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With over 2.1 million new cases of breast cancer diagnosed annually, the incidence

and mortality rate of this disease pose severe global health issues for women.

Identifying the disease’s influence is the only practical way to lessen it immediately.

Numerous research works have developed automated methods using different

medical imaging to identify BC. Still, the precision of each strategy differs based on

the available resources, the issue’s nature, and the dataset being used. We proposed

a novel deep bottleneck convolutional neural network with a quantum optimization

algorithm for breast cancer classification and diagnosis from mammogram images.

Two novel deep architectures named three-residual blocks bottleneck and four-

residual blocks bottle have been proposed with parallel and single paths. Bayesian

Optimization (BO) has been employed to initialize hyperparameter values and train

the architectures on the selected dataset. Deep features are extracted from the

global average pool layer of both models. After that, a kernel-based canonical

correlation analysis and entropy technique is proposed for the extracted deep

features fusion. The fused feature set is further refined using an optimization

technique named quantum generalized normal distribution optimization. The

selected features are finally classified using several neural network classifiers, such

as bi-layered and wide-neural networks. The experimental process was conducted

on a publicly available mammogram imaging dataset named INbreast, and a

maximum accuracy of 96.5% was obtained. Moreover, for the proposed method,

the sensitivity rate is 96.45, the precision rate is 96.5, the F1 score value is 96.64, the

MCC value is 92.97%, and the Kappa value is 92.97%, respectively. The proposed

architectures are further utilized for the diagnosis process of infected regions. In

addition, a detailed comparison has been conducted with a few recent techniques

showing the proposed framework’s higher accuracy and precision rate.
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1 Introduction

The most frequent tumor in women worldwide is breast cancer

(1). Breast cancer ranks as the second most prevalent ailment

among women across the globe. In the year 2022, more than 2.5

million women experienced breast cancer screening, and tragically,

approximately 6.6% of them yielded to the disease. Breast cancer

originates from abnormal cell proliferation within the breast tissue,

often leading to the formation of a breast tumor and the potential

spread of cancer to other parts of the body (2). Cancerous tumors

are referred to as malignant because they hinder normal body

functions and push out healthy tissue (3).

In contrast, benign tumors are noncancerous, since they do not

spread to other parts of the body or have the ability to develop more

tumors (4). Numerous imaging modalities have been created to help

lower the death rate associated with breast cancer and to assist in

the early detection and treatment of the disease (5). Breast exams,

mammograms, and biopsy are just a few of the numerous

examinations used in the detection and diagnosis of breast cancer

(6). The more popular method for detecting breast cancer is

mammography (7). An effective diagnostic methodology is

essential for the timely diagnosis of such malignancy to increase

survival (8).

Breast cancer imaging is crucial in lowering this unacceptably

high mortality rate. Early detection of breast cancer allows for

quicker treatment and higher survival rates than late-stage

detection, which is why screening programs have been established

(9). One of the significant reasons of death for women globally is

breast cancer. Early detection and treatment are the best strategies

to stop this cancer from spreading (10). Breast cancer imaging

methods are also crucial for assessing and monitoring cancer

treatment (11). The best, most dependable, and most cost-

effective way for finding early indications of breast cancer is still

mammography screening. To see anomalies, radiologists must

carefully review mammography images (12). Consequently, the

Medical Committee advises women to undergo widespread early

mammography screening (13). Women aged 40 and above should

undergo an annual mammogram (14).

Recently, computer-aided diagnosis (CAD) systems have

performed a vital role in medical imaging, especially for breast

cancer diagnosis, to minimize the operator-dependent workload of

radiologists when interpreting digital mammography images (15).

The purpose of a CAD system is to correctly classify the malignant

and benign images, as 65%–90% of images belong to benign cancer.

The challenges that increase the false positive rate are masses,

architectural distortions, microcalcifications, and asymmetry (16).

The diagnosis of microcalcifications has also been clinically

authorized for effective CAD systems. Therefore, CAD solutions

for breast masses generate a lot of scientific interest (12).

Radiologists can identify and distinguish between normal and

diseased tissues with CAD systems (17).

Deep learning technology has recently gained widespread

adoption in the medical sector. This adoption is driven by the

significant patient load and the pressing requirement to enhance the

accuracy of pathology diagnosis, particularly in the context of
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detecting and classifying breast lesions. This technology supports

