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We introduce a stabilizer formalism for the general quantum error correction
framework called operator algebra quantum error correction (OAQEC), which gen-
eralizes Gottesman’s formulation for traditional quantum error correcting codes
(QEC) and Poulin’s for operator quantum error correction and subsystem codes
(OQEC). The construction generates hybrid classical-quantum stabilizer codes and
we formulate a theorem that fully characterizes the Pauli errors that are correctable
for a given code, generalizing the fundamental theorems for the QEC and OQEC
stabilizer formalisms. We discover hybrid versions of the Bacon-Shor subsystem
codes motivated by the formalism, and we apply the theorem to derive a result that
gives the distance of such codes. We show how some recent hybrid subspace code
constructions are captured by the formalism, and we also indicate how it extends
to qudits.

1 Introduction
Quantum error correction (QEC) is a central topic in quantum information science. Its ori-
gins as an independent field of study go back almost three decades [18, 42, 64, 65], and it now
touches on almost every aspect of quantum information, ranging from theoretical to experi-
mental investigations and in recent years as a key facet in the development of new quantum
technologies [12, 15, 36, 56, 67, 69, 70]. More recently, developments in QEC included the in-
troduction of a unified approach, called ‘operator quantum error correction’ (OQEC) [44, 45]
that brought together traditional QEC with passive notions such as decoherence-free sub-
spaces and noiseless subsystems, and led to the advent of subsystem codes and advances in
fault-tolerant quantum computing [7, 8, 13, 14, 31, 34, 47, 61]. Subsequently, a further general-
ization was discovered, called ‘operator algebra quantum error correction’ (OAQEC) [9, 10],
which additionally provided an approach for hybrid classical-quantum codes used for the si-
multaneous encoding of classical and quantum information, and for infinite-dimensional error
correction [11,22,38,39,48]. The following decade saw limited development of OAQEC theory,
perhaps due to a paucity of initial applications.
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The last few years have witnessed significant renewed interest in OAQEC, from at least
three different but related directions. There have been advances in hybrid classical-quantum
information coding theory and error correction [19,29,49,53] that fit into the OAQEC frame-
work. Several small quantum error correcting codes and operations necessary as fundamental
components of a scalable fault-tolerant quantum computer have been implemented experimen-
tally [1,23,46,60]. And in black hole theory, recent work [2–6,30,33,40,59,68] has reinterpreted
the AdS/CFT correspondence using the language of quantum error correction. In particular,
it was argued in [30] that the full machinery of OAQEC is necessary to capture the relevant
properties of AdS/CFT.

The stabilizer formalism [17, 25, 26] introduced by Gottesman is a bedrock of QEC, pro-
viding a toolbox for the construction and characterization of correctable codes for Pauli error
models. This formalism was generalized by Poulin [61] to the OQEC setting, giving a way
to construct stabilizer subsystem codes and also a characterization of correctable subsystem
codes for Pauli errors. The OQEC formalism further gave an appropriate framework in which
to view the well-known Bacon-Shor subsystem codes [8], which have proved to be important
in fault tolerant quantum computing.

In this paper, we introduce a stabilizer formalism for OAQEC, which generalizes Gottes-
man’s formulation for traditional QEC codes and Poulin’s for OQEC subsystem codes. The
codes constructed include hybrid classical-quantum stabilizer codes, and motivated by this,
we discover hybrid versions of the Bacon-Shor codes. We formulate a theorem that fully
characterizes the Pauli errors that are correctable for a given stabilizer code, generalizing the
fundamental theorems for QEC and OQEC, and we apply the theorem to calculate the dis-
tance of hybrid Bacon-Shor codes. Further, we show how some recent hybrid subspace code
constructions are captured by the formalism. We also show how it extends to the case of
qudits and we present examples in that general context.

This paper is organized as follows. Section 2 includes requisite background material. In
Section 3 we give the main details of the formalism, and in Section 4 we formulate and prove the
error correction theorem. We present some examples and applications in Section 5, including
the hybrid Bacon-Shor codes and a theorem that gives the distance of such codes. Section 6
includes the extension of the formalism to qudits, and Section 7 includes concluding remarks.

2 Preliminaries
Given a fixed positive integer n ≥ 1, let CN , with N = 2n, be N -dimensional complex Hilbert
space with a fixed orthonormal basis {|0⟩, . . . , |N − 1⟩}, which alternatively can be identified
with (C2)⊗n and orthonormal basis {|i1 · · · in⟩ = |i1⟩ ⊗ . . . ⊗ |in⟩ : ij = 0, 1} via dyadic
expansions. Further let MN = (M2)⊗n be the set of N × N complex matrices, which can
be viewed as the set of matrix representations of linear transformations B(CN ) on CN with
respect to the basis {|k⟩}, and let U(N) be the unitary group inside MN .

We let Pn be the usual n-qubit Pauli group; that is, the subgroup of U(N) generated by
n-tensors of the single qubit bit flip and phase flip Pauli operators X, Z, and iI (we shall
write Im for the identity operator on Cm, or just I when the context is clear); that is,

X|0⟩ = |1⟩, X|1⟩ = |0⟩ and Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩,

and with the corresponding n-qubit operators defined as X1 = X ⊗ (I⊗(n−1)), X2 = I ⊗X ⊗
(I⊗(n−2)), etc.
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Given a subgroup of unitary operators G inside B(H), the set of (bounded linear) operators
on a Hilbert space H, we let Alg(G) denote the subalgebra of B(H) generated by G; in other
words, the set of complex polynomials in the elements of G. When H is finite-dimensional,
such an algebra A is a (unital) C∗-algebra [21,58], and hence from the structure theory of such
algebras, it is unitarily equivalent to a direct sum of the form

A ∼=
⊕

k

(Imk
⊗Mnk

)

for some positive integers mk, nk with
∑

k mknk = dim H. Associated with this unitary equiv-
alence is a decomposition of the Hilbert space H as an orthogonal direct sum of subspaces each
with its own tensor decomposition, H = ⊕k(Ak ⊗Bk), in which the algebra itself decomposes
as A = ⊕k(IAk

⊗B(Bk)). Moreover, the set A′ (also an algebra) of all operators that commute
with the algebra, the commutant of A, is unitarily equivalent to

A′ ∼=
⊕

k

(Mmk
⊗ Ink

),

which again is determined by the structure of the Hilbert space decomposition as A′ =
⊕k(B(Ak) ⊗ IBk

).
Open system quantum dynamics gives us quantum channels, which are completely positive

trace-preserving linear maps E : T (H) → T (H) on the set of trace class operators on H
[35, 55, 58]. To each channel there is an associated dual map E† defined on B(H) via the
equation: Tr(E†(X)ρ) = Tr(XE(ρ)). (Observe that E is trace-preserving exactly when E† is
unital; E†(I) = I.) Of course, in the finite-dimensional case the sets T (H) and B(H) coincide,
but we will still use the different notation to distinguish between the quantum information
flow direction under consideration; namely, the Heisenberg and Schrödinger perspectives as
discussed in the OAQEC context below, where we focus on correcting observables in the former
picture and correcting states in the latter picture.

Every channel E has operator-sum representations [20], which are sets of ‘Choi-Kraus’
operators {Ek} inside B(H) such that E(ρ) =

∑
k EkρE

†
k for all ρ ∈ T (H) and

∑
k E

†
kEk = I.

