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The prevalence of autoimmune diseases worldwide has risen rapidly over the

past few decades. Increasing evidence has linked gut dysbiosis to the onset of

various autoimmune diseases. Thanks to the significant advancements in high-

throughput sequencing technology, the number of gut microbiome studies has

increased. However, they have primarily focused on bacteria, so our

understanding of the role and significance of eukaryotic microbes in the

human gut microbial ecosystem remains quite limited. Here, we selected

Graves’ disease (GD) as an autoimmune disease model and investigated the

gut multi-kingdom (bacteria, fungi, and protists) microbial communities from the

health control, diseased, and medication-treated recovered patients. The results

showed that physiological changes in GD increased homogenizing dispersal

processes for bacterial community assembly and increased homogeneous

selection processes for eukaryotic community assembly. The recovered

patients vs. healthy controls had similar bacterial and protistan, but not fungal,

community assembly processes. Additionally, eukaryotes (fungi and protists) may

play a more significant role in gut ecosystem functions than bacteria. Overall, this

study gives brief insights into the potential contributions of eukaryotes to gut and

immune homeostasis in humans and their potential influence in relation to

therapeutic interventions.
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1 Introduction

The vital role of the gut microbiome in immune homeostasis

and the maintenance of health in humans has been highlighted in

numerous studies, revealing that the gut microbiome is inextricably

linked to the development of various metabolic and autoimmune

diseases. Graves’ disease (GD) is a common autoimmune disease

and a major cause of hyperthyroidism. It occurs at all ages and is

more common in women (1). Previous research mainly focused on

the disruption of microbial taxa in GD patients, involving increased

Prevotellaceae, Lactobacillales, and Bacilli and decreased

Rikenellaceae, Alistipes, and Enterobacteriaceae (2, 3). However,

previous studies only focused on the intestinal bacterial

communities, while eukaryotes (such as fungi and protists) have

rarely been studied. Nevertheless, the human gut microbiome is

composed of multi-kingdom microbial communities that play

indispensable but largely unrecognized roles. Turning our

attention to the “microbial zoo” of the gut ecosystem will help to

reveal the mechanisms underlying the link between the microbiome

and immune disorders (4, 5).

The assembly and succession of complex gut microbiomes have

attracted much attention in recent years. The assembly of ecological

communities is normally influenced by both stochastic and

deterministic processes (6). Deterministic processes indicate that

the community diversity and structure are directional and

predictable (7). For instance, diet (8), host genetics (9), medication

use (10), and endocrine factors (11) can partially explain inter-

individual microbiome variation via deterministic processes, while

the external environmental factors seem impossible to influence

communities through stochastic processes (also known as neutral

processes), such as dispersal, specialization, and drift, even though

they may also play a role in ecosystem shaping (12). In various health

and disease states, the microbial load itself may be an identifier of a

particular ecosystem configuration (13). However, the microbiome

assembly processes in recovered patients after intervention, as well as

the improvement of their gut dysbiosis, are generally overlooked.

Furthermore, although interactions between certain physiological

drivers and microbiome assembly have been studied (4, 14), our

understanding of the ecological mechanisms underlying disordered

and recovered gut microbiomes remains vague. Understanding these

mechanisms is crucial for understanding overall health outcomes

of GD.

In this study, we collected samples from 59 individuals, comprising

20 GD patients, 19 GD patients who had recovered after taking

medication, and 20 healthy people, and assessed the ecological

processes underlying their microbial kingdom (bacterial, fungal, and

protistan) community assembly. In addition, we performed inter-

kingdom analysis within each group to further explore the

interactions among the microbial kingdoms and physiological

indexes. The results extend our knowledge of GD in terms of the

multi-kingdommicrobial ecology, and provide a potential direction for

the development of novel GD treatments based on gut fungi and

protists as they may play a more significant role in gut ecosystem

functions than bacteria.
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2 Materials and methods

2.1 Participant recruitment and
sample collection

From March 2020 to March 2021, 59 participants, comprising

(1) 20 GD patients (Disease group), (2) 19 GD patients who

recovered after medication treatment (Recovered group), and (3)

20 healthy controls (Healthy group), were recruited from the central

plains of China. The diagnostic criteria for GD and the inclusion

and exclusion criteria for the participants are described in detail in

the Supplementary Materials.