physicians’ diagnostic efforts (18, 19). With convolutional neural

networks (CNNs), the current deep learning algorithms have shown

excellent performance in detecting and segmenting tumors in

medical images (20). Deep-learning-based algorithms have

demonstrated satisfactory performance in various computer

vision applications, such as image classification, medical

diagnosis, scene identification, disease prediction, and healthcare

analysis (21). A few CAD systems collected straight features from

images without doing segmentation or preprocessing work. This

phase has the benefit of quick computing, but it has the drawback of

extracting redundant and unnecessary information from the

image’s noisy areas (22). The most significant information is

found in the deeper layer, which is immediately computed into

features in deep learning (23). However, the training dataset size,

the choice of hyperparameters, and the cross-validation value all

affect how well deep learning models perform. A deep learning

model may have convolutional, ReLu, max pooling, and fully

connected hidden layers. In deep learning, the softmax layer

functions as a classifier. Several methods for diagnosing and

classifying breast cancer have been presented in the literature and

have increased accuracy rates. However, they employed the transfer

learning idea and concentrated on the pre-trained models (i.e.,

VGG16 (24), Alexnet (25), ResNet (24), MobileNet (26), and

EfficienctNet (27)). For training purposes, those models need a

large and well-balanced dataset of images; however, the publicly

accessible breast cancer dataset is insufficient (28). In addition, the

extraction of irrelevant feature extraction decreased the

classification accuracy and increased the computation

time (second).

As a result, a unique model that can train on a limited number

of images and offer improved classification accuracy is frequently

needed. This article proposes a novel deep bottleneck residual

convolutional neural network fusion architecture for diagnosing

and classifying breast cancer. The suggested technique additionally

uses an optimization algorithm to increase accuracy and decrease

computing time. The following are the principal contributions of

this work:
• We proposed a novel bottleneck residual convolutional

neural network (CNN) architecture with three parallel

residual blocks and 76 hidden layers, including

convolutional, average pooling, and fully connected.

• We proposed a novel single-path bottleneck residual CNN

architecture with four residual blocks and 60 hidden layers.

• The hyperparameters of the proposed models are initialized

using a Bayesian Optimization instead of manual alteration.

• A kernel-based canonical correlation analysis and entropy

technique is proposed for the extracted deep features fusion.

The fused feature set is further refined using an

optimization approach named generalized normal

distribution optimization.

• A detailed comparative analysis has been performed for the

proposed method. In addition, a detailed ablation study has

been performed.
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2 Literature review

Despite researchers having created numerous feature extraction

and disease classification strategies, there is still an opportunity for

improvement (29). The researchers provided deep-learning

methods for breast cancer diagnosis and classification (30). A

novel approach for mass classification tasks that simultaneously

trains on texture and deep Convolutional Neural Network (CNN)

representations was offered by Zhang et al. (16). The CNN-based

classification was merged with rotation-invariant features of the

maximum response filter bank. The fusion procedure addressed

CNN’s shortcomings in capturing mass attributes after the

reduction technique was implemented. The mini-MIAS and

INbreast combined dataset and other publicly available datasets

like CBIS-DDSM were used to train this model. The CBIS-DDSM

dataset was used to test the reduction strategy and fusion, and the

results demonstrated that this method exceeded expectations other

models regarding accuracy (94.30%). You-Only-Look-Once

(YOLO) was the foundation for the end-to-end system

introduced by Baccouche et al. (18). This approach could classify

and identify breast abnormalities in complete mammograms that

could be of concern at the same time. The algorithm began by

preprocessing the raw pictures, identifying the abnormal regions as

breast lesions, and then classifying the lesions’ pathology as either

masses or calcifications. Two publicly available datasets were used

to assess the model: one had 2,907 mammograms from the CBIS-

DDSM’s Curated Breast Imaging Subset, and the other contained

235 mammograms from the INbreast database. The assessment

procedure also utilized a privately assembled dataset consisting of

487 mammograms. Furthermore, a fusion model method was

suggested to improve detection and classification accuracy.

PatchSample decomposition is a revolutionary technique Harris

et al. (31) devised for learning sparse approximations and making

classification judgments. In contrast to BlockBoost, the prior method,

PatchSample, builds larger dictionaries that encompass a wider

variety of visual data from every point inside the region of interest

(ROI) and spatially specific information. Notably, a combined dataset

of mammograms from two separate providers was utilized to train

and examine the approach. The experimental results described that

applying PatchSample decomposition to a combined dataset

consisting of the MLO view regions of interest from both the

MIAS and CBIS-DDSM datasets could result in classification

accuracy (ACC) of up to 67.80% and (AUC) of 73.21%. Deep

transfer learning techniques were used by TIṘYAKI ̇ et al. (32) to
classify calcification diseases and breast cancer masses. Convolutional

neural networks were trained and tested on a dataset of 3,360 patches

taken from the CBIS-DDSM and (DDSM) mammography databases.

Resnet50, NASNet, Xception, and EfficientNet-B7 network

backbones were used to apply transfer learning. The Xception

network produced the best categorization results out of all of them.