In the quantum error context, channels are often referred to as error or noise models, and the
implementation operators called error operators. Most importantly for the present work, the
class of Pauli error models are central to quantum error correction, and are the subclass of
mixed unitary channels on CN of the form E(ρ) =

∑
k pkUkρU

†
k , where Uk ∈ Pn and the pk

form a classical probability distribution.

3 Hybrid Stabilizer Code Construction
Hybrid classical-quantum codes are codes that can be used to simultaneously encode classical
and quantum information. In terms of Hilbert space representations, they are codes with
several mutually orthogonal subspaces, each of which carrying certain properties. In this
section we construct hybrid codes that both fit into the OAQEC framework and generalize the
codes from the original stabilizer formalism. For clarity, we have divided the presentation into
four subsections, which include the three core notions and a motivating class of examples.
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3.1 Stabilizer Subgroup and Code Subspace
Let S be an abelian subgroup of Pn that does not contain −I, and suppose it has s independent
generators. As all elements of the Pauli group either commute or anti-commute up to some
power of iI, and S does not contain the subgroup ⟨iI⟩ generated by iI, it is easy to see that
the normalizer and centralizer of S inside Pn coincide;

N (S) = {g ∈ Pn | gSg−1 = S} = {g ∈ Pn | gh = hg ∀h ∈ S} = Z(S).

Let C = C(S) be the stabilizer subspace for S, which is the subspace of CN defined as the
joint eigenvalue-1 eigenspace for S; that is,

C = span{|ψ⟩ : g|ψ⟩ = |ψ⟩ ∀g ∈ S}.

We will let P denote the codespace projector for C, the orthogonal projection of CN onto C.
It is well known that dimC = 2n−s (for instance see the motivating example below). The
stabilizer subspace is the base code for an OAQEC stabilizer code, which will encode further
structure as described below.

3.2 Gauge Group and Logical Operations
Let us first discuss some relevant operator theoretic notions. Given any element g of N (S) =
Z(S), the subspace C is a reducing subspace for g; that is, both the subspace and its orthogonal
complement are invariant for g. Indeed, if g commutes with every element of S, then gP = Pg
as P is equal to a polynomial in the elements of S, which follows from the joint spectral
functional calculus for those elements (an explicit formula is given in Section 6). Hence,
gP = PgP and gP⊥ = P⊥gP⊥ where P⊥ = I−P , which are the invariant subspace conditions
for C and C⊥ as operator relations. Observe that if C is a reducing subspace for every operator
in an algebra A, then AP is a subalgebra of B(CN ) which is fully supported on C. We will
call AP = PA = PAP the ‘compression algebra’ of A to C. In such a case, as a notational
convenience to distinguish between that algebra and the corresponding algebra of operators
restricted to C (so a subalgebra of B(C)), we shall write A|C for the latter.

We now turn to the subsystem structure generated by a stabilizer subspace. Our formu-
lation here is a little more abstract than that of [61], with an eye toward possible extensions
of this formalism as noted in Section 7. Thus, suppose we can find subsets G0 and L0 of
N (S) = Z(S) with the following properties:

• The compression algebra Alg(G0)P , respectively Alg(L0)P , is unitarily equivalent to a
full matrix algebra M2r for some positive integer r, respectively to M2k for some positive
integer k. (The motivating example presented below shows how this arises through anti-
commuting pairs of Pauli operators.)

• The sets G0 and L0 are mutually commuting; [g, L] = 0 for all g ∈ G0, L ∈ L0.

• The normalizer subgroup N (S) is generated by S, iI, G0, and L0.

We will assume these sets are minimal with these properties (in particular, an element of
the set cannot be obtained as a product of other elements). The group G defined as

G = ⟨S, iI,G0⟩, (1)
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is called the gauge group for the code, and the group

L = ⟨L0, iI⟩, (2)

is called the logical group. The conditions ensure the normalizer is determined by the gauge
and logical groups via the group isomorphism N (S) × ⟨iI⟩ ∼= G × L. Choices of such subsets
can be made using well-known properties of the Pauli group, using (r and k respectively)
anti-commuting pairs of operators that mutually commute, and that commute with the other
set and the stabilizers.

The subsystem structure that these subgroups generate is given in the following result.
This can be proved straightforwardly as a consequence of the above formulation, together
with the structure theory of algebras and their commutants described in the previous section.

Lemma 1. Let C be a code subspace with gauge group G and logical group L as chosen
above. Then C is a reducing subspace for both G and L, and C decomposes as a tensor
product of subsystems C = A ⊗ B with A ∼= (C2)⊗r, B ∼= (C2)⊗k, and r + k = n − s, such
that {

Alg(G)|C = B(A) ⊗ IB

Alg(L)|C = IA ⊗ B(B) ,

where B(A) ∼= M2r and B(B) ∼= M2k .

Note that here the subsystem B encodes the logical qubits of the code. Further observe that
an empty gauge set G0 leads to a standard subspace code (dimA = 1), whereas a nonempty
G0 generates subsystem structure in the code (that is, when dimA > 1).

3.3 Normalizer Cosets and Hybrid Code Sectors
Let us now turn to the notion that generates hybrid codes. As a group theoretic observation
that will be relevant below, first note that the left and right cosets of N (S) inside Pn coincide;
that is, gN (S) = N (S)g for all g ∈ Pn. This follows from the anti-commutation relations of
Pn and the fact that N (S) contains ⟨iI⟩.

Let T ⊆ Pn be a maximal set of coset representatives for N (S) inside Pn (a so-called
coset transversal for N (S) as a subgroup of Pn), and without loss of generality assume I ∈ T
is the representative for the normalizer itself. Then the full group is equal to the (disjoint)
union Pn = ∪g∈T gN (S), and the cardinality of T is equal to |T | = |Pn|/|N (S)| = 2s (see the
motivating example for an explicit calculation).

Taking terminological motivation from other areas, such as the notion of ‘charge sectors’
in the study of topological codes [41, 63], we shall use the term code sector to refer to the
(quantum) code defined by a given T ∈ T and the elements that define the base code: S, L,
G. Specifically, the code sector for T is defined by the collection of operators given by the sets
TST−1, TLT−1, TGT−1, and then the associated codespace TC.

The key observation concerning normalizer cosets in this setting is the following, which
shows that the subgroup and coset structure induces orthogonality at the Hilbert space level.

Lemma 2. Let S be an abelian subgroup of Pn that does not contain −I, and let C be its
stabilizer subspace. If T is a selection of coset representatives for N (S) inside Pn, then for
all g1, g2 ∈ T with g1 ̸= g2 we have

Pg−1
1 g2P = 0,
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Fig. 1: Hybrid stabilizer code illustration. The coset representatives T0 = {T0 = I, T1, T2, . . . , Tk} ⊂ T define
different code sectors, each characterized by a classical codeword represented by a bit-string c⃗i, with 0 ≤ i ≤ k,
its associated encoded state ρc⃗i and sets TiST −1

i , TiLT −1
i , TiGT −1

i (only the stabilizers are shown for brevity).
Note that here T0 is a strict subset of T .

where P is the orthogonal projection of CN onto C; in other words, g1|ψ1⟩ is orthogonal to
g2|ψ2⟩ for any choice of states |ψ1⟩, |ψ2⟩ ∈ C.

Proof. As g1 and g2 are representatives from different cosets, we have g := g−1
1 g2 /∈ N (S).

Since the normalizer coincides with Z(S), and all elements of Pn commute modulo a power
of iI, it follows that there is some E ∈ S and z ∈ C, with |z| = 1 and z ̸= 1, such that

gE = zEg.

