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With the onset of rapid climate change and the legacy of past forest management 
and fire suppression policies, the capacity for forested landscapes to maintain 
core functionality and processes is being challenged. As such, managers are 
tasked with increasing the pace and scale of management to mitigate negative 
impacts of future large disturbances and improve resilience and climate 
adaptation of large landscapes. Such efforts require consensus building, with 
partners and stakeholders to determine where to allocate scarce resources. 
We present a methodology to identify strategic (where to go) and tactical (what 
to do) priorities across large landscapes to assist in project level planning. The 
model integrates a spatial assessment of current ecosystem resource conditions 
and spatial outputs from a landscape succession and disturbance simulation 
model (LANDIS-II) to assess the potential to achieve desired conditions under 
climate change with ongoing disturbances. Based on the expected trajectory 
of landscape conditions over time, the model applies fuzzy logic modeling to 
provide quantitative support for four management strategies (Monitor, Protect, 
Adapt, and Transform) across the landscape. We provide an example application 
of these methods targeting sustainable carbon loads across a 970,000  ha 
landscape in the central Sierras in California. By including future landscape 
conditions in the model, decisions made at the stand-level are inherently tied 
to and influenced by larger landscape-level processes that are likely to have 
the greatest impact on future landscape dynamics. The methods outlined 
here are able to incorporate multiple metrics to capture the many resources 
targeted by management. Model outputs could also be  used as inputs into 
spatial optimization models to assess tradeoffs and synergies among treatment 
options and to aid in long-term planning.
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1 Introduction

1.1 Landscape management planning under climate 
change

The magnitude and severity of disturbance in recent decades has led to concerted efforts 
among land managers and policymakers to increase the pace and scale of restorative and 
adaptive management across much of western North America (wNA) (Kelly et al., 2019; 
Hessburg et  al., 2021; North et  al., 2021; Prichard et  al., 2021). Despite these efforts, 
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management substantially lags the levels needed to alter ecological 
trajectories and maintain ecosystem services in the long term (North 
et al., 2012, 2021). Identifying treatment priorities through a strategic 
planning process is generally not standard practice in affected regions 
but locally done to serve specific management needs. To address the 
extent of current and future impacts from natural disturbances, 
managers and policymakers are shifting to coordinated planning 
efforts that can collectively build resilient conditions across landscapes 
and jointly address multiple barriers to implementation (North et al., 
2012; McIver and Becker, 2021; Manley et al., This issue). Scaling 
treatment needs to regional landscapes requires transparent, flexible, 
and repeatable methods that can identify potential treatment areas 
where uncertainty in attaining and maintaining resilient conditions is 
low and anticipated benefits from treatments are high.

While many models can be used to programmatically optimize 
treatment options over space and time (e.g., ForSys, EMDS), most do 
not directly incorporate future landscape dynamics under climate 
change (cf. Abelson et al., 2021 for an aspatial example). As a result, 
management is often directed towards (1) areas that are most departed 
from desired conditions under the assumption that management can 
make the most impact where conditions are currently poorest (Reynolds 
and Hessburg, 2005) and (2) areas proximal to infrastructure and other 
highly valued resources given their potential vulnerability to disturbance 
(Ager et al., 2021) under the assumption that proximal management can 
sufficiently reduce risk. Under this latter framework, management 
emphasizes resistant or defensive strategies targeting social and 
economic vulnerabilities without regard to ecological processes and 
interdependencies operating across landscapes. Certainly, treatments 
can lessen the negative effects of wildfire in situ (Lyons-Tinsley and 
Peterson, 2012; Povak et al., 2020; Prichard et al., 2020) and provide 
other ecological benefits (Stephens et al., 2021), especially when applied 
near the wildland urban interface (WUI, Johnson and Kennedy, 2019). 
However, as climate change continues to challenge the capacity for 
systems to retain characteristic patterns, processes, and functions, 
defensive strategies may wane in their effectiveness unless coupled with 
adaptation and resilience strategies implemented over large scales 
(Millar et al., 2007; Schuurman et al., 2022). The ability for treatments to 
sustain desired conditions over time will depend on neighborhood 
effects of surrounding environmental conditions, future climatic 
variability, and natural disturbance processes. Focusing solely on the 
most departed areas without consideration of future stressors may result 
in significant and sustained investments to maintain conditions over 
time, whereas future-informed management may be directed elsewhere 
on the landscape where conditions are more aligned with future 
projected climatic conditions and disturbances.

Incorporating climate change influences on species, disturbances, 
and environmental conditions is now essential at all levels of decision-
making (MacDicken et  al., 2015). For example, as biophysical 
conditions shift under climate change, many forest species may soon 
inhabit environments that are declining in suitability for establishment, 
growth, development, and reproduction (Decker et al., 2021; Hill and 
Field, 2021). In California, Thorne et al. (2017) estimated that climate 
stress will impact as much as 45–56% of the State’s vegetated area by 
the end of the 21st-century.

