory factor (tgf-β1), These results may be attributed 
to the continued intestinal accumulation of anti-nutritional factors 
present in PKC, which compressed and destroyed the integrity of 
the intestinal epithelial mucosa, and induced enteritis (66, 67). 
However, we  found that substitution with low levels of FPKC 
significantly down-regulated the pro-inflammatory factors (il-6 
and il-1β). Similarly, the expression of pro-inflammatory factors 
was inhibited when a small amount of Micropterus salmoides feed 
was replaced with Bacillus aerobic fermented soybean meal (68). 
We speculate that the fermentation of palm meal may result in the 
synthesis of oligosaccharides, which can effectively improve the 
immunity of animals. However, increasing feed replacement can 
lead to the eventual accumulation of residual anti-nutrient factors 
and induce adverse reactions.

Intestinal flora maintain gut health and are regulated by diet 
(69). Alpha diversity indices such as Chao1 and Ace are used to 
determine the species richness, while Shannon and Simpson 
indices are used to measure the diversity of microbial flora (70). In 
this study, the substitution of WB with PKC and FPKC reduced the 
abundance of intestinal flora in tilapia. Interestingly, however, PKC 
improved Shannon and Simpson indices after fermentation. The 
Shannon and Simpson indices of 100% FPKC were significantly 
higher than those of 100% PKC. Some studies have reported that 
dietary supplementation of small peptides improved the diversity 
of intestinal flora in largemouth bass (70). Therefore, FPKC can 
improve the diversity of intestinal flora, probably due to the 
presence of a large number of small molecular peptides generated 
by fermentation.

At the phylum level, the dominant groups in all groups were 
Fusobacteriota, Bacteroidota, Proteobacteria, and Firmicutes, 
similar to the results of previous studies (71, 72). Fusobacteria are 
conditionally pathogenic, Gram-negative bacteria found in water 
bodies. Their reduced abundance improves lipid utilisation in the 
host, which in turn improves digestion and absorption and 
decreases the risk of disease (73). Fusobacteria have also been 
shown to promote colorectal adenomas (74). In this study, the 

abundance of Fusobacteriota was significantly lower in the group 
treated with 100% FPKC than in the control, 20% FPKC, and 100% 
PKC groups. It indicated that FPKC improved digestion and 
absorption and reduced the prevalence of tilapia compared with 
PKC-substituted WB. Firmicutes, as a probiotic, synthesize short-
chain fatty acids to supply nutrients for intestinal mucosal cells, 
which regulate the intestinal microecology (75). The relative 
abundance of Firmicutes is positively correlated with dietary 
calorie intake (76). It improves the digestibility of food and 
immunity of fish and protects them from the destructive effects of 
bacterial pathogens in the intestine (77, 78). In this study, the 
abundance of Firmicutes was significantly lower in the 100% PKC 
group than in the control group. FPKC increased the abundance of 
Firmicutes, indicating that FPKC affected the nutrient metabolism 
of gut bacteria in tilapia. Thus, tilapia ingesting FPKC may digest 
food more easily and exhibit stronger immunity. Chloroflexi 
exhibits a very high metabolic diversity and also utilises saccharides 
as substrates for fermentation and degradation of complex organic 
compounds (79). In this study, no significant difference existed 
between Chloroflexi in the PKC and FPKC replacement groups and 
the control group. Actinobateriota produce a wide range of 
beneficial metabolites, antibiotics, and bioactivities (80). They play 
a key role in regulating intestinal permeability, immunomodulation, 
and metabolism (81). Its substantial increase increases the 
abundance of beneficial substances and facilitates intestinal 
homeostasis and immune regulation. In this study, FPKC 
significantly increased the abundance of Actinobacteriota. It 
suggests that FPKC contributes significantly to the maintenance of 
intestinal homeostasis and intestinal health. Cetobacterium, a 
member of the Fusobacteria, is a common probiotic found in the 
intestinal tract of fish. It ferments peptide carbohydrates, which are 
metabolised to vitamin B12, acetic acid, and propionic acid, and 
thus participate in the regulation of host intestinal microecology 
and nutrient metabolism (82, 83). In the study, the concentrations 
of Cetobacterium were significantly lower in the 100% FPKC group 
than in the control, 40% FPKC, and 100% PKC groups. It has been 
suggested that a decrease in Cetobacterium abundance increases 
the body’s immunity (73). However, a comprehensive study is 
needed to analyse the specific regulatory mechanisms underlying 
the effects on the host.

In summary, our results suggest that FPKC decreases the 
number of pathogenic bacteria and increases the number of 
beneficial bacteria in the gut. The decrease in the number of 
pathogenic bacteria in fish may be attributed to the inhibitory 
effects of volatile fatty acids (VFAs) produced during the 
fermentation of feed in certain intestinal bacteria (84), increasing 
the abundance of beneficial bacteria. In contrast, the high levels 
of NSPs in PKC, which dissolve in water, increase the viscosity of 
chyme. The decreased flow of chyme in the intestinal tract and 
the scarcity of oxygen decrease the number of beneficial 
bacteria (9).

5 Conclusion

WB can be replaced with PKC up to 80% in tilapia feeds. However, 
the high percentage of gluten induced intestinal inflammation, 
impaired gut health, and reduced dietary nutrient utilisation and 
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growth performance. Complete replacement of WB with FPKC 
promoted intestinal immunity. It also improved dietary nutrient 
utilisation and growth performance. However, the optimal growth was 
achieved at a 40% replacement level.
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