(In fact here in the qubit d = 2 case we must have z = −1. We keep the logical statement
more general as we will make use of this argument in the qudit case.) Note that EP = P
from the definition of C and because E ∈ S. Further, EP = PE as P is equal to the product
of polynomials in elements of S from spectral theory functional calculus as discussed above.
Thus we have,

PgP = PgEP = P (zEg)P = zPEgP = zEPgP = zPgP,

and so (1 − z)PgP = 0. But z ̸= 1, and hence PgP = 0 as required.

Remark. We thus have stabilizer codes that generalize both the original (subspace) setting
of Gottesman, which is captured with the singleton coset representative subset (T0 = {I})
and abelian gauge group (with empty set G0 = ∅), and then the OQEC (subsystem) setting
of Poulin, which is captured with the singleton coset representative (T0 = {I}) subset and
non-trivial gauge group (G ≠ ∅).

Moreover, any code defined by a subset T0 ⊆ T with |T0| > 1 will be a hybrid classical-
quantum code, which will have a subspace base code (formally C = A ⊗ B with A = C)
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when the gauge group is abelian and a subsystem base code (C = A ⊗ B with dimA > 1)
otherwise. The size of the subset T0 determines the number of ‘classical addresses’ associated
with the hybrid code, as is illustrated in Fig. 1. For instance, by Lemma 2, any g /∈ N (S)
gives a coset gN (S) for which the subspace gC is orthogonal to C, and hence it defines a 1-bit,
k-qubit hybrid code (which may have further subsystem structure when the gauge group is
non-abelian).

3.4 Motivating Class of Examples
We can build upon the motivating example from the original stabilizer formalism to illustrate
the various concepts discussed above for a relatively simple class of examples. The following
operators are defined on n-qubit Hilbert space.

• Let s ≤ n be a fixed positive integer and let S = ⟨Z1, . . . , Zs⟩; the subgroup of Pn

generated by phase flip operators on the first s qubits. Then

C = C(S) = span
{
| 0 · · · 0︸ ︷︷ ︸

s

i1 · · · in−s⟩ : ij = 0, 1
}
,

and dimC = 2n−s so that C can encode n− s qubits.

• Let r be a fixed integer with 0 ≤ r ≤ n − s, and let G0 be the set of r pairs of Pauli
operators acting on qubits s+ 1 to r + s:

G0 =
{
Xi, Zi : s+ 1 ≤ i ≤ r + s

}
.

Then the gauge group G is generated by S, iI, and G0, and includes the full Pauli
subgroup of operators acting non-trivially on the r ‘gauge qubits’.

• Let k = n − s − r, and let L0 be the set of k pairs of Pauli operators acting on qubits
r + s+ 1 to n:

L0 =
{
Xi, Zi : r + s+ 1 ≤ i ≤ n

}
.

Then the logical group L is the group generated by L0 and iI, and includes the full Pauli
subgroup of operators acting non-trivially on the k ‘logical qubits’.

• The normalizer N (S) = Z(S) for S inside Pn in this case is given by the following set
of operators:

N (S) =
{
ic · Zb1

1 · · ·Zbs
s · Xas+1

s+1 Z
bs+1
s+1 · · ·Xan

n Zbn
n : 0 ≤ c ≤ 3, 0 ≤ aj , bj ≤ 1

}
.

The size of the normalizer here is thus |N (S)| = 4 · 2s · 4n−s = 22+2n−s. The full
Pauli group Pn has 4n+1 elements (as every element can be uniquely written in the form
icXa1

1 Zb1
1 · · ·Xan

n Zbn
n ), and hence the number of normalizer cosets is given by,

|Pn|/|N (S)| = 22+2n−(2+2n−s) = 2s.

Observe that each of the operators Xj , 1 ≤ j ≤ s, do not belong to N (S). Hence we
can take as a set of canonical coset representatives, the transversal given by the following
2s-element set:

T =
{
Xa1

1 · · ·Xas
s : 0 ≤ aj ≤ 1

}
.
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As a caveat, however, we note that there are many other choices of coset representatives,
which could have different algebraic properties as it relates to the code generators. As a simple
example, note that Xi, with 1 ≤ i ≤ s, and XiN , for some fixed N ∈ N (S), generate the
same coset, and so in particular a transversal need not consist entirely of mutually commuting
operators, or even operators that commute with the gauge and logical operators.

Regarding the Hilbert space decomposition generated by this example, notice that the
gauge and logical operators induce a tensor decomposition for the base code subspace C =
A⊗B, where A ∼= (C2)⊗r, B ∼= (C2)⊗k, and this tensor structure naturally translates to any
of the subspaces TC, for T ∈ T , as T is unitary. (Recall here that n− s = r+ k, and the base
code encodes k logical and r gauge qubits.) The subspace C is easily seen to be invariant for
each of the gauge and logical operators, and evidently for every A ∈ G0 and B ∈ L0, there are
operators A1 ∈ B(A) and B1 ∈ B(B) such that{

A|C = A1 ⊗ IB

B|C = IA ⊗B1
,

which is all true in general by Lemma 1. Given a (non-trivial) subset of coset representatives
T0 ⊆ T , the subspaces TC, T ∈ T0, are mutually orthogonal (in general this is true by
Lemma 2) and the corresponding subspace for the hybrid code is CT0 = ⊕T ∈T0TC.

In Sections 5 and 6 we will give further examples of the general hybrid code construction
and discuss them in detail. We next we turn to an analysis of what are the possible errors
that a given hybrid stabilizer code can protect against.

4 Error Correction Theorem
The code construction above thus defines codes C = C(S,G0,L0, T0), determined by, re-
spectively, choices of stabilizer subgroup, gauge and logical operators, and subset of coset
representatives. We shall characterize what sets of Pauli errors are correctable for a given
code, and in doing so, we establish a generalization of the fundamental theorems of [25, 26]
and [61] to this setting.

We shall first recall the basic notions and relevant results from OAQEC [9, 10], and then
specify to the code framework formulated above. The starting point is the basic definition of
OAQEC codes, which is most conveniently introduced in the Heisenberg picture.

Definition 1. An algebra A ⊆ B(H) of operators on H is correctable for an error model E if
there exists a channel R such that A is conserved by R ◦ E on states in QH where Q is the
unit projection of A; that is,

Q(R ◦ E)†(X)Q = X ∀X ∈ A. (3)

Given the unitary equivalence form for an algebra A ∼= ⊕i(Imi ⊗Mni), the unit element of
A is the projection Q in the algebra corresponding under the equivalence to ⊕iImi ⊗Ini . There
is a more general notion of OAQEC code considered in [9,10], wherein the unit element of A is
replaced by an arbitrary projection on the Hilbert space, and one can then consider correction
with respect to states supported on the corresponding range subspace of the projection. But
the notion of correctable we consider here allows us to unambiguously discuss ‘correction of
an algebra’, and is sufficient for our goal to extend the stabilizer formalism to this setting.
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The corresponding Schrödinger picture description is given as follows: A is correctable for
E if and only if there exists a channel R such that for any density operator ρ =

∑
i αi(τi ⊗ ρi)

with τi ∈ T (Ai), ρi ∈ T (Bi), and nonnegative scalars
∑

i αi = 1, there are density operators
τ ′

i ∈ T (Ai) for which

(R ◦ E)(ρ) =
∑

i

αiR
(
E

(
τi ⊗ ρi

))
=

∑
i

αi(τ ′
i ⊗ ρi). (4)

From this perspective, one can see that each of the subsystems Bi (with dimBi > 1) can be
used individually to encode quantum information that can be recovered. Moreover, an extra
feature of such a code is that an arbitrary mixture of encoded states, one for each subsystem,
can be simultaneously corrected by the same correction operation.