However, planning efforts rarely include information about 
potential climate change impacts largely due to a lack of available 
methods (Prober et al., 2019). Several climate-informed management 
frameworks have been forwarded in recent years to anticipate ecological 

impacts from climate change. Most emphasize a need to rethink past 
management paradigms that have focused on stability and resistance in 
favor of acceptance of change and uncertainty (Millar et  al., 2007; 
Prober et al., 2019; Runyon et al., 2020; Peterson St-Laurent et al., 2021; 
Schuurman et al., 2022). For example, the RAD (Resist-Accept-Direct) 
framework provides managers with a decision space to allow change to 
unfold without interference (Accept), facilitate change to new desired 
system states (Direct), or resist (Resist) change to undesirable states 
through management intervention. Underlying this decision space is 
the notion that climate change will drive ecological transformations in 
which irreversible shifts in multiple ecosystem components will alter 
ecosystem functioning in the long term (Williams, 2022). However, the 
velocity and direction of change will vary across a region (Dobrowski 
et  al., 2013; Morelli et  al., 2016), and as such, the immediacy of 
management need will also vary spatially. Knowledge of where areas of 
relative stability are anticipated can help allocate management elsewhere 
on the landscape, and in turn, knowledge of where conditions will likely 
move towards more desirable conditions may indicate areas with high 
likelihood of near-term management success in facilitating the 
development of those conditions.

We developed a methodology to operationalize climate-informed 
management prioritizations (e.g., McWethy et al., 2019; Schuurman 
et  al., 2022) using fuzzy logic to jointly evaluate current resource 
conditions and future resource stability under climate change. The 
model provides a series of spatial maps depicting the level of support 
for each of four management strategies: Monitor, Adapt, Protect, and 
Transform. The PROMOTE (Provisioning Resilience Outcomes for 
Management Optimization Tool) model integrates an assessment of 
current conditions to evaluate the current state of the system with an 
assessment of future landscape conditions under climate change to 
evaluate the potential for system components to achieve and maintain 
desired conditions over time. Model outputs express strategic (i.e., 
where to manage to invoke the largest impact) and tactical (i.e., what 
is the intended goal of treatments) priorities across a landscape within 
a single decision support model. Model outputs can be subsequently 
subjected to ranking, prioritization, or optimization to identify 
treatment locations, quantify tradeoffs among management options, 
spatially cluster proposed treatments, and develop landscape 
management plans (e.g., see Ager et al., 2017; Pascual et al., 2022).

Here, we  introduce the PROMOTE model components and 
calculations, and apply it to a 1-million ha landscape located in the 
central Sierras, USA. PROMOTE can evaluate any number and type 
of data sources, and through the fuzzy logic analyses, these data can 
easily be combined at higher conceptual levels to evaluate multiple 
propositions regarding ecosystem conditions (e.g., forests are in a 
resilient condition; Manley et al., This issue). The model translates 
fundamental concepts of resilience and adaptive management into 
quantitative representations of the anticipated effectiveness of each 
management strategy in achieving targeted outcomes. Many 
definitions of resilience exist (Schmidt, 2021), and our modeling 
accommodates a broad interpretation of resilience concepts, which 
can be user-defined. Specifically, our model addresses the evaluation 
of resource conditions towards the goal of improving the long-term 
supply of ecosystems services under climate change. The model 
therefore assumes that improving the long-term condition of one or 
more resources (or processes) imparts a higher degree of resilience 
onto the landscape. Here, we provide an example application to a 
single ecosystem process: carbon sequestration.
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2 Methods and materials

Decision support systems (DSS) have a long history in forest 
management planning across the world (Reynolds et al., 2014; Marto 
et  al., 2019). Relevant to our context, DSSs are knowledge-based 
systems that are commonly used to evaluate ecosystem conditions and 
facilitate prioritizing spatial management treatments (Reynolds and 
Hessburg, 2005; Reynolds and Hessburg, 2014; Povak et al., 2022). 
PROMOTE uses fuzzy logic to evaluate current ecosystem resource 
conditions across a landscape as well as the future potential and 
stability of these resources under climate change and natural 
disturbances. Fuzzy logic membership functions (sensu, Miller and 
Saunders, 2002) are mathematical transformations used to evaluate 
logical propositions (e.g., forest density is resilient to climate change). 
These functions translate raw data values (i.e., large trees per hectare) 
to values ranging from −1 (no support for the proposition) to +1 (full 
support, Figure 1). Numerical outputs from fuzzy ramp functions 
represent a strength of evidence (SOE) in support of the proposition. 
In Figure 1, this membership function shows that increases in metric 
values (e.g., large tree density increases) leads to concomitant increases 
in the strength of support for the proposition (e.g., large trees are 
abundant). Choices related to the directionality and “shape” of the 
membership function (e.g., positive or negative linear, two-tailed, 
asymptotic, exponential, etc.), and the selection of cutoff values (i.e., 
x1 and x2 in Figure  1) can be  informed by the literature, expert 
opinion, or through inspection of the statistical distribution of the 
metric (e.g., 10th and 90th percentiles of the data distribution).