All participants fasted overnight (≥8 h) before sample

collection. Fecal samples were collected for DNA extraction, and

serum samples were collected to assess thyroid hormones and

inflammatory factors.
2.2 Measurement of physiological indexes

Participants’ demographic and clinical data were collected using

questionnaires and electronic medical records. Chemiluminescence

immunoassays were performed to assess free tetraiodothyronine

(FT4), free triiodothyronine (FT3), thyroid-stimulating hormone

(TSH), and thyrotropin receptor auto-antibodies (TRAb) using a

Cobas e602 analyzer (Roche Diagnostics, Switzerland), and to assess

thyroid peroxidase antibodies (TPOAb) and anti-thyroglobulin

antibodies (TgAb) using a UniCel DxI 800 analyzer (Beckman

Coulter, USA). Serum levels of inflammatory factors (tumor

necrosis factor a, TNFa; interleukin 4, IL4; interleukin 6, IL-6;

interleukin 10, IL10; interleukin 17, IL17) were assessed using

human enzyme-linked immunosorbent assay (ELISA) kits

(Cusabio Biotech, Wuhan, China). Detailed information is

provided in Supplementary Table S1.
2.3 DNA extraction and Illumina
MiSeq sequencing

The total DNA was extracted from the fecal samples using a

QIAamp Fast DNA Stool Mini Kit (QIAGEN, Germany). DNA

concentration and quality were assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher, USA). To amplify the V5–V7

region of the bacterial 16S rRNA gene, the ITS1 region of the fungal

ITS gene, and the V4 region of the protistan 18S rRNA gene, the

following primer pairs were used: 799F/1193R (799F: 5′-AACMGG

ATT AGA TAC CCK-3′; 1193R: 5′-ACG TCA TCC CCA CCT

TCC-3′) (15), ITS1F/ITS2 (ITS1F: 5′-CTT GGT CAT TTA GAG

GAA GTA A-3′; ITS2: 5′-GCT GCG TTC TTC ATC GAT GC-3′)
(16, 17), and V4_1F/TAReukREV (5′-CCA GCA SCY GCG GTA

ATW CC-3′; 5′-ACT TTC GTT CTT GAT YRA-3′) (18),

respectively. Amplicon sequencing was conducted using an

Illumina MiSeq platform by Magigen Biotechnology Co., Ltd.

(Guangzhou, China).
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Quality control of the sequence reads was performed using the

UPARSE pipeline (19). Paired-end reads were assembled and

trimmed (maximal expected errors of 0.25, reads length >300 bp

for bacteria and protists, reads length >200 bp for fungi). Filtered

sequences were clustered into 100% sequence similar zero-radius

operational taxonomic unit (zOTU) using the UNOISE 3 algorithm

implemented in USEARCH. For the bacterial communities, this

step generated a 16S zOTU table of 59 samples × 3,370 zOTUs

(3,275,695 reads). The number of high-quality sequences per

sample was 31,660–95,736. For the fungal communities, this step

generated an ITS zOTU table of 51 samples × 3,006 zOTUs

(2,528,186 reads, the sample with high-quality sequences less than

3,000 was discarded). The number of high-quality sequences per

sample was 3,615–133,846. Bacterial and fungal zOTUs were

classified by the RDP classifier against the RDP 16 S rRNA gene

database and the UNITE ITS database, respectively (20). Eukaryotic

zOTUs were classified against the Protist Ribosomal Reference

database (PR2) (21). We discarded zOTUs assigned as

Rhodophyta, Streptophyta, Metazoa, Fungi, and unclassified

Opisthokonta sequences to obtain the protistan zOTU table. For

the protistan communities, we finally obtained a zOTUs table of 50

samples × 5,800 zOTUs (1,043,313 reads, the sample with high-

quality sequences less than 3,000 was discarded). The number of

high-quality sequences per sample was 3,062–61,354. To obtain an

equivalent sequencing depth for further bioinformatics analysis,

each sample was rarefied to 31,660 for bacterial communities, 3,615

sequences for fungal communities, and 3,062 for protistan

communit ies in R through the package “GUniFrac”

(Function: Rarefy).
2.4 Bioinformatics analysis of microbial
sequencing results

Alpha diversity indicators, that is, richness (total number of

observed species [Sobs]) and Shannon index, were determined for

each sample using “vegan” (function: diversity) in R v4.2.2 for

Windows. The differences among groups were determined based on

the Wilcoxon signed-rank test using “ggpubr”.