To generalize the main error correction theorem from previous stabilizer formalism settings,
we need a description in terms of error operators. The following result from [9, 10] gives such
a description, and below we formulate it in a style that we will use.

Theorem 1. Let A be a subalgebra of B(H) with unit projection Q. The following statements
are equivalent:

1. A is correctable for E(ρ) =
∑

k EkρE
†
k.

2. [QE†
kElQ,X] = 0 for all X ∈ A and all k, l.

It follows from Theorem 1, using the structure of finite dimensional algebras and their
commutants discussed above, that there is a correction operation R for which Eq. (4) is
satisfied if and only if for all k, l there are operators Xkli ∈ B(Ai) such that

QE†
kElQ =

∑
i

Xkli ⊗ IBi , (5)

where here the operators Xkli ⊗ IBi are understood to act on Ai ⊗Bi, and so the sum (when
there is a sum with more than one term) is thus an orthogonal direct sum of operators. The
case of a sum with a single term captures the well-known Knill-Laflamme error correction
conditions [42] when dimA1 = 1 (and so Xkl1 are complex scalars), and the OQEC testable
conditions [44,45] when dimA1 > 1.

Now let us specify to our setting. Further notation will be introduced in the proof below,
but we will note here that the algebras associated with the code constructions of the previous
section in their unitary equivalence form satisfy mi = mj and ni = nj for any two pair of
indices i, j. Moreover, by saying a code C = C(S,G0,L0, T0) is correctable, we mean the
algebra determined by it, as in the previous section and the discussion above, is OAQEC-
correctable.

Theorem 2. A code C = C(S,G0,L0, T0), with T0 = {gi}i, is correctable for a set of error
operators {Ek} ⊆ Pn if and only if for all k, l,

E†
kEl /∈

(
N (S) \ G

) ⋃ ( ⋃
i ̸=j

giN (S)g−1
j

)
. (6)

Proof. First note that for any g ∈ Pn, we have equality of the following operator sets:

N (S) \ G = g
(
N (S) \ G

)
g−1,
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which follows from basic group properties, the anti-commutation relations, and the fact that
G (and N (S)) includes the scalar operators. Next let us establish some notation. Recall that
P is the projection onto C, and for each i, let Pi = giPg

−1
i . This is the projection onto

the subspace giC := Ai ⊗Bi, which has subsystem tensor structure Ai, Bi induced by that of
C = A1 ⊗B1 and the unitary action of gi. So gi(|a⟩|b⟩) will define an orthonormal basis for the
new subspace from a basis |a⟩|b⟩ for C, which gives a corresponding identification of operators
in gi(B(A) ⊗ B(B))g−1

i with operators in B(Ai) ⊗ B(Bi); in particular, for any XA ∈ B(A)
this maps XA ⊗ IB to XAi ⊗ IBi for some XAi ∈ B(Ai).

By Lemma 2, the projections Pi project onto mutually orthogonal subspaces and hence we
define the projection Q =

∑
i Pi to be the (orthogonal direct) sum of the Pi, and with P1 = P .

The algebra in the background to be corrected and defined by the code is A = ⊕i(IAi ⊗B(Bi)),
which has Q as its unit projection, and the error correction conditions we make use of are
those of Eq. (5).

Throughout the proof we will let E := E†
kEl for a fixed pair k, l. We shall first prove the

‘if’ direction of the result. If E is not in any of the sets in Eq. (6), then in particular for each
i, we have E /∈ N (S) \ G = gi(N (S) \ G)g−1

i and so g−1
i Egi /∈ N (S) \ G. Thus by the OQEC

special case of the theorem above (or the Knill-Laflamme theorem when G = ∅), we have for
some operator XA ∈ B(A),

P (g−1
i Egi)P = XA ⊗ IB,

and hence for some operator XAi ∈ B(Ai),

PiEPi = gi(Pg−1
i EgiP )g−1

i = gi(XA ⊗ IB)g−1
i = XAi ⊗ IBi ,

with the first and last equalities following from the definition of Pi and the induced tensor
structure on giC from the decomposition C = A⊗B and the action of gi discussed above.

For the off-diagonal blocks, choose i ̸= j and assume E /∈ giN (S)g−1
j . Then we have

g−1
i Egj /∈ N (S), and we claim that Pg−1

i EgjP = 0 through what has become a standard
stabilizer formalism type argument. Indeed, in general if F /∈ N (S) = Z(S), then there is
some g ∈ S and z ∈ C with |z| = 1 and z ̸= 1 such that Fg = zgF . (As above, necessarily
z = −1 here, but we keep the argument general as we will extend the result to qudits below.)
Also, as g ∈ S and from the construction of C, we have P = gP = Pg (the latter following
from spectral theory since P is a polynomial in the elements of the abelian subgroup S).
Hence,

PFP = PFgP = P (zgF )P = z(PgFP ) = zPFP,

and so PFP = 0. Thus we have, for all i ̸= j,

PiEPj = gi(Pg−1
i EgjP )g−1

j = 0.

It follows then that QEQ =
∑

i,j PiEPj =
∑

iXAi ⊗ IBi , and hence each of the operators
QE†

kElQ satisfy the form given in Eq. (5). Thus, C is correctable for the set of error operators
{Ek}.

Conversely, for the ‘only if’ direction of the proof, suppose E satisfies QEQ =
∑

iXAi ⊗IBi

for some operators XAi ∈ B(Ai). Then for a fixed i, using this form for QEQ and that
PiQ = Pi = QPi, we have

XAi ⊗ IBi = PiQEQPi = PiEPi = gi(Pg−1
i EgiP )g−1

i .
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Hence for some XA1 ∈ B(A1), we have

Pg−1
i EgiP = g−1

i (XAi ⊗ IBi)gi = XA1 ⊗ IB1 .

It follows from OQEC (and QEC when G = ∅) that g−1
i Egi /∈ N (S)\G, and so E /∈ gi(N (S)\

G)g−1
i = N (S) \ G.
Finally, fix a pair i ̸= j, and observe from the OAQEC correctable condition in Eq. (5)

that the i, j off-diagonal block in the block diagonal decomposition determined by Q must be
zero; that is, PiEPj = 0. Thus we have,

giPg
−1
i EgjPg

−1
j = PiEPj = 0,

and since gi, gj is unitary, in fact we have Pg−1
i EgjP = 0. We want to conclude that g−1

i Egj /∈
N (S). Suppose instead we had F := g−1

i Egj ∈ N (S) = Z(S). Then FP = PF , from spectral
theory and the construction of P , and so C, the range subspace of P , is a reducing subspace
for F . Hence, P⊥FP = P⊥PF = 0, and so FP = P⊥FP + PFP = 0. But F is a unitary
operator, and so F restricted to C must be a norm-preserving map. This contradicts the fact
that FP = 0, and thus we must have g−1

i Egj /∈ N (S) as required, and this completes the
proof.