In particular, an area under the curve (AUC) of 0.9317 was obtained

for the five-way classification problem using the original CBIS-

DDSM test data. A fresh architecture for a capsule network was

proposed by Soulami et al. (33), which significantly reduced the

original capsule network’s computing time by a factor of 6.5. This

improvement made training breast mass areas of interest (ROIs) on
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less expensive GPUs possible. The proposed architecture was refined

by adding data augmentation techniques and changing the number of

kernels and capsules. The higher effectiveness of our capsule-based

approach in the one-stage classification of suspicious breast masses

was demonstrated by evaluation findings across four categories of

breast density. The model’s accuracy in binary classification—which

discerns between normal and abnormal masses—was 96.03%. The

model had a 77.78% accuracy rate in the multi-class classification of

breast masses into benign, malignant, and normal categories.

A novel multi-stage transfer learning (TL) technique for

differentiating between benign and malignant mammographic

breast masses was presented by Ayana et al. (34). Images of

cancer cell lines and pre-trained models from ImageNet were

employed in this technique. The three publicly available datasets

used to train the model were DDSM, MIAS, and INbreast.

Furthermore, training was conducted using a composite dataset

that included photos from all three sources. The average area under

the curve for the DDSM, MIAS, INbreast, and mixed datasets was 1,

0.9993, 0.9994, and 0.9998, respectively, according to the fivefold

cross-validation results. Using the MIAS and INbreast databases,

Aslan et al. (35) sorted mammography images into normal, benign,

and malignant categories. After the photos were preprocessed, the

processed images were fed into two different end-to-end deep

networks. While the second network was intended to have a

hybrid structure that combined both the CNN and Bidirectional

Long Short-Term Memories (BiLSTM), the first network was

composed entirely of a CNN. For the MIAS dataset, the first and

second hybrid architectures produced classification accuracy of

97.56% and 97.60%, respectively. A deep learning algorithm-

based training technique that enhances edge detail and reduces

false positives for automated early detection of breast cancer was

presented by Devendhiran et al. (36). The recommended approach

combines an optimization strategy with a CNN to produce a

classification model for the identification of breast cancer.

Utilizing a hybrid approach, the advantages of the Whale

Optimization Algorithm (WOA) and the Marine Predators

Algorithm (MPA) were merged to determine the optimal

hyperparameter values for the CNN framework. The proposed

technique leveraged a pre-trained convolutional neural network

model called Inception v3 and DenseNet. By comparing the

attainment of two hybrid models, the research showed that the

MPA-WOA with DenseNet attained an exactness rate of 94% and

95% for the CBIS-DDSM and MIAS datasets, respectively.

This literature review discusses many deep-learning algorithms for

breast cancer diagnosis and classification. Researchers have looked into

techniques including using You-Only-Look-Once (YOLO) for end-to-

end systems, combining texture and deep Convolutional Neural

Network (CNN) representations, and introducing PatchSample

decomposition for sparse approximations. Several network

backbones, including Resnet50, NASNet, Xception, and EfficientNet-

B7, have been used in transfer learning approaches to categorize masses

of breast cancer and calcification illnesses. A brand-new capsule

network design showed decreased processing times and increased

efficiency. When distinguishing between benign and malignant

mammographic breast masses, multi-stage transfer learning methods

that used pre-trained models and composite datasets demonstrated
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encouraging results. High classification accuracy was attained by hybrid

architectures that combined Bidirectional Long Short-Term Memories

(BiLSTM) with CNN. Furthermore, on datasets like CBIS-DDSM and

MIAS, a deep learning algorithm that combined optimization

algorithms and pre-trained models, including Inception v3 and

DenseNet, revealed efficient automated early detection of breast

cancer with high accuracy rates. Overall, these findings demonstrate

how the field of breast cancer diagnosis is changing through creative

methods and point to the possibility of further advancements in

precision and efficiency.
3 Proposed methodology

In this section, a proposed methodology for breast cancer

classification has been performed using mammogram images.

Figure 1 presents the proposed method, which consists of several

steps. The INbreast dataset was employed in the first step, and the

data augmentation process was performed using the traditional

technique to enhance the quantity of dataset and to improve the

accuracy of the model. Two novel CNN architectures named the

three-block bottleneck residual model and the four-block bottleneck

residual model have been proposed. Bayesian Optimization has

been employed to initialize hyperparameters throughout the

training phase. Features are extracted from the global average

pooling layer and fused using a novel technique canonical

correlation analysis-based technique. Afterward, a quantum

generalized normal distribution optimization algorithm was

implemented, and the best features were selected. In the next

step, neural network classifiers are utilized for the classification

process. Finally, the tumor diagnosis has been performed for the

malignant tumor using an explainable AI technique.
3.1 Dataset of the proposed work

INbreast data were gathered at Centro Hospitalar de S. Joao

[CHSJ], Breast Centre, Porto, a university hospital in Portugal. The
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study (cases) covered a total of 115 people. A total of 410

mammograms with CC and MLO images were performed (37).