In the following section, we outline how we incorporated logic 
modeling conventions to integrate future landscape dynamics under 
climate change into the PROMOTE model.

2.1 PROMOTE management strategy 
scores

We first established a two-dimensional decision space represented 
as a Cartesian coordinate graph with both x- and y-axes ranging from 
−1 to +1. The x-axis represents the current state of the system, and the 

y-axis represents the potential to achieve and maintain a given desired 
state. The trajectory of conditions for a given location and their 
uncertainty are then interpreted from the coordinates of a given 
location on the graph.

Conceptually, the plotting region can be partitioned into four 
quadrants (Figure  2) each representing a management strategy 
(Table 1). Within the plotting region, the proximity of a point on the 
graph to a plot corner determines the level of support (i.e., strength-
of-evidence, SOE) for a given strategy (Figure 2). Accordingly, a set of 
four management strategy scores (i.e., Monitor, Protect, Adapt, and 
Transform) is calculated for a given landscape unit as the Euclidean 
distance from their coordinates to each of the four corners of the 
two-dimensional graph (Table 1).

Concretely, the possible distance from any point on the Cartesian 
graph to any corner of the graph (Dx) ranges from 0 (full support) to 
2.8284 (no support; Figure 2). The subscript “x” applies to the Monitor, 
Protect, Adapt, or Transform (M, P, A, or T) strategy under 
consideration. Distances are then rescaled to −1 to +1 using a linear 
transformation [Eq. (1)]. On this scale, sites whose coordinates 
correspond to a given corner (i.e., Dx = 0) would receive a SOE score 
Sx  = +1, which signifies full support for a given restoration strategy, 
while a site located on the opposite corner (i.e., Dx = 2.8284) would 
receive a Sx  = −1 for no support. Thus, each location on the landscape 
can be evaluated based on the SOE for each of the four management 
strategies outlined in Table 1.

FIGURE 1

Example fuzzy logic ramp function for a given Metric. Value x1 and x2 
represent target or desired conditions which are used to evaluate the 
metric and produce a strength of evidence score to determine the 
level of support for the proposition (e.g., that forest carbon levels for 
a given landscape unit exceed the 90th percentile for the landscape).

FIGURE 2

Cartesian graph representing the PROMOTE model scoring 
convention. The plotting region is segmented into four quadrant 
regions representing suggested management strategies based on 
the current and future conditions assessed for one or more sites 
within a landscape. The corners of the graph represent full support 
for each management strategy, and the distance from a given 
location in the plotting region to each corner is indicative of the level 
of support for a given management strategy. In this example, a site 
(black dot) scored 0.81 for current condition and 0.65 for future 
condition for a given Metric. The Euclidean distance (Dx) to each 
corner is determined and a linear transformation [Eq. (1)] is used to 
calculate a management score (Sx) for each restoration strategy 
where −1 represents no support for a given strategy and +1 indicates 
full support.
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TABLE 1 Description of the quantitative assessment of current and future conditions within the PROMOTE model.

Management strategy
Cartesian graph 
quadrant membership

Coordinates on Cartesian 
graph for full support

Description

Monitor Top right [X = +1, Y = +1]

Conditions are favorable now and in the future. These 

areas may require minimal near-term management to 

maintain resilient conditions

Protect Bottom right [X = +1, Y = −1]

Conditions are currently favorable but decay in the 

future under climate change and natural disturbance 

processes. To prevent the loss of key ecosystem benefits, 

treatments can be scheduled in and around these areas to 

maintain their functionality over time

Adapt Top left [X = −1, Y = +1]

Conditions are currently unfavorable but improve over 

time under climate change and natural disturbances. 

Given these areas are currently in need of restoration 

treatments and have a demonstrable ability to reach 

desired conditions, management could be prioritized for 

these areas to attain and maintain resilient conditions 

over time

Transform Bottom left [X = −1, Y = −1]

Conditions are currently unfavorable and continue to 

be so in the future. These areas have high management 

need but have less support for prioritizing management 

given they have not demonstrated an ability to achieve 

and maintain desired conditions over time

Descriptions of management strategies correspond to the four quadrants established within the PROMOTE decision space shown in Figures 2, 3.
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For example, if a given site within a landscape had a current 
condition score of 0.81 (x-axis) and future condition score of 0.65 (y-
axis) it would have DM  = 0.3982, DP = 1.6609, DA = 1.8435, 
DT  = 2.4492. Accordingly, applying Eq. (1) to these values would yield 
SM  = 0.718, SP  = −0.174, SA = −0.304, and ST  = −0.732 (Figure 2).