Remark. Conceptually, not belonging to the first set of the theorem statement ensures the
individual codes (which are OQEC subsystem codes when the subspace has a tensor decom-
position) are correctable, and with the needed orthogonality for the multiple codes given by
the choice of coset representatives. Not belonging to the operator sets in the second union
encapsulates the joint hybrid classical-quantum correctable code conditions in the OAQEC
framework. A larger subset of coset representatives corresponds to more sectors and a larger
hybrid code. In particular, more sectors means generally larger operator sets in the theorem
statements, which in turn makes it more difficult for errors to not belong to the sets, and
hence smaller sets of correctable errors. These notions will be explored more in the examples
below.

Regarding correctable sets of errors for the class of codes discussed in Section 3.4, Theo-
rem 2 gives a full characterization of the possible correctable errors for any given coset subset
T0. As a simple example, consider the case with the two operators T0 = {I,X1} from the
transversal T above. Here there are two operator sets that the error operator products E†

kEl

cannot belong to: (i) N (S) \ G; and (ii) X1N (S) = N (S)X1. From the normalizer and gauge
structures above, the first set consists of all elements in the normalizer with scalar multiples
of the identity on qubits s + 1 through to r + s. This set encapsulates the (quantum) error
correction conditions for the two quantum codes defined by this code. The second set is simply
all elements of the normalizer multiplied by X1, and it corresponds to the cross terms that
govern whether the code is hybrid correctable.

Further, an example of a set of correctable errors for this code, one could take a subset
of {I,X2, . . . , Xs}. Any pairwise products of these operators do not belong to the two sets
above and hence are correctable. (In fact, in general, any set of coset representatives not used
to define the hybrid code will be correctable errors.) Sets of errors are not correctable by
the theorem if any product of two of them belongs to either of the two sets. Thus, any error
operator product of the form X1N , with N ∈ N (S), would disrupt any hybrid correction for
the error model, whereas any product belonging to the first set would prevent the individual
quantum codes from being corrected.
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5 Further Examples and Applications
5.1 Hybrid Subspace Codes
When the gauge group is abelian (G0 = ∅), the codes constructed above have no subsystem
structure and are subspaces. Further, when additionally the coset representative set is non-
trivial ({I} ⊊ T0), the codes generated by the formalism are ‘hybrid subspace codes’. From
the OAQEC perspective, hybrid subspace codes are those associated with algebras A that are
unitarily equivalent to a direct sum of full matrix algebras; i.e., of the form A ∼= ⊕M

k=1Mnk

for some positive integers nk (and |T0| = M in our notation above). These are precisely the
algebras with an abelian commutant, A′ ∼= ⊕M

k=1CInk
. Each summand thus can be used to

encode quantum information (when nk > 1) as a traditional quantum (subspace) code, and
overall the collection of codes defined by A make up a hybrid subspace code that can be
corrected for error sets given by Theorem 2.

The testable conditions of Eq. (5) take on a particularly transparent form in this case. As
before, let Q =

∑
i Pi be the unit projection of A, with Pi the projection onto the ith matrix

block of A. Then the code is correctable for a set of error operators {Ek} if and only if there
are complex scalars λ(i)

kl such that for all k, l,

QE†
kElQ =

∑
i

λ
(i)
kl Pi. (7)

These conditions can be cast into vector state form (as discussed in [51]) as follows: Given
1 ≤ i ≤ M , choose orthonormal states {|ψi,j⟩}ni

j=1 such that Pi =
∑

j |ψij⟩⟨ψij |. We then have

⟨ψi1j1 |E†
kEl|ψi2j2⟩ = ⟨ψi1j1 |QE†

kElQ|ψi2j2⟩ =
∑

i

λ
(i)
kl ⟨ψi1j1 |Pi|ψi2j2⟩ = λ

(i1)
kl δi1i2δj1j2 .

One can reverse this argument to observe that Eq. (7) is equivalent to the orthogonality
conditions

⟨ψi1j1 |E†
kEl|ψi2j2⟩ = λ

(i1)
kl δi1i2δj1j2 , (8)

for any choice of orthonormal basis states |ψij⟩ for the range subspaces of the Pi.
Recently, a distinguished special case of hybrid subspace codes was considered in [29]. In

OAQEC language (with notation used in [29]), the algebras of focus there are of the form
A ∼= ⊕M

ν=1MK ; i.e., the direct sum of M copies of K × K complex matrices. The full code
subspace is thus an orthogonal direct sum ⊕M

ν=1C
(ν) of K-dimensional subspaces, and there are

unitary ‘translation’ operators that connect the individual code subspaces, C(ν) = T (ν)C(1).
Interestingly, the orthogonality conditions of Eq. (8) were independently discovered in [29]
for this subclass of hybrid subspace codes (see the recent work [51] for further discussions
and results on connections between the two perspectives). The codes constructed in [29] are
captured by the stabilizer formalism presented above; in particular, they are special cases of
hybrid codes with (in our notation above) trivial gauge generator group (G0 = ∅) and non-
trivial coset representatives ({I} ⊊ T0). As an illustration, let us consider one of the codes
presented there.

The following describes a single qubit hybrid code on 7-qubit space presented as one of
the examples in [29]. The first six rows are the stabilizer subgroup generators, the next two
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are logical operators on the base code space C(1), and the final row is a translation operator
which we shall denote by T .

S1 X I I Z Y Y Z
S2 Z I I I I I X
S3 I X I X Z I I
S4 I Z I Z I X X
S5 I I X X I Z I
S6 I I Z Z X I X

X I I I X Z Z X
Z I I I Z X X I

T I I I I X Y Y

In our notation, the parameters for this example are n = 7, s = 6, and k = 1 (with
r = 0 as there is no subsystem structure here). The choice of coset representatives given
by the table is T0 = {I, T}; and indeed, one can see that T does not commute with Sk

for k = 2, 3, 5, 6, so TN (S) ̸= N (S) is a different coset than that defined by the identity
operator. Observe that there are 2s = 64 cosets for N (S) in this case, and so there are several
other potential coset representative subset choices. As a simple example, we could choose
X1 = XIIIIII, which does not commute with S2, and so defines a different coset than the
identity operator and that defined by T (as TX1 /∈ N (S) since it does not commute with S3);
that is, N (S) ̸= X1N (S) ̸= TN (S).

Additionally, Theorem 2 gives a characterization of sets of possible Pauli errors that can
be corrected by such codes. Correctable errors can be viewed through this lens; for instance,
while the operator X1 can act as a new coset representative for this hybrid code, it is also a
correctable error for the code, as can be seen through an application of Theorem 2 and the
group theoretic conditions displayed there. The relevant operator sets given by the theorem
are (recalling that there are no noncommutative gauge operators here): (i) N (S)\⟨S, iI⟩; and,
(ii) TN (S) = N (S)T . The fact that X1 does not belong to either of these sets shows the set
{I,X1} is a correctable set of errors for the code.

Note that Theorem 2 also tells us what sets of errors are not correctable for this hybrid code.
As another simple example, consider the error set {I, T}. Observe that TI = T ∈ TN (S),
and so the error set fails the hybrid correctable condition. (In fact, as noted in the previous
example, the same is true for any error set consisting of transversal operators.) This error set
is interesting in the sense that, while it does not satisfy the hybrid correctable condition, each
of the individual quantum subspace codes are correctable for the error set, which follows since
T /∈ N (S) ⊇ N (S) \ ⟨S, iI⟩.