The INbreast dataset includes two categories: benign and

malignant. Figure 2 displays sample images from this dataset,

containing 410 images belonging to 115 patients. These images

come in two different sizes: 2, 560  �   3, 328 pixels and 3, 328  �  

4, 084 pixels. In the experimental process, 108 mammogram images

of masses were used (38).
3.2 Proposed bottleneck layered model

In a layered model, a “bottleneck” or “bottleneck layer” usually

refers to a particular architectural element frequently employed in

deep neural networks, especially in CNNs. A bottleneck layer’s goal

is to lower the feature map’s dimensionality while retaining crucial

data, which might result in more effective and computationally less

expensive models. A particular kind of neural network building

block is called a bottleneck block. There are three main parts to each

bottleneck block.

1×1 Convolutional layer. This layer looks at a tiny portion of the

input data, similar to a small filter. It employs small filters with a

1×1 pixel size because it is called “1� 1.” By reducing the amount of

characteristics or channels in the data, this layer helps conserve

computational resources.

3×3 Convolutional layer. The 3� 3 convolutional layer employs

larger 3� 3 filters to detect intricate patterns and features within

the data. It functions on the decreased number of channels

generated by the preceding 1� 1 convolutional layer.

1×1 Convolutional layer. The 1� 1 convolutional layer comes

after the 3� 3 convolution, performing another round of 1×1

convolution. This additional step increases the number of

features, thus revitalizing and enriching the data representation.

3.2.1 Three-block bottleneck layered model
In this work, a three-block bottleneck layered model has been

proposed for the classification of breast cancer into malignant and

benign. Each block follows the arrangement described above.
FIGURE 1

Proposed methodology for breast cancer classification and diagnosis.
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Figure 3 displays the architecture of the three-block bottleneck

layered model. In this network architecture, the initial input

dimensions are 227� 227� 3, subsequently processed by the first

convolutional layer with a depth of 32, a filter size of 3� 3, a stride

of 2, and a ReLU activation layer. Following this, a maxpooling layer

with a 3� 3 filter and a stride of 1 is applied. After that, two

bottleneck blocks are added in parallel, each including a batch

normalization layer, convolution layer of depth 64, filter size of 1�
1, stride of 1, and ReLU activation layer. Then, a second batch

normalization layer is added to this block, followed by a

convolution layer of depth of 64, filter size of 3� 3, stride of 1,

and a ReLU activation layer. After that, a convolution layer is added

with depth of 64, filter size of 3� 3, and stride two, followed by the

ReLU activation layer and max pooling layer.

Next, two blocks are appended in parallel, each comprising a batch

normalization layer, followed by a convolution layer and a ReLU

activation layer. A second batch normalization layer is added, followed

by a convolution layer and a ReLU activation layer. Similarly, a third

batch normalization layer is introduced, succeeded by a convolution

layer and another ReLU activation layer. This sequence is repeated

once more with the addition of two more blocks.

Subsequently, a convolution layer with a depth of 1,024, a filter

size of 3� 3, and a stride of 2 is incorporated, followed by a ReLU

activation layer. Following this, another convolution layer is

introduced with a depth of 2,048, a filter size of 3� 3, and a

stride of 2, followed by a ReLU activation layer. Finally, the network

concludes with a global average pool layer, a fully connected layer,

and a softmax layer. Figure 4 shows the detailed architecture of the

three-block bottleneck layered model. The number of trained

parameters of three-block bottleneck residual model is 15.9M.

3.2.2 Four-block bottleneck layered model
The phrase “four bottleneck blocks” refers to how this neural

network is built by stacking three of these bottleneck blocks. Each

block follows the above-described structure. Figure 5 shows the

proposed architecture of four-block bottleneck layered.
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In this network architecture, the initial input dimensions are

227� 227� 3, subsequently processed by the first convolutional

layer with a depth of 32, a filter size of 3� 3, a stride of 2, and a

ReLU activation layer. Following this, a maxpooling layer with a

3� 3 filter and a stride of 1 is applied. After that, a bottleneck block

is added, including a batch normalization layer, convolution layer of

depth of 64, filter size of 1� 1, stride of 1, and ReLU activation

layer. Then, a second batch normalization layer was added to this

block, followed by a convolution layer of depth of 64, filter size of

3� 3, stride of 1, and a ReLU activation layer.

Following that, a block is added, which consists of a batch

normalization layer, followed by a convolution layer and a ReLU

activation layer. Subsequently, a second batch normalization layer is

introduced, followed by a convolution layer and a ReLU activation

layer. Similarly, a third batch normalization layer is integrated, with

a convolution layer and another ReLU activation layer. This

sequence is repeated once more with the addition of two

more blocks.

Afterward, a convolution layer is introduced with a depth of

1,024, a filter size of 3� 3, and a stride of 2, followed by a ReLU

activation layer. Following this, another convolution layer includes

a depth of 2,048, a filter size of 3� 3, and a stride of 2, followed by a

ReLU activation layer. To conclude, the network is finalized by

adding a global average pool layer, a fully connected layer, and a

softmax layer. Figure 6 shows the detailed architecture of the four-

block bottleneck layered model. In this figure, the details of layers

and weights are described. The number of trained parameters of the

four-block bottleneck residual model is 25.1M.