The Bray–Curtis distance among different groups was

determined using “vegan” based on zOTUs table, and the

dissimilarities in microbial community composition were then

visualized based on principal coordinate analysis (PCoA) plots

using “ggplot2”. Subsequently, permutational multivariate analysis

of variance (PERMANOVA) was conducted using “vegan”

(function: adonis) with 9,999 permutations to assess the

dissimilarities in community structure among different groups.

The differences among groups were determined using Kruskal-

Wallis test in IBM SPSS version 26.

The major ecological processes were determined in order to

disentangle the characteristics of gut microbial community

assembly for each kingdom (bacteria, fungi, and protists) in the

Disease, Recovered, and Healthy groups. First, a neutral community

model (NCM) was applied to predict the potential importance of

stochastic processes in community assembly by determining the

relationships between the microbial taxa detection frequency in a
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metacommunity of all groups (22). Then, the dynamics of

phylogenetic and taxonomic diversity were assessed using beta

nearest taxon indices (bNTI) based on the null-model and Bray–

Curtis-based Raup–Crick (RCBray) metrics through the R package

“iCAMP”. The value of |bNTI| > 2 indicates that the deterministic

processes, which can be divided into homogeneous selection (bNTI
< −2, leading to similar community structures in similar

environments) and variable selection (bNTI > 2, leading to

dissimilar community structures in heterogeneous conditions),

primarily govern community assembly. Conversely, |bNTI| < 2

suggests that stochastic processes govern the community

compositions. Then, the RCBray was used to partition the

stochastic processes. |RCbray| > 0.95 indicates homogenizing

dispersal (RCbray < −0.95) or dispersal limitation (RCbray > 0.95)

drives compositional turnover. When |bNTI| < 2 and |RCbray|

< 0.95, this estimates the influence of “undominated” assembly,

including weak dispersal, weak selection, diversification, and/or

drift (23). The Linear regression model between physiological

indexes and bNTI was calculated through the R package “ggpmisc”.

To evaluate the differences among all groups, an inter-kingdom

network was separately constructed for each group. The zOTU

tables were firstly calculated to the taxa table on a genus level. Then,

the taxa tables for each dataset were limited to taxa present in at

least half of the samples and comprised taxa with relative

abundance ≥0.1% in each group. For each dataset, Spearman

correlation scores were calculated in the MENA online pipeline

(http://ieg4.rccc.ou.edu/mena/). The inter-kingdom co-occurrence

networks were visualized in Gephi (version 0.9.2 for Windows).
3 Results

There were no significant differences in age or body mass index

(BMI) among the three groups. Regarding the thyroid hormones,

FT3 and FT4 were significantly lower in the Healthy and Recovered

groups than the Disease group. TSH, TgAb, TPOAb, and TRAb

were similar between the Disease and Recovered groups, but there

were significant differences compared to the Healthy group. There

were no significant differences in inflammatory factors among the

three groups (Supplementary Figure S1).

The sequencing results of the bacterial, fungal, and protistan

communities revealed that there were no significant differences in

alpha diversity (Sobs or Shannon index) among the three groups

(Supplementary Figure S2). There were differences among the three

groups in the bacterial, fungal, and protistan communities based on

Bray–Curtis distance, but the differences were only significant for

the fungal communities (Figure 1A).

The three kingdoms all exhibited more convergence in the

PCoA plots in the Healthy group. Therefore, we determined the

assembly processes for each of the microbial communities.

The NCM effectively predicted a significant portion of the

associations between the frequency of occurrence of bacterial

zOTUs and their changes in relative abundance, but it failed for

fungal and protistan zOTUs. The NCM results indicated that

stochastic processes were more important for bacterial
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community assembly in the Disease and Recovered groups than

the Healthy group (Supplementary Figures S3–S5). We then

evaluated the assembly processes based on the b-nearest taxon
index (bNTI) and Bray–Curtis-based Raup–Crick (RCBray).