The Cartesian graph represents the level of support for each of the 
four management strategies (Figure 3). Scores can also be combined to 
emphasize different management objectives. For instance, managers 
may want to identify options for the protection of current resource 
conditions that are at risk of decline (e.g., Protect areas), as well as 
directing management to areas currently in poor condition but that 
exhibit the highest certainty of success (e.g., Adapt areas). A combined 
score representing where management opportunities are greatest for one 
or both strategies – hereafter referred to as the Management Opportunity 
(MO) score – would emphasize locations with strong support for either 
Protect (proximity to lower-right corner) or Adapt (proximity to upper-
left corner) (Figure 3). As a technical detail, when emphasizing these two 
corners of the graph in an evaluation, the maximum distance from either 
the Adapt or Protect corners becomes 2 (the length of an axis) instead of 
2.8284 (the distance between two opposing corners), and as a result, the 
range of possible management opportunity scores is restricted to 
−0.4142 to +1 (Figure 4A). These scores are rescaled to span the full −1 
to +1 scale using Eq. (2) (Figure 4B),

 MO MOrescale � �� � �1 4142 0 4142. .  (2)

where MO is the original management opportunity score.

2.2 Example application of the PROMOTE 
model to identify stable carbon

The 907,000 ha Tahoe-Central Sierra Initiative (TCSI) landscape 
(Figure 5) is a diverse, multi-ownership landscape in the central Sierra 
Nevada in California and Nevada that is the current focus of a 
collaborative effort among state, federal, nonprofit, and private partners. 
The goal of TCSI is to increase the pace and scale of management to 
improve forest health and resilience across the region. The landscape 
serves as an excellent case example for the PROMOTE model, given that 
it is a regional-scale planning landscape that encompasses a diverse 
array of socio-ecological environments – ranging from urban areas and 
major interstate highways to vast areas of National Forest, multiple 
wilderness areas, and Lake Tahoe, a major destination for outdoor 
recreation. In addition, it is inclusive of an entire west to east swath 
across the central Sierra Nevada, spanning a steep elevational gradient 
from the foothills to the crest (~900 m to over 3,300 m), along which 
responses to climate change are expected to be pronounced.

The PROMOTE model was developed in collaboration with 
several local area experts representing state environmental 
collaboratives, US Forest Service scientists and managers, and 
non-profit agencies. Through a series of work sessions, participants 
contributed expert knowledge on the ecology and restoration needs 
in the landscape to help inform the development of these models, 
which included the selection of metrics, spatial data, fuzzy ramp target 
values, and the interpretation of the results.

To illustrate the model’s functionality, we  provide an 
evaluation of aboveground live carbon levels across the TCSI. The 
proposition being evaluated is that resilient forested landscapes 
exhibit enhanced carbon sequestration capacity that is stable and 
sustainable in the long-term. The capacity to store carbon (C) over 
the long-term is a critical ecosystem service provided by natural 
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FIGURE 3

Multiple interpretations of the PROMOTE model scoring and example calculations for evaluating and combining multiple metrics into a given element. 
White points represent three metric scores calculated for a given cell on the landscape. The red square represents the element score resulting from 
averaging the coordinates of each metric score.

FIGURE 4

Example application of the PROMOTE scoring system to derive a Management Opportunity (MO) score that represents where either adapt or protect 
management strategies exist on the landscape. (A) represents the original scoring from maximizing the adapt and protect scores and (B) represents a 
rescaling of the score so that it ranges from −1 to +1 [Eq. (2)].
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areas. By regulating greenhouse gases, including human-derived 
emissions, these areas play a crucial role in regulating global 
atmospheric processes (Sierra et  al., 2021). There is currently 

growing interest in C accounting in forests to value their 
contributions as C sinks towards offsetting greenhouse gas to 
achieve emissions reduction targets (Badgley et  al., 2022). 

FIGURE 5

Tahoe-Central Sierra Initiative landscape.
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Sequestration incentives, therefore, are contingent upon 
forestlands sustaining a net C sink status in the long-term.

2.3 Current and future carbon modeling 
with LANDIS-II

As climate continues to change and natural disturbances from 
wildfire, insects, and drought continue to impact forest growth and 
mortality, the capacity for forests to maintain their status as net C 
sinks is greatly compromised (Anderegg et  al., 2020). Integrating 
landscape simulation modeling into C accounting can reveal where 
current C hotspots are sustainable, and where future C sinks can 
mature over time.