5.2 Hybrid Bacon-Shor Code
The (two-dimensional) Bacon-Shor code [8,50] is a subsystem code defined on an ℓ× ℓ grid of
qubits, with gauge group G generated by G0 and iI, where

G0 = {X(i,j)X(i,j+1) : 1 ≤ i ≤ ℓ, 1 ≤ j < ℓ} ∪ {Z(i,j)Z(i+1,j) : 1 ≤ i < ℓ, 1 ≤ j ≤ ℓ}. (9)

We use the notation X(i,j) to denote a Pauli X operator acting on the qubit at coordinate
(i, j) (and analogously for Pauli Z operators). See Fig. 2 for a visual depiction of the operators
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Fig. 2: Hybrid Bacon-Shor code. Qubits are indicated by black circles, XX gauge generators by red lines
and ZZ gauge generators by blue lines. (a) Example coset representative whose error syndrome is 11 . . . 1.
(b) Example coset representatives whose error syndromes generate the Hamming code (each colour denotes a
different representative).

in G0. The stabilizer group S is generated by the set{
X(∗,j)X(∗,j+1), Z(i,∗)Z(i+1,∗) : 1 ≤ i, j < ℓ− 1

}
, (10)

where X(∗,j) = X(1,j)X(2,j) . . . X(ℓ,j). The logical group L is generated by L0 and iI, where

L0 = {X(∗,1), Z(1,∗)}, (11)

and so the code distance is d = ℓ.
Let us consider some example choices of subsets of coset representatives. First, let T0 be

generated by
∏⌊ℓ/2⌋

i=1 X(2i,1) and
∏⌊ℓ/2⌋

j=1 Z(1,2j−1) (see Fig. 2a for the ℓ = 8 case). With this
choice of T0 we get a 2-bit hybrid Bacon-Shor code. We can equivalently index our subset
of coset representatives by their error syndromes. Consider the X-type stabilizer generators
given in Eq. (10). We write the error syndrome as a binary string, where the j’th entry is 0
if the stabilizer X(∗,j)X(∗,j+1) is satisfied, and 1 if it is unsatisfied. Then the error syndromes
corresponding to the coset representatives I and

∏⌊ℓ/2⌋
j=1 Z(1,2j) are respectively 00 . . . 0 and

11 . . . 1; i.e. the codewords of the (ℓ-1)-bit repetition code. In general, let Cc be an (ℓ-1)-
bit linear code with basis {vi}. We are free to choose Z-type generators gi ∈ T0 such that
σ(gi) = vi, where σ(gi) denotes the (binary) error syndrome. Fig. 2b illustrates the case when
Cc is the [7, 4, 3] Hamming code. If we make the same choice for the X-type generators of T0
we get an 8-bit hybrid Bacon-Shor code. The following theorems characterize the distance of
our hybrid Bacon-Shor codes.

Theorem 3. Let C = C(S,G0,L0, T0 = {I}) be an [[n, k, d]] stabilizer subsystem code. Fix a
generating set {Sj : 1 ≤ j ≤ s} for S. Suppose that none of the single-qubit error operators
anti-commute with more than m of the Sj . Then for any [s, kc, dc] linear code Cc, there exists
a hybrid subsystem code C ′ = C(S,G0,L0, T ′

0 ) encoding k logical qubits into n qubits with
|T ′

0 | = 2kc and distance d′ ≥ min(d, ⌈dc/m⌉).

Proof. Let {vi} be a basis for the codewords of Cc. For each vi, we construct a corresponding
coset representative hi such that σ(hi) = vi, giving T ′

0 = ⟨hi : 1 ≤ i ≤ kc⟩. This can be done
for example using Gaussian elimination. Now we apply Theorem 2 to C ′ = C(S,G0,L0, T ′

0 ).
First note that N (S) \ G contains operators of weight at least d. To bound the weight of
operators in

⋃
i ̸=j giN (S)g−1

j , we observe that there is a bijection between the gi ∈ T ′
0 and
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the codewords of Cc. As operators in N (S) have trivial syndrome, every operator of the
form giN (S)g−1

j has syndrome equal to a codeword u = ui + uj of Cc, where ui and uj

are the codewords of Cc corresponding to gi and gj , respectively. Furthermore, u ̸= 0 as
i ̸= j. Because any single-qubit error anti-commutes with at most m stabilizer generators,
any operator with syndrome equal to u must have weight at least ⌈dc/m⌉.

A CSS code [18, 66] is a stabilizer code whose stabilizer group can be generated by two
sets SX and SZ consisting of exclusively of X-type and Z-type operators, respectively. In this
case, we have another option for constructing hybrid codes.

Corollary 1. Let C = C(S,G0,L0, T0 = {I}) be an [[n, k, d]] CSS subsystem code. Fix
X-type and Z-type generating sets, SX and SZ , for S, where |SX | = sX and |SZ | = sZ .
Suppose that none of the single-qubit error operators anti-commute with more than mX

(mZ) operators in SX (SZ). Then for any pair of linear codes CX and CZ with parameters
[sX , kX , dX ] and [sZ , kZ , dZ ], there exists a hybrid subsystem code C ′ = C(S,G0,L0, T ′

0 )
encoding k logical qubits into n qubits with |T ′

0 | = 2kX+kZ and distance d′ ≥ min(d, dXZ),
where dXZ = min(⌈dX/mX⌉, ⌈dZ/mZ⌉).

Proof. Let {vi} and {wj} be bases for the codewords of CX and CZ , respectively. We construct
coset representatives hi and fj , such that σ(hi) = (vi, 0) and σ(fj) = (0, wj), giving T ′

0 =
⟨hi, fj : 1 ≤ i ≤ kX , 1 ≤ j ≤ kZ⟩. Now we apply Theorem 2 to C ′ = C(S,G0,L0, T ′

0 ). The
only difference with the proof of Theorem 3 is that every operator in giN (S)g−1

j has syndrome
equal to (u, t), where u and t are codewords of CX and CZ , respectively. In this case we can
have either u = 0 or t = 0, but not both. Because any single-qubit error anti-commutes with
at most mX X-type stabilizer generators and mZ Z-type stabilizer generators, any operator
with syndrome equal to (u, t) must have weight at least min(⌈dX/mX⌉, ⌈dZ/mZ⌉).

We are now equipped to discuss the distance of our hybrid Bacon-Shor code examples. We
denote the parameters of a hybrid code by [[n, k : m, d]], where n is the number of physical
qubits, k is the number of encoded qubits, m is the number of encoded bits, and d is the code
distance1. For Bacon-Shor codes with the generating set of the stabilizer group given in (10),
we have sX = sZ = ℓ− 1 and mX = mZ = 2. Applying Corollary 1, we find that any hybrid
code built from an [[ℓ2, 1, ℓ]] Bacon-Shor code using our construction has distance at most
⌈(ℓ−1)/2⌉. We can saturate this bound by choosing CX and CZ to both be the [ℓ−1, 1, ℓ−1]
repetition code, obtaining a hybrid Bacon-Shor code with parameters [[ℓ2, 1 : 2, ⌈(ℓ − 1)/2⌉]].
This is exactly the case where T ′

0 = ⟨
∏⌊ℓ/2⌋

i=1 X(2i,1),
∏⌊ℓ/2⌋

j=1 Z(1,2j−1)⟩. For the ℓ = 8 case
with both CX and CZ equal to the [7, 4, 3] Hamming code, we obtain a hybrid Bacon-Shor
code with parameters [[64, 1 : 8, 2]]. In [54], the authors provide an alternative construction
of hybrid codes starting from Bacon-Shor codes. They obtain hybrid codes with parameters
[[ℓ2, 1 : (ℓ−1)2, 2]]. In contrast, our hybrid Bacon-Shor codes can have at most 2(ℓ−1) encoded
bits, but they can have distance up to ⌈(ℓ− 1)/2⌉.