3.2.3 Training models and features extraction
The proposed model training process has been described in this

section. A 50:50 approach has been opted in the training process,

meaning that 50% of the images have been employed, and the

remaining images have been utilized for the testing method. Several

hyperparameters have been selected in the training process by

employing the Bayesian Optimization algorithm (39), such as a
FIGURE 2

Samples images of INbreast dataset.
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learning rate value of 0.000241, a momentum value of 0.776, epochs

of 50, mini-batch size of 64, and stochastic gradient descent as an

optimizer. After that, both models were trained and later utilized for

feature extraction. The number of extracted features for both model

is 2,048. The testing images have been implemented for the testing

feature extraction. The global average pooling layer has been

selected for the feature extraction. For both models, 2,048 features

are extracted and mathematically presented as follows.

Consider two trained proposed deep learning architectures,

such as D1 ∈ proposed three-block bottleneck architecture and D2

∈ proposed four-block bottleneck architecture, respectively. The

global average pool layer has been selected as a feature layer in both

models and defined by L1 for D1 and L2 for D2, respectively. Hence,

the activation has been performed as follows:

~F1(k) = A(D1, L1),  ~F1(k) ∈ R

~F2(k) = A(D1, L2),  ~F2(k) ∈ R

where ~F1(k) and ~F2(k) are feature matrix of dimensional N �
2, 048 and N � 2, 048, respectively. In the next stage, an enhanced

fusion technique is employed to fuse the extracted features.
3.3 Proposed features fusion

A novel features fusion technique has been proposed in this

work and presented under this section for the fusion of ~F1(k) and
~F2(k). A kernel-based canonical correlation analysis and entropy

technique have been implemented for feature fusion. The original

CCA technique (40) is a linear algorithm that can potentially reveal

the linear correlation between two feature vectors. However, there is
Frontiers in Oncology 06
a non-linearity problem among them; therefore, we employed a

kernel-based CCA technique for the fusion process.

Consider two feature matrix sets ~F1(k) and ~F2(k), defined as
~F1 = (u1, u2,…,   up)

T and ~F2 = (v1, v2,…,   vq)
T . If each variable has

n sample points, then the matrix Up�n = (u1, u2,…,   un) and Vq�n

= (v1, v2,…,   vn) are created. Suppose y maps the original

extracted feature vector Up�n into a high-dimensional feature

space Fu that is y : ui → y (ui) ∈ Fu; j map Vq�n into feature

space Fv that is j : vi → y (vi) ∈ Fv ; therefore, two feature

matrices y (U) = ½y (u1),y (u2),  …,  y (un)� and y (V) = ½y (v1),

y (v2),  …,  y (vn)� are designed.
The aim of kernel CCA is to find two basic vectors ay and bj in

feature space such that the correlation coefficient between Q =

aT
yy (U) and R = bTjj(V) is maximized, can be formulated by

Equations 1, 2.

rQ,R =
aT
yy (U)j(V)Tbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aT
yy (U)y (U)Tay

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bTjj(V)j(V)Tbj

q (1)

ay =on
i=1xi  y (ui) = y (U)x

bj =on
i=1hi  j(vi) = j(V)h

(
(2)

By putting the value of ay and bj into rQ,R, we computed the

following equation (Equation 3):

rQ,R =
xTy (U)Ty (U)j(V)Tj(V)hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTy (U)Ty (U)y (U)Ty (U)x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hTj(V)Tj(V)j(V)Tj(V)h
p

(3)

By employing the kernel trick, the inner product between y (ui)

and j(uj) can be replaced by a kernel function Ku(ui,   uj). In this

work, we employed the Gaussian kernel function instead of the
FIGURE 3

Proposed three-block bottleneck layered model architecture.
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sigmoid function. Mathematically, this function is defined as

follows is defined by Equations 4, 5:

Ku(ui,   uj) = y (ui)
Ty (uj) (4)

Kv(vi,   vj) = j(vi)
Tj(vj) (5)

Hence, the two kernel matrices are obtained as follows by

Equations 6, 7:

(Ku)ij = Ku(ui,   uj) (6)
Frontiers in Oncology 07
(Kv)ij = Kv(vi,   vj) (7)

Hence, the correlation between Q,R is defined as follows

defined by Equation 8:

rQ,R =
xTKuKvhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTKuKux
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hTKvKvh
p (8)

where xTKuKux = 1 and hTKvKvh = 1. Hence , final ly ,

maximizing the correlation coefficient among x and h is defined

as follows defined by Equation 9:
FIGURE 4

Proposed three-block bottleneck layered detailed architecture.
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max
x,h

xKuKvh     s : t : xTKuKux = hTKvKvh = 1 (9)