Data used to characterize the carbon Metrics were derived from 
the LANDIS-II landscape simulation model (Scheller et al., 2007). In 
the current application, we apply the LANDIS-II model developed by 
Maxwell et al. (2022) for the TCSI landscape. The model incorporated 
the NECN (Net Ecosystem Carbon and Nitrogen; Scheller et al., 2011) 
successional dynamics, the SCRPPLE (Social-Climate Related 
Pyrogenic Processes and their Landscape Effects; Scheller et al., 2019), 
the base biological disturbance agents (BDA; Sturtevant et al., 2004), 
and biomass harvest (Gustafson et al., 2000) extensions. The model 
was run under the MIROC 8.5 climate change scenario over a 40 years 
period (2020–2060). The MIROC climate model was one of five 
recommended by California’s Fourth Climate Change Assessment 
(Pierce et al., 2018) and, after extensive testing, was the only one to 
adequately represent recent exceptional droughts (2003–2004, 2012–
2015) (Maxwell et al., 2022). Climate projections were downscaled 
using the MACA methodology (Abatzoglou and Brown, 2012) and are 
available through the USGS Geo Data Portal.1

A four-decade simulation period was selected given the project 
focus of informing near-term forest management planning (1–2 
decades). Longer simulation periods would incorporate a higher level 
of uncertainty and would be less well connected to current vegetation 
conditions and outcomes associated with vegetation transitions and 
climate interactions over typical planning periods. A total of five 
model replicates were run to capture stochastic variation 
among replicates.

LANDIS-II was run under a minimal harvest scenario, wherein 
management was restricted to private lands and within a wildland 
urban interface (WUI) 2 km buffer around built environments. 
We chose this scenario to best understand the evolution of vegetation 
conditions under climate- and vegetation-driven changes in wildfire 
disturbances without management interventions in the 
associated wildlands.

A 2019 vegetation base map developed by NCX (formerly 
SilviaTerra) was derived using statistical imputation methods to 
distribute geographically relevant FIA tree lists to individual 15 m 
cells. The NCX modeling workflow (1) processed remotely-sensed 
imagery from 30 m Landsat 8 and Sentinel-1, 30 m tree cover data 
from the National Landcover Dataset (Dewitz, 2019), and a 10 m 
digital elevation model from the National Elevation Dataset 
(U.S. Geologic Survey, 2019), (2) reduced data dimensions using 

1 https://cida.usgs.gov/gdp/

principal components analysis, (3) summarized FIA plot data and 
grew it forward to a common year, (4) algorithmically predicted FIA 
plot locations, (5) trained a set of imputation models, and (6) 
generated predictions of forest density, basal area, tree summaries for 
2.5 cm diameter classes, and species importance. These data were then 
resampled to 180 m for model processing.

LANDIS-II-modeled above-ground dry weight biomass was 
converted to carbon equivalents by multiplying biomass (g m−2) by 
0.47 (IPCC, 2006; Manickam et al., 2014). Dead biomass (i.e., soil, 
coarse woody debris, and snags) was not included as it was determined 
by consensus that such sources do not represent stable carbon, the 
focus of the evaluation.

2.4 Logic model development

Logic models were developed to evaluate current (Figure 6) and 
future (Figure 7) aboveground C stocks across the TCSI landscape. 
Evaluations occurred from individual pixels up to HUC-10 watershed 
scales (Hydrologic Unit Code, HUC-10 watersheds, range 16,000 to 
100,000 ha, USGS 2013). Hydrologic units are often used to stratify the 
landscape in forest management applications (Keane et al., 2010).

2.5 Current carbon condition evaluation

Current C levels were evaluated using a pair of fuzzy logic 
membership functions that were combined using a UNION operator, 
which gave the results equal weighting (Figure  6). In the first 
evaluation, we developed a membership function to relativize the 
mean C levels for each HUC-12 subwatershed (4,000 to 16,000 ha). 

FIGURE 6

Fuzzy logic structure evaluating the current carbon conditions of 
cells. Fuzzy logic ramps were used to quantify the strength of 
evidence of a given metric. SOE scores range from −1 (no support) 
and +1 (full support). The union (U) operator was used to calculate 
the average of the two SOE scores to represent the overall current 
condition for Carbon. HUC stands for hydrologic unit code.
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HUC-12 subwatersheds were identified in the planning process as a 
management-relevant landscape scale, where finer-scaled treatment 
patches could be delineated and prioritized within these hydrologically 
based land units. The use of the HUC-12-level was to differentiate 
total live C levels at a broader scale such that larger planning areas 
could be rank ordered based on their ability to store carbon over time. 
We used the 10th and 90th percentile conditions summarized across 
all HUC-12 s within the TCSI landscape to assign low (−1) to high 
(+1) SOE scores, respectively.

A second evaluation quantified the amount of C within 81 ha 
(~200 ac) focal windows around each cell and compared those levels 
to the minimum and maximum levels within their respective HUC-10 
watershed. Summing C levels within a focal neighborhood allowed for 
identifying “patches” of high producing carbon areas rather than 
depending on estimates at the cell-level, which may vary considerably 
over space and time.