Regarding bacterial community assembly, we found that

homogenizing dispersal and undominated processes were the

dominant processes, but there was more variable selection in the

Healthy and Recovered groups than the Disease group. Regarding

fungal community assembly, undominated processes dominated,

but there was more homogeneous selection in the Disease and

Recovered groups than the Healthy group. Lastly, regarding

protistan community assembly, variable selection dominated,

and there were more homogeneous selection and less

undominated processes in the Disease group than the Recovered

and Healthy groups (Supplementary Figure S6; Figure 1B). Based

on family- and genus-level taxonomy analysis, the bacterial and

protistan communities between the Healthy and Recovered
Frontiers in Immunology 04
groups were found to be similar. However, in terms of the

fungal community, similarities were observed between the

Disease and Recovered groups (Supplementary Figures S7, S8).

Specifically, Lachnospiraceae and Eggerthellaceae were

significantly higher in Disease than other bacterial groups. The

abundance of Saccharomycetales incertae sedis was significantly

lower in Healthy compared to other fungal groups, while

Piptocephalidaceae and Spizellomycetaceae were significantly

higher in Healthy. Blastocystis was higher in Healthy and

Recovered than that in the protistan group of Disease

(Supplementary Figure S7).

We also evaluated the relationships between bNTI values and
physiological indexes (thyroid hormones and inflammatory factors)

to further analyze the processes’ relative influences regarding

mediating microbial community assembly. Many physiological

indexes (such as TSH, FT3, FT4, TgAb, IL4, IL6, IL10, and IL17)

influenced the microbial community assembly. There was a similar
B

C

A

FIGURE 1

Bacterial, fungal, and protistan community compositions and their assembly processes. (A) PCoA plots based on Bray–Curtis distance for bacterial,
fungal, and protistan communities. The p-values were calculated using PERMANOVA. (B) Relative influences of distinct processes on microbial
community assembly. (C) Correlations between bNTI values and differences in physiological indexes. *p ≤ 0.05, **p ≤ 0.01 based on
linear regression.
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assembly process, influenced by thyroid hormones and

inflammatory factors, for bacterial and protistan communities but

not fungal communities (Figure 1C).

Moreover, we analyzed the assembly processes for each

microbial kingdom in depth. The results showed that

physiological indexes in the Recovered vs. Healthy groups

similarly influenced bacterial and protistan community assembly,

and physiological indexes in the Disease vs. Recovered groups

similarly influenced fungal community assembly. The results

indicated that the three microbial kingdoms in the Disease vs.

Healthy groups were assembled via different processes, and the

Recovered group fell between these two.

To further explore the interactions among the microbial

kingdoms and physiological indexes, we constructed separate

inter-kingdom networks for the Disease group (139 nodes and

635 edges), Recovered group (118 nodes and 379 edges), and

Healthy group (121 nodes, 387 edges). The Disease network was

the most complicated. Interestingly, the protists in the Disease

network had 28.8% of nodes that were related to 60.8% of edges,

which were much higher values than in the Recovered network

(9.3% of nodes and 23.5% of edges) and Healthy network (10.7% of

nodes and 21.7% of edges). There were also relatively fewer fungal

nodes and edges in the Disease network (22.3% of nodes and 12.9%

of edges) than the Recovered (33.0% of nodes and 54.9% of edges)

and Healthy (37.2% of nodes and 50.9% of edges) networks.

Moreover, we constructed three sub-networks that were based on

all the nodes directly associated with physiological indexes, and

we found that there were more protists and bacteria in the

Disease network than the Recovered and Healthy networks,

indicating the consequence of the ecological assembly under

GD, which involves the physiological changes caused by GD,

such as IL17, TSH, and TNFa, complexed with the gut microbial

inter-kingdom interaction. Specifically, edges associated with

bacterial taxonomy, such as Limosilactobacillus, Lacticaseibacillus,

Bavariicoccus, and Roseburia, and Protistan taxonomy, such as

Filamoeba, Paracercomonas, Pseudodendromonadales_XX, and

Neoheteromita, were increased in Disease. The edges associated

with fungal taxonomy, such as Torulaspora, Guehomyces,

Saccharomyces, and Eurotium, were increased in Recovered or

Healthy (Figure 2).
4 Discussion

The thyroid gland influences the metabolic and immune processes

in the body by producing thyroid hormones, which can lead to

microbiome–thyroid homeostasis or disorder. This study explored

the influence of physiological changes on gut microbial community

assembly. We found that stochastic processes dominated the bacterial

and fungal community assembly, while deterministic processes

dominated the protistan community assembly. GD increased

homogenizing dispersal processes for bacterial community assembly,
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and increased homogeneous selection processes for eukaryotic

community assembly. This may be due to GD-induced changes in

the gut environment that reduced the stability of the gut bacterial

community and simultaneously altered the bacterial metabolism and

reproduction rate, making it easier for fungi and protists to survive and

reproduce under these specific environmental conditions (24–26).