Based on the Lagrange multiplier method, the optimization

problem is transformed as follows by Equation 10:

               KuKv

KvKv                

" #
x

h

" #
= l

KuKu            

               KvKv

" #
x

h

" #
(10)

The entropy is employed on the transformed matrix to handle

the problem of uncertainty. The returned feature matrix K(u, v) is

optimized using the quantum generalized normal distribution

algorithm. The vector size of the fused feature is 1, 168� 4, 096.
3.4 Quantum generalized normal
distribution optimization algorithm

A novel optimization algorithm called GNDO has recently been

suggested by Zhang et al. (41). In this work, we improved the

working of GNDO by employing the quantum mechanism. The

GNDO is structured in a pretty simple way, and it intends to share

information through both global and local exploration and

exploitation. The present ideal location and mean position

influence the generalized normal distribution model utilized for

local exploitation. On the other hand, global exploration is

associated with the selection of three individuals at random.

Local exploitation. Finding better answers inside a search space

composed of everyone’s current placements is known as local

exploitation. An optimal generalized normal distribution model
Frontiers in Oncology 08
can be created based on the link between the normal distribution

and the individual distribution of the population. Mathematically,

the optimization method is formulated by Equations 11–27.

Zt
j = ∂j + ∁j �  CT ,   j = 1, 2, 3,…, n (11)

where the trailing vector Zt
j represents the   jth individual’s

trajectory at time   t , while ∂j   denotes their generalized mean

position, ∁j signifies the generalized standard variance, and CT

serves as the penalty factor. Furthermore, ∂j, ∁j, and ∈ can be

characterized as:

∂j =
1
3
(Vt

j + Vt
best + K) (12)

∁j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
 ½(Vt

j −   ∂ )2 + (Vt
best −   ∂ )2 + (K − ∂ )2�

r
(13)

CT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−log(g1)  

p � cos (2pg2),     if   x ≤ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−log(g1)

p � cos(2pg2 + p),  Otherwise

(
(14)

where x, y, g1, and g2 are randomly generated numbers within

the range of 0–1, and Vt
best represents the present best position.

Additionally, K denotes the current population’s mean position,

and it can be calculated using the following method:

K = o
n
j=1V

t
j

n
(15)

Next, the roles of the three parameters utilized, namely ,   ∂j, ∁j,
and ∈ within the designed local exploitation strategy are explained.
FIGURE 5

Proposed four-block bottleneck layered model architecture.
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• The generalized mean position, denoted as ∂j, plays a

crucial role. The current best individual is represented as

Vt
best carries valuable insights about the global optimal

solution. Consequently, the jth individual, Vt
j , is attracted

within the direction of the current best individual, Vt
best ,

increasing its likelihood of discovering an improved

solution. It is important to note that if Vt
best becomes

trapped in a local optimum, all individuals will continue

to gravitate toward the direction of Vt
best . This behavior can

lead to premature convergence of the entire population. To

resolve this, the mean position of the current population,
tiers in Oncology 09
denoted as K , is initialized. Individuals can shift toward the

direction lying between the best individual, Vt
best , and

the mean position, K . Furthermore, even if the position of

the current best individual, Vt
best , remains unchanged for

several generations, the mean position K evolves over

generations, offering potential benefits in discovering

improved solutions. Therefore, including the mean

position K in the designed local exploitation strategy can

improve the probability of partially avoiding local optima.

• The generalized standard variance, denoted as ∁j, serves the
purpose of augmenting the local search capability of the
FIGURE 6

Proposed four-block bottleneck layered model detailed architecture.
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GNDO approach. Furthermore, based on Equations (12)

and (13), generalized standard variances ∁j can be

considered as a random sequence utilized for performing

local searches around the generalized mean position ∂j.

Additionally, as per Equation (13), when the distance

between the position of the jth individual, Vt
j , and both

the mean position, K , and the position of the best

individual, Vt
best , is greater, the variation in the generated

random sequence becomes more pronounced. In other

words, when the fitness value of an individual Vt
j is very

poor, there is a low likelihood of it discovering a better

solution nearby. Consequently, a random sequence with

pronounced fluctuation can assist such individuals in

searching for improved solutions. Conversely, when an

individual, Vt  
j possesses a good fitness value, there’s a

higher probability of finding a better solution nearby.

Therefore, a random sequence with less fluctuation can

aid these individuals in achieving better solutions.