2.6 Future carbon condition evaluation

For future conditions, a pair of metrics were evaluated (Figure 7) 
and combined using the AND operator, which results in a condition 
representation being based on the most limiting condition (i.e., 
minimum level of support).

The metrics (top, Figure 7) evaluated the (1) maximum and (2) 
standard deviation of C levels for each cell across the simulation 
periods. Like the current conditions assessment, total live C was 
summarized to 81 ha moving windows around each cell. The 10th and 

90th percentiles of each Metric were then calculated at the HUC-10 
scale, and these percentiles were used to assign the SOE scores for 
each cell. Cells with large maximum C levels and with low variability 
across model replicates received high SOE scores.

3 Results

For current conditions, the landscape supported a broad 
distribution of carbon values across the landscape, but with more 
limited occurrence of very high and very low carbon values 
(Figure  8A). The distribution of areas with low C storage (warm 
colors, Figure 8A) was highly clustered and occurring at low elevations 
(western edge), within high elevation wilderness areas (southwest of 
Lake Tahoe), and within recent fire footprints (center, 2013 American 
Fire and southern, 2014 King Fire). Based on current conditions alone, 
there were broad areas available for C conservation, with the majority 
of high C storage occurring in the mid elevational ranges, and much 
of the Lake Tahoe basin.

The potential future condition presented a very different 
outcome (Figure 8B). The landscape transitioned from a broad array 
of C storage conditions to an intermix of juxtaposed high and low C 
storage, with intermediate values primarily occurring as transitions 
between high and low C storage areas (Figure 9). Carbon storage 
stability was more patchily distributed with isolated pockets of stable 
C stores (cooler colors, Figure 8B). High and low elevations did not 
exhibit much improvement or stability in C levels over the 
LANDIS-II simulations. Carbon levels over much of the 2013 
American Fire and 2014 King Fire footprint remained low over the 
course of the simulation period. Some stable C pockets were 
identified in the northern portion of the landscape and around the 
Lake Tahoe basin. Future conditions greatly narrowed the extent and 
fragmented the distribution of areas that could be strong candidates 
for C storage and indicated that the combination of protecting 
current and fostering potential future C stores would provide the 
most robust foundation for management investments toward 
C conservation.

From the current and future assessments, we used the methods 
outlined above to calculate the management strategy scores for the 
Carbon pillar (Figures  9, 10). The resulting interpretation clearly 
identifies areas where (1) stable C is high and expected to remain high 
without management investment (Monitor), (2) risk reduction efforts 
can increase the likelihood of sustaining stable C over the next few 
decades (Protect), (3) stable C can likely be  improved through 
management investments (Adapt), and (4) management is unlikely to 
yield C dividends (Transform).

In sum, the extent of areas with strong support (strategy 
score > 0.50) for any given management strategy was generally low 
across strategies: Monitor (12.1% of the forested landscape), 
Transform (10.7%), Protect (7.6%), and Adapt (0.6%) (Figures 9, 10). 
Strong support for any given strategy was found across 31% of the 
landscape, but only 8.2% of the landscape was of high management 
priority (i.e., Adapt or Protect strategies). Areas with the opportunity 
for increasing carbon storage (Adapt) were the most limited (<1% of 
the landscape). When weaker strategy scores were also considered 
(SOE > 0.25), 81.8% of the landscape showed support for one of the 
four strategies and 29.2% of the landscape had support for either 
Adapt (4.7%) or Protect (24.5%) strategies.

FIGURE 7

Fuzzy logic structure for evaluating future carbon conditions of cells. 
Fuzzy logic ramps were used to quantify the strength of evidence of 
a given metric. SOE scores range from −1 (no support) and +1 (full 
support). HUC-10 stands for ten-digit hydrologic unit code. The And 
(A) operators were used to evaluate the most limiting evidence for a 
given metric such that full support was indicated by cells with high 
potential to achieve a given metric and low variability over the 
LANDIS-II model simulation period.
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4 Discussion

We present the PROMOTE decision support model, which 
provides a methodology to inform strategic (where to go) and 
tactical (what to do) management decisions towards the goal of 
improving social-ecological resilience at landscape and regional 
levels while considering potential impacts from climate change. This 
effort expands upon central tenets from previous climate-informed 
management frameworks [e.g., Resist-Accept-Direct (Schuurman 
et al., 2022) and Resistance–Resilience–Transformation (Peterson 
St-Laurent et al., 2021)] by providing a quantitative evaluation of 
current and future resource conditions within a flexible fuzzy logic 
model. Landscape simulation modeling with climate change and 
natural disturbances was used to spatially represent the potential for 
achieving desired resource conditions over time. PROMOTE model 
outputs provide spatial maps representing quantitative support for 
each of four management strategies that cover the full range of 
potential management responses, from Monitor (intact conditions 
with low vulnerability over time) to Transform (poor conditions that 
remain unsuitable into the future). The model allows for an 
accounting of each management strategy across a landscape and 
facilitates the development of strategic management plans across 
ownerships within the analysis domain. These methods can 
be  adapted to include multiple metrics in the evaluation and at 
multiple scales relevant to landscape and regional planning (Manley 
et al., This issue). Furthermore, the PROMOTE model is amenable 
to alternative representations of future conditions where landscape 
modeling is not available or feasible to implement. For example, 
Povak et  al. (2024) provide an assessment of future ecosystem 
resource stability using climate analog modeling at 1 km resolution 
for the state of California. Other approaches (e.g., Thorne et al., 
2017; Triepke et al., 2019) can be readily applied across large spatial 
extents and require less model calibration and processing time 
compared to simulation modeling.