However, the medication-treated recovered patients vs. healthy

controls had similar bacterial and protistan, but not fungal,

community assembly processes. This concurs with the similarity of

recovered patients vs. healthy controls in other disease models,

although previous research mainly focused on bacterial communities

(27, 28). The state of the fungal community in recovered patients may

be related to the stability of this community (29). Gut bacteria are

already regarded as specific diagnostic biomarkers for GD (30), and

fungal and protistan biomarkers of disease progression should be

identified in future research.

The functions of gut bacteria have been widely discussed in

many studies (31, 32), while the functions of eukaryotes, which

may explain many currently unexplained variables, have mostly

been overlooked. In this study, fungi contributed more than half of

the interactions among the multi-kingdom communities in the

Healthy and Recovered groups. Disruption of the mycobiota can

have detrimental impacts on the host immune system (33), and

Leonardi et al. demonstrated that mucosal fungi in mice enhanced

intestinal epithelial functions and protected against bacterial

infection and intestinal injury (34). Specifically, Torulaspora and

Saccharomyces, which belong to Saccharomycetales and Eurotium,

contributed more interactions in Healthy and Recovered groups.

Similarly, many reports have demonstrated that Saccharomyces

could be used as a biotherapeutic agent owing to its anti-

inflammatory, antibacterial, and immune modulatory properties

(35, 36). Eurotium can also exhibit anti-colitis effects through

regulating gut microbiota-dependent tryptophan metabolism (37).

Therefore, fungi may play a vital role in maintaining health and

avoiding GD in humans.

Additionally, protists dominated the interactions in multi-

kingdom microbial communities of disease group. Predatory

protozoa and algae contribute to these connections, which may be

due to the disruption of the gut environment leading to an increase

in bacteria, thereby enhancing the connection between protozoa

and other microorganisms. Specific eukaryotic microbes in the gut

ecosystem have been reported to have a role in modulating the host

immune system (5). Over millions of years, eukaryotic microbes co-

evolved with mammals; although there are fewer eukaryotic

microbes than bacteria living in the gut, they are much larger in

size and may have a disproportionate influence (5, 38). In this study,

blastocystis was enriched in Healthy and Recovered groups.

Blastocystis is a protistan parasite and also a common component

of the healthy gut microbiome, and recent studies have reported

that Blastocystis have a potentially beneficial effect on regulating

host immune responses (39). Moreover, the latest report also

emphasized the importance of commensal protists for regulating
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1334158
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Geng et al. 10.3389/fimmu.2024.1334158
intestinal immunity and trans-kingdom competition (40).

However, the role of protists in gut microbiome assembly in

healthy humans remains mostly unrecognized. Thus, we argue

that eukaryotic microbes, especially protists, represent an essential

factor that should be taken into consideration when analyzing the

gut microbiome.

Overall, this study highlights the intricate yet previously

unexplored dynamics of gut multi-kingdom microbiome assembly

in GD patients and medication-treated patients who recovered from

GD. We conclude that, via physiological changes, GD increased

homogenizing dispersal processes for bacterial community

assembly and increased homogeneous selection processes for

eukaryotic community assembly. The bacterial and protistan, but

not fungal, assembly processes of the medication-treated recovered

patients vs. healthy controls were similar. Furthermore, eukaryotic

microbes potentially contributed more ecosystem functions than

bacteria in the gut environment. This study gives brief insights into

the potential contributions of eukaryotic microbes to gut and

immune homeostasis in humans and their potential influence in

relation to therapeutic interventions. Notably, more research into

the potential benefits of eukaryotic microbes in humans will offer

many exciting prospects for revealing the mechanisms of

establishment and the complex traits of immune diseases.
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