• The penalty factor, denoted as ∈, plays a role in the GNDO

algorithm by increasing the level of randomness in the

generated generalized standard variance. Most penalty

factors typically fall within the range of −1 to 1. It’s

important to note that the generated generalized standard

variances are always positive. Consequently, the penalty

factor can expand the search directions of GNDO, thereby

augmenting its search capability.
Global exploration. Global exploration involves systematically

searching a solution space in order to identify promising regions

that may contain valuable solutions. In GNDO, the global

exploration is executed by utilizing a trio of randomly chosen

individuals, a concept that can be formulated as follows:

Zt
j = Vt

j + r  �( g3j j � Z1)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Local   Information   Sharing

+ ( 1 − r)� ( g4j j � Z2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Global   Information   Sharing

(16)

Here, g3 and g4 are two random numbers following a standard

normal distribution, and r, referred to as the adjustment parameter,

is a random number within the range of 0–1. Additionally, there are

two trail vectors denoted as Z1 and Z2. Furthermore, the

computation of Z1 and Z2   can be described as follows:

Z1 =
Vt
j − Vt

l1,   if   f (V
t
j ) < f (Vt

l1)

Vt
l1 − Vt

j ,              Otherwise

(
(17)

Z2 =
Vt
l2 − Vt

l3,   if   f (V
t
l2) < f (Vt

l3)

Vt
l3 − Vt

l2,              Otherwise

(
(18)

where l1,   l2, and l3   represent three randomly selected integers

ranging from 1 to n, with the condition that l1 ≠ l2 ≠ l3 ≠ j.

Referring to Equations (7) and (8), the second term on the right-

hand side of Equation (6) can be termed as the “local learning

term,” signifying that solution p1 shares information with solution j

. Similarly, the third term on the right-hand side of Equation (16)

can be expressed as “global information sharing,” describing that

individual j receives information from individuals l2 and l3. The
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adjustment parameter, r, serves the purpose of balancing the two

information-sharing strategies. Additionally,   g3 and g4 are random
numbers following a standard normal distribution, which extends

the search space of GNDO during the global search process. The use

of the absolute symbol in Equation (16) is maintained for

consistency with the screening mechanism described in Equations

(17) and (18).

Novelty-proposed quantum mechanism. Various techniques

have been employed in selecting features. The metaheuristics

have various shortcomings, including the unbalanced

exploration and exploitation that impacts the algorithms’ ability

to converge. Since optimization algorithms are typically used for

feature selection, pattern recognition applications are expected to

have excellent accuracy. Applying the quantum theory

significantly enhances the typical GNDO optimization

algorithm’s performance and accuracy. The initial population is

generated with size N as:

Zk
j (k + 1) = Zmin + r � (Zmax − Zmin)   (19)

where Zi denotes the value of ith solution, r ∈ ½0, 1� denotes a
random number, Zmax and Zmin represent maximum and minimum

search space limits, and k is a current iteration of a feature space.

The fitness is computed in the next step and determine the best

solution based on the minimization function. To update the

solution of the original GNDO algorithm, the following

formulations have been employed.

Fpd = Zi,j(k + 1) (20)

=
Wi − b � Gbest − Zi,j(k)

� �� ln 1
u

� �
,     if   t > 0:5

Wi + b � Gbest − Zi,j(k)
� �� ln 1

u

� �
,     if   t ≤ 0:5

(
(21)

Wi = q + Pbest + (1 − q)*gbest(i) (22)

Gbest =
1
No

N
i=1p  Besti (23)

pd(Zj
i,k+1) =

1

Lji,k
exp −

2 zji,k+1 − ℵji,k
��� ���

Lji,k

0
@

1
A (24)

The symbol Wi denotes the local attractor, Pbest is best position

of ith feature space, and ɡbest(i) is the best feature among the entire

feature space. Updating the population is continued until the stop

condition is not met. In the end, neural network classifiers are

utilized to classify the chosen characteristics such as narrow neural

networks and tri-layered neural networks. A feature vector of N �
1, 572 has been attained for this work.

A fitness function specified in Equation (25a) processes this

procedure.

Ffc =
f (∅best )

f (∅k
i )

����
���� (28)

Every iteration, we take into account the average value of the

chosen features, and the cost function is described as:
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∅cost = ga � derror + gb � (
num _ feature
max _ feature

) (26a)

derror = 1 − waccuracy (27)

In the aforementioned equation, the coefficients are denoted by

ga and gb , with values of 0.99 and 0.01 for  wa   and wb , respectively.

The cost function is represented by ∅cost , and the accuracy derived

from the fitness function is represented by waccuracy : Neural network

classifiers are ultimately utilized to classify the final set of

optimized features.
4 Experimental results and analysis

Experimental setup. Experiments were conducted using the

INbreast dataset to classify breast cancer. The dataset was divided

into a 50:50 split, with 50% of images from each class allocated for

training and the remaining 50% for testing. A strong technique

called cross-validation was employed to stop overfitting. A 10-fold

cross-validation approach was employed for the testing results.

Several hyperparameters have been selected in the training process,

such as a momentum value of 0.776, epochs of 50, mini-batch size

of 64, and stochastic gradient descent as an optimizer and learning

rate value of 0.000241. All experiments were carried out on a

computer with a Core i7 processor, 128GB of RAM, and a 12GB

graphics card of RTX 3060 utilizing MATLAB2023a.