4.1 Scaling management to landscapes

Climate change and natural disturbances will continue to be the 
main determinants of system-level dynamics (North et  al., 2021; 
Larson et al., 2022). While treatments are effective at local scales, 
strategic planning is required to effectively allocate scarce resources 
(i.e., crews, equipment, funding, time) at scales large enough to 
positively impact landscape-scale dynamics and secure ecosystem 
services. Landscape resilience, therefore, is not a property that can 
be evaluated or conferred at the patch- or stand-scale, because the 
dominant pattern-process interactions impacting resilience occur 
across multiple spatial and temporal scales (Hessburg et al., 2019). 
Management for resilience is not a stand-level proposition. Without a 
broader perspective on how disturbances and other broad-scale 
processes (e.g., seed dispersal and climate adaptation) impact future 
fine-scale processes (i.e., successional development, carbon 
sequestration), and how fine-scale patterns (i.e., old forest structural 
complexity) provide the template for broader scale processes (i.e., high 
severity fire spread), evaluations of management priorities may fall 
short in meeting resilience goals (Vose et  al., 2021). Specifically, 
addressing future wildfire disturbances requires a more holistic 
approach that includes traditional resource-focused management 
balanced with decision making that integrates future landscape 
dynamics under climate change. Identifying where resistance will 
likely not be a successful strategy in the future (Clifford et al., 2022) 
and working with the dominant natural disturbance processes will 
be essential to achieve resilience goals at landscape scales.

4.2 Implications of individual management 
strategies

The PROMOTE model generates a quantitative, continuous value 
representation of the strength of affiliation with each management 

FIGURE 8

Spatial raster depicting strength of evidence scores for (A) current and (B) future (mid-21st century) carbon conditions. Cool colors indicate higher 
values for amount and/or stability of carbon while warm colors indicate lower values for amount and/or stability.
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strategy. Although the four management strategies represent portions 
of a gradient along a continuum, the implications of membership in 
each strategy provides the foundation for effective tactical approaches. 
Importantly, these four strategies are interpretations of the decision 
space constructed through the joint assessment of current and future 
conditions (Figures 2–4), and the four strategies presented here are 
rooted in the literature and were supported through collaboration. 
However, inferences made from these evaluations are ultimately left 
to the users who may have uniquely place-based interpretations of 
how best to respond to the conditions assessments based on their 
management priorities. Below, we  present interpretations of each 
management strategy we  used to characterize the PROMOTE 
decision space.

Monitor – This strategy is unique relative to other climate-
informed management frameworks in that it identifies areas that do 
not currently need management input to retain resilient conditions 
into the future. In our application, strong Monitor areas accounted for 
approximately 12% of the forested landscape with some higher 

concentrations in the northernmost reaches of the landscape 
(Figure 9). Such areas may represent stable climatic and/or disturbance 
refugia where changes in vegetation and disturbances are less likely or 
somewhat more remote in time (Carroll et al., 2017; Meddens et al., 
2018), and where no management investments are currently 
warranted. This strategy has two important implications: it (1) 
identifies areas that are most likely to support a stronghold of favorable 
conditions that management might want to build on in terms of 
expanding their size and extent by investing in adjacent areas and (2) 
enhances efficient and effective management investments by directing 
them away from Monitor areas and toward those that are more likely 
to yield short- and long-term benefits.

Protect – The Protect management strategy implies that 
management can enhance the future prospects of conditions that are 
otherwise likely to decline with changing climate. In our application, 
management would most effectively be directed towards vulnerable C 
hotspots that currently play a valuable role as C sinks and are 
vulnerable to future climate change. In our study, about 25% of the 

FIGURE 9

Histograms depicting the distribution of (A) current conditions scores, (B) future conditions scores for carbon across the TCSI landscape, and (C) the 
percentage of the landscape represented by strong (>0.50, dark shaded bars) and weak (0.25–0.50, light shaded bars) management strategies scores. 
The colors in panel (C) correspond to the spatial distribution of these scores in Figure 10.
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forested landscape had some support for the Protect strategy 
indicating much of the C storage capacity on the landscape is 
vulnerable to disturbances and climate change. This is not unique to 
the central Sierras; evidence suggests that future drought-induced 
mortality and large severe disturbance events will likely compromise 
the capacity of forests to retain their status as carbon sinks (Kurz et al., 
2008; Fargione et al., 2018; Albrich et al., 2022). Some studies suggest 
that Sierran forests are currently overstocked with C and that historical 
C levels were much lower under an active fire regime (Krofcheck et al., 
2017; Liang et al., 2017; Knight et al., 2020; Bernal et al., 2022). Our 
results suggest that C can be maintained, although at reduced levels, 
in frequently disturbed forests in the future, likely with strategic 
management investments.