In each of the previous examples, the distance of the hybrid Bacon-Shor code is lower than
the distance of the initial Bacon-Shor code. This need not be the case for all initial codes,
e.g., consider the [[ℓ2, 2, ℓ]] toric code with the canonical stabilizer generators [41]. Here we

1We note that hybrid codes of this form are a subset of our general construction, corresponding to the case
where |T0| = 2m.
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have s = ℓ2 − 2 and m = 4. If we choose a linear code with parameters [s, αs, βs] where
β ≥ 4ℓ/(ℓ2 − 2) then, by Theorem 3, we can construct a hybrid toric code with parameters
[[ℓ2, 2 : α(ℓ2 − 2), ℓ]].

6 Extension to Qudits
In this section we discuss the extension of the stabilizer formalism presented above to the case
of qudits; that is, what happens when one replaces the base qubit space C2 with Cd for fixed
positive integer d > 2. We begin by recalling the basic set up for the standard qudit stabilizer
formalism, as described in several other places (see for instance [24,27,52]).

6.1 The n-Qudit Pauli Group
Let {|0⟩, . . . , |d−1⟩} be a fixed basis for Cd, and given a fixed positive integer n ≥ 1 consider the
corresponding basis for (Cd)⊗n written as {|i1 · · · in⟩ = |i1⟩ ⊗ . . .⊗ |in⟩ : 0 ≤ ij ≤ d− 1, 1 ≤
j ≤ n}. Further let ω = e2πi/d be a primitive dth root of unity, and define the following
generalized Pauli operators:

X =
d−1∑
k=0

|k + 1⟩⟨k| and Z =
d−1∑
k=0

ωk|k⟩⟨k|,

where in the definition of X we use modulo d arithmetic with |d⟩ ≡ |0⟩. Our choice of
generalized Pauli errors is a common one, but there are other choices (for instance error
operators related to the finite field with d elements are often used when d is a prime power).

Some of the relevant properties of the so-called ‘shift’ (X) and ‘clock’ (Z) operators include:
Xd = I = Zd and the anti-commutation relation

ZX = ωXZ.

Note that X and Z are no longer self-adjoint for d > 2, but they are unitary with X−1 =
Xd−1 = X† (and the same for Z). The single qudit Pauli group is the unitary subgroup of
U(Cd) given by

Pd,1 = ⟨
√
wI,X,Z⟩,

where we use the choice of complex square root
√
ω = eπi/d. So the generic element of Pd,1

can be written in the form ωa/2XbZc for some a, b, c ∈ N.
Observe that for d = 2 we have

√
ω = i, and so this definition agrees with the qubit case.

But one may ask, why include the phase factor
√
ω as a generator, instead of ω for instance?

The reason is that including it allows for many more eigenvalue-1 operators, which is crucial
in the context of the stabilizer formalism. Indeed, one can show using standard linear algebra
tools that for any operator XaZb, with a, b ∈ N, there is a U ∈ Pd,1 that is proportional to
the operator such that U has 1 as an eigenvalue.

As in the single qubit case, for arbitrary n ≥ 1, we define the n-qudit Pauli group Pd,n

to be the subgroup of U(N), with N = dn, generated by n-tensors of the single qudit Pauli
operators X, Z, and

√
ωI; that is, the unitary group generated by Z1 = Z ⊗ (I⊗(n−1)),
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Z2 = I ⊗Z ⊗ (I⊗(n−2)), etc. Hence it follows, again applying the anti-commutation relations,
that a generic element of Pd,n belongs to the set:{

(
√
ω)cXa1

1 Zb1
1 · · ·Xan

n Zbn
n : 0 ≤ c ≤ 2d− 1, 0 ≤ aj , bj ≤ d− 1

}
.

Observe that the cardinality of Pd,n is: 2d× dn × dn = 2d2n+1.
For stabilizer formalism related calculations, it is useful to know that every element of Pd,n

that is not a multiple of the identity operator has trace equal to 0. Indeed, one can use the
anti-commutation relation and cyclic property of the trace to show that Tr(XaZb) ̸= 0 if and
only if XaZb is a multiple of the identity. Moreover, given an abelian subgroup S of Pd,n,
there is a well-known and useful formula for the orthogonal projection PS onto the stabilizer
subspace defined by S given by PS = 1

|S|
∑

S∈S S.

6.2 Hybrid Qudit Stabilizer Formalism
The OAQEC stabilizer formalism presented above for the qubit base space, extends fully to
the case of qudits, including the main error correction theorem. Here we briefly point out the
main pieces, following along the presentation above.

• The starting point is again an abelian subgroup S of Pd,n, and now we require that
S contains no scalar operators other than the identity operator I (which is equivalent
to −I /∈ S in the d = 2 case). Even though the generating operators are no longer
self-adjoint, it is still the case that the normalizer and centralizer coincide; that is,
N (S) = Z(S). (This follows because elements of Pd,n either commute or commute
up to a power of ω, and I is the only scalar operator in S.) The stabilizer subspace
C = C(S) = span{|ψ⟩ : g|ψ⟩ = |ψ⟩ ∀g ∈ S} is defined in the same way.

• The r-qudit gauge group and k-qudit logical group are analogously defined, with
√
ωI

replacing iI. Lemma 1 holds, with Cd replacing C2 in the Hilbert space and subsystem
decompositions.

• Further, regarding the normalizer cosets and hybrid code sectors, Lemma 2 still holds,
with the replacement of Pd,n and ωI in the statement (with the same basic ingredients
in the proof, as noted just above). Thus, given a subset of a coset transversal for N (S)
inside Pd,n, we will have an associated hybrid code C = C(S,G0,L0, T0) with code sectors
as in the qubit case, and subsystem structure defined by the gauge group (when it is
non-trivial), which is carried to the different code spaces by the transversal operators.

In terms of the error correction conditions, first note that none of the OAQEC framework
or results are qubit dependent, they are based on the general theory of operator algebras on
Hilbert space. This, together with using analogous properties of the generalized Pauli group,
allows us to generalize Theorem 2, essentially with the same proof. We state the result here
for completeness.

Theorem 4. A code C = C(S,G0,L0, T0), with T0 = {gi}i, is correctable for a set of error
operators {Ek} ⊆ Pd,n if and only if for all k, l,

E†
kEl /∈

(
N (S) \ G

) ⋃ ( ⋃
i ̸=j

giN (S)g−1
j

)
. (12)
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A pair of examples are discussed below.

Example 1. The motivating example presented above generalizes straightforwardly as fol-
lows.

• Let s ≤ n be a fixed positive integer and let S = ⟨Z1, . . . , Zs⟩ ⊆ Pd,n. Then

C = C(S) = span
{
| 0 · · · 0︸ ︷︷ ︸

s

i1 · · · in−s⟩ : 0 ≤ ij ≤ d− 1
}
,

and dimC = dn−s so that C can encode n− s qudits.

• Let r be a fixed integer with 0 ≤ r ≤ n− s, and let G0 be the set of r pairs of generating
Pauli operators acting on qudits s+ 1 to r + s:

G0 =
{
Xi, Zi : s+ 1 ≤ i ≤ r + s

}
.

Then the gauge group G is generated by S,
√
ωI, and G0, and includes the full subgroup

of operators in Pd,n acting non-trivially on the r gauge qudits.