Adapt – Areas affiliated with the adapt strategy identify areas 
currently in poor condition but have the demonstrable ability to 
improve over time under climate change and natural disturbances. The 
role of management would be  to facilitate the attainment of those 
conditions in the near term with the expectation that they will be stable 
over time. The PROMOTE model enables managers to differentiate 
adapt from transform areas that, in contrast, are unlikely to improve in 
the face of future climate (see below). Management investments can 

then be made where they have the greatest opportunity to retain high 
functioning conditions on the landscape while facilitating changes 
where conditions can likely be  sustained. Concomitant with a 
substantial opportunity for improvement, adapt areas are also most 
likely to benefit from a wider range of management investments, 
although some will undoubtedly be  more effective than others. 
Management investments are driven and constrained by a wide array 
of factors, so adapt areas offer opportunity for progress regardless of 
the type or character of treatment options that might be available to 
managers. In our evaluation, we found that areas with currently low C 
storage account for 63% of the landscape. Within that subset, the adapt 
strategy accounted for <1% of the area and transform accounted for the 
balance (62%), suggesting that active restoration likely has a limited 
capacity to increase C amounts in the future where C is currently 
deficient. However, in contrast, McCauley et al. (2019) found landscape 
treatments increased C 9–18% over no-harvest scenarios in the US 
Southwest, suggesting that strategic treatment implementations may 
have landscape-level C benefits over time by reducing losses to wildfire 
broadly and increasing forest productivity locally.

Transform – Areas identified as strong transforms can 
be  interpreted in two ways. Firstly, these areas may provide 

FIGURE 10

Spatial raster depicting strength of evidence scores for management strategy scores for the carbon pillar across the TCSI landscape. (A) Adapt, 
(B) Monitor, (C) Transform, and (D) Protect. Scores ranged from −1 (no support for a given management strategy) and +1 (full support). Strong scores 
were those >0.50 and weak scores were between 0.25 and 0.5.
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opportunities to manage for alternative stable states (e.g., non-forest 
types, early seral stages, dominant species composition) that provide 
alternative or additional functionality. In western North America, 
early seral and non-forest types were historically an integral 
component of the landscape when fires and other disturbances played 
a more active role in shaping vegetation patterns (Swanson, 2012; 
Hessburg et al., 2016, 2019, 2021; Hagmann et al., 2021). Such areas 
can serve important ecological functions such as providing key 
foraging habitat for certain wildlife species and mitigate the spread 
and severity of wildfires. Secondly, management may opt to apply 
treatments in Transform areas but with the knowledge that these 
conditions may require additional longer-term investments to achieve 
and maintain management objectives. As such, the model facilitates a 
shift in management focus on improving areas in the worst condition 
towards those areas with the highest likelihood of near- and long-term 
success. Deferring such investments to areas with a higher likelihood 
of success (e.g., adapt areas) may improve return on investments as 
these areas have a demonstrated ability to achieve desired conditions.

5 Conclusion

The scale and scope of land management problems requires a 
flexible and multifaceted approach that includes both engineered 
solutions aimed at reducing near-term risks to resources from 
disturbances and ecological solutions aimed at improving long-term 
social-ecological resilience (Millar et al., 2007; Seddon et al., 2020a,b). 
Such an approach necessitates access to tools to ensure that investments 
made at the stand-scale can impact landscape resilience properties while 
procuring ecosystem service benefits. By modeling landscape dynamics 
over time under climate change, the PROMOTE model captures the 
relevant dynamics at the scale necessary to capture top-down drivers 
from climate and contagious disturbances processes (i.e., meso-scale, 
Moritz et al., 2011). Doing so provides the broader context with which 
to evaluate possible future trajectories and outcomes from management, 
thereby enabling managers to account for the complexity of interacting 
ecological and social factors acting within landscapes. Furthermore, 
PROMOTE model outputs can be used within a multi-criteria decision 
(Marques et al., 2021) or optimization (Ager et al., 2017) modeling 
framework to assess tradeoffs and synergies among strategic planning 
options. Such models help resolve complex decision-making problems 
where there are multiple resources of interest and varying priorities 
among interest groups to consider. These models also allow for the 
inclusion of other factors that may influence decisions including 
treatment costs and revenues, social/political/cultural factors, and other 
potential limitations on treatment activities.
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