• Let k = n− s− r, and let L0 be the set of k pairs of generating Pauli operators acting
on qudits r + s+ 1 to n:

L0 =
{
Xi, Zi : r + s+ 1 ≤ i ≤ n

}
.

Then the logical group L is the group generated by L0 and
√
ωI, and includes the full

subgroup of operators in Pd,n acting non-trivially on the k logical qudits.

• The normalizer N (S) = Z(S) for S inside Pn,d is given by:

N (S) =
{
ωc/2 · Zb1

1 · · ·Zbs
s ·Xas+1

s+1 Z
bs+1
s+1 · · ·Xan

n Zbn
n : 0 ≤ c ≤ 2d−1, 0 ≤ aj , bj ≤ d−1

}
.

The size of the normalizer here is: |N (S)| = 2d × ds × (d2)n−s = 2d2n−s+1. Hence the
number of normalizer cosets is given by,

|Pn,d|/|N (S)| = ds.

As in the qubit case, each operator Xj , 1 ≤ j ≤ s, does not belong to N (S), and nor does any
product XjX

−1
j′ of operators from this set. So a coset transversal of maximal size is given by

the ds-element set:
T =

{
Xa1

1 · · ·Xas
s : 0 ≤ aj ≤ d− 1

}
.

Thus, given a (non-trivial) subset of coset representatives T0 ⊆ T , the subspaces TC,
T ∈ T0, are mutually orthogonal and the corresponding subspace for the hybrid code is
CT0 = ⊕T ∈T0TC, with C (in the case of a non-trivial gauge group) having subsystem structure
that is carried to the subspaces TC by the transversal operators. A full characterization of the
possible correctable errors for any given coset subset T0 is given by Theorem 4. The simple
example of a two element transversal set and set of correctable errors discussed above in the
qubit case, carries through analogously.
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As another example, we give a hybrid version of a (subspace) code presented in the seminal
work [28]. In contrast to the qubit (d = 2) case, this example shows how for larger d, even a
single mode (n = 1) can generate interesting hybrid code structures.

Example 2. Let d = 18 and n = 1. A single qubit subspace code, which can be viewed as a
‘pre-GKP code’, is given in [28] as the stabilizer subspace C generated by the (abelian) group
S = ⟨X6, Z6⟩, which one can readily calculate is spanned by the two states:

|0⟩ = 1√
3

(|0⟩ + |6⟩ + |12⟩) and |1⟩ = 1√
3

(|3⟩ + |9⟩ + |15⟩).

(Note that for general d, the dimension of C need not be a power of d, as this example shows.)
The commutation relations as it relates to these two operators are given, for any positive
integers a, b, as follows:

(XaZb)X6 = ω6bX6(XaZb)
(XaZb)Z6 = ω6aZ6(XaZb).

In particular, XaZb commutes with S if and only if a and b are both divisible by 3. Thus, in
this case we have

N (S) = Z(S) =
{
ωc/2XaZb

∣∣ 0 ≤ c ≤ 35, a, b ∈ {0, 3, 6, 9, 12, 15}
}
.

Hence, |N (S)| = 36 × 6 × 6, and from |P18,1| = 36 × 18 × 18 it follows that the number of
cosets is given by: |P18,1|/|N (S)| = 9.

Returning to the original code construction, the logical operators were identified as X =
X3 and Z = Z3. Moreover, as noted in [28], the 9 operators belonging to the set T =
{XaZb : |a|, |b| ≤ 1} form a correctable error set for the code (in the classic Knill-Laflamme
sense, which remember is captured as a special case of OAQEC), as one can show they map C
to 9 mutually orthogonal subspaces. This set of operators is also of interest here, as T forms
a coset transversal for S. Indeed, one can easily verify using the anti-commutation relations
that any two elements from this set define different cosets for S inside P18,1 (as any product
T−1

1 T2 /∈ N (S) when T1, T2 ∈ T ).
We can thus consider hybrid versions of this code, by taking a subset T0 of elements

from T and their corresponding code sectors, and then Theorem 4 can tell us what are the
correctable error sets for the code. Consider for example the set T0 = {I,X,X−1} ⊆ T . Here
the gauge group is generated by S and

√
ωI, and for this particular T0 the first set in the

union of Eq. (12) is equal to:

N (S) \ G =
{
ωc/2XaZb

∣∣ 0 ≤ c ≤ 35, a, b ∈ {3, 9, 15}
}
,

which follows from elements commuting modulo a power of ω. The cross-term union of
Eq. (12) is defined by 6 sets, but due to repeats it collapses to the union of 4 sets given by⋃

a∈{−2,−1,1,2}X
aN (S), which one can check is equal to the set:{

ωc/2XaZb
∣∣ 0 ≤ c ≤ 35, a ∈ {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17}, b ∈ {0, 3, 6, 9, 12, 15}

}
.

Observe the first set is a subset of the second union, which is a consequence of T0 including I
and being inverse closed. Thus, by Theorem 4, the possible correctable errors for this code are
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precisely those operator sets E ⊆ P18,1 such that g−1
1 g2 does not belong to this union for any

choice of g1, g2 ∈ E . For example, one can easily check that the set E = {Z2b+1 : 0 ≤ b ≤ 8}
satisfies this condition and hence forms a correctable set of errors for the code.

Note that the hybrid code in this particular instance is 6-dimensional, as it is determined by
a qubit base code and the 3 code sectors defined by T0 = {I,X,X−1}; namely, the direct sum
CT0 = C ⊕XC ⊕X−1C. Thus, as we are in a 18-dimensional space, we can have a maximum
of 3 (non-degenerate) errors that can be correctable for this code. One might express concern
then, as the error set E includes 9 operators; however, there is no contradiction here, as these
operators include degeneracy on CT0 . Indeed, one can check directly that Z,Z3, Z5 map this
6-dimensional subspace to 3 mutually orthogonal subspaces. Moreover, Z6 acts as the identity
on C, and from the anti-commutation relations it acts as ω6I on XC and ω6I on X−1C. It
follows that ZCT0 = Z7CT0 = Z13CT0 , where this is equality of subspaces, and analogous
statements are true for the operator triples {Z3, Z9, Z15} and {Z5, Z11, Z17} on the other
two (orthogonal) 6-dimensional subspaces defined by Z3 and Z5. So the 9 operator error set
actually degenerates in this case to 3 different errors when one restricts to the hybrid code
space.

7 Concluding Remarks
This work opens up a number of potential new lines of investigation and the possible ex-
tension of some others. Further consideration of the hybrid Bacon-Shor subsystem codes
introduced here is warranted, given the wide applicability of the subsystem versions [8, 61]
in fault-tolerant quantum computing and beyond, and in particular with NISQ era quantum
computers likely to involve hybrid forms of classical and quantum information processing [62].
It would be interesting to explore possible implications of our stablizer formalism on other
classes of recently constructed hybrid codes; for instance, we expect new light can be shed
on codes constructed in works such as [29, 49, 53, 54], and one can ask if the formalism al-
lows for construction of more codes with useful properties following the approaches introduced
there. One could also consider generalizations of this formalism to a variety of other settings
of relevance in quantum information, such as other generalized Pauli error models, continuous
QEC and infinite-dimensional settings such as in [28], or entanglement-assisted error correc-
tion [16,37,43]. Regarding the connection with black hole theory, it may be possible to use our
OAQEC stabilizer formalism to construct toy models of AdS/CFT capturing the properties
missed by the celebrated tensor-network models of [32, 57], which are subsystem codes. We
plan to pursue these investigations elsewhere and we invite others to do so as well.
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