Classifiers and performance measures. For the classification task,

multiple neural network classifiers were employed, including wide

neural network (Wi-NN), medium neural network (Me-NN),

narrow neural network (Na-NN), bi-layered neural network (Bi-

NN), and tri-layered neural network (Ti-NN). The following

metrics are used to calculate each classifier’s performance:

accuracy (Acc), F1 score, precision rate, sensitivity rate, FNR, G-

Measure, Kappa, and AUC. Every classifier’s time is likewise

recorded in the test results.

The best performing classifier was identified by computing

performance indicators across a variety of neural networks. There

are 10 hidden layers and one fully connected layer in an Na-NN, 25

layers and one fully connected layer in an Me-NN, 100 hidden

layers and one fully connected layer in a Wi-NN, 10 layers and two

fully connected layers in a Tri-layered NN, and 10 layers and three

fully connected layers in a Bi-NN.

Experiments of the proposed framework. The evaluation of the

proposed framework has been performed based on the

following experiments:
Fron
▪ Experiment 1—classification using a proposed four-block

bottleneck network deep features.

▪ Experiment 2—classification using a proposed three-block

bottleneck network deep features.

▪ Experiment 3—classification using a proposed features

fusion approach.

▪ Experiment 4—classification utilizing the proposed quantum

GNDO best feature selection technique.
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▪ Comparison of the proposed framework accuracy and time

with several neural nets such as Alexnet, VGG19, Resnet50,

and a few more.

▪ Comparison among proposed quantum GNDO and few

other optimization algorithms in terms of accuracy

and time.
4.1 Proposed numerical results

Table 1 presents the classification results using a proposed four-

block bottleneck network deep features on the INbreast dataset. The

top-performing classifier is the Wi-NN, achieving an impressive

accuracy of 95.3%. This classifier also exhibits a sensitivity rate of

95.25%, precision rate of 95.3%, MCC of 90.57%, Kappa value of

90.56%, and F1 score of 95.49%, with a corresponding false negative

rate (FNR) of 4.75%. The Tri-NN classifier scored the second-

highest accuracy, which is 94.9%. Each classifier’s computational

time is also recorded, and it is found that the medium NN classifier

is computationally faster than the other classifiers on the list. The

noted time of MNN classifier is 102.92 s, whereas the highest time of

this experiment is 343.18 s. Figure 7A shows a confusion matrix of

this experiment. In this figure, the correct prediction rate of a

malignant class is 94.8%, whereas the FNR value was 5.2%.

Table 2 presents the classification results using a proposed

three-block bottleneck network deep features on INbreast dataset.

The medium neural network (MNN) classifier is a top-performing

classifier with an impressive accuracy of 94.6%. This classifier also

shows a sensitivity rate of 94.55%, precision rate of 94.65%, MCC of

89.19%, Kappa value of 89.19%, and F1 score of 94.84%, with a

corresponding FNR value of 5.45%. The WNN classifier achieved

the second-highest accuracy of 94.1%. Figure 7B shows a confusion

matrix of the MNN classifier that can be utilized to confirm the

performance of MNN classifier. This figure shows that the correct

prediction rate of a malignant class has been 93.9%. For every

classifier, the computing time is also mentioned, and the minimum

reported time of a bi-layered neural network is 43.705 s. In contrast,

the wide-NN classifier has the highest consumed time of 181.96 s.

Compared to experiment 1, the computational time of this

experiment is slighter; however, the precision rate of the first

experiment is better.

Table 3 describes the classification results of the proposed

feature fusion. In this experiment, the features of the proposed

three- and four-block bottleneck have been fused and the numerical

results computed. The top-performing classifier of this experiment

is wide neural network, which achieved an impressive accuracy of

94.7%, which a confusion matrix can confirm, as shown in

Figure 7C. This classifier also shows a sensitivity rate of 94.7%,

precision rate of 94.65%, MCC of 89.37%, Kappa of 89.37%, and F1

score of 94.88%, with a corresponding FNR of 5.3%. Compared with

Table 2, the performance of this experiment has been improved;

however, the performance of Table 1 (experiment 1) has been

better. Moreover, the computational time of the fusion process is

better than that of experiments 1 and 2. The fusion process’
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minimum and highest noted computational time is 31.923 (s) and

41.374 (s), respectively.

Finally, the proposed quantum GNDO-based feature selection

technique was applied to the fused feature vector, and the best

features were selected. Neural network classifiers are provided with

best-selected information in order to improve classification

accuracy. Table 4 shows the classification results of the proposed

quantum GNDO feature selection technique, which obtained the

best accuracy of 96.5% using a bi-layered neural network classifier.

This classifier’s other listed performance measures are sensitivity

rate of 96.45%, precision rate of 96.5%, MCC of 92.97%, Kappa of

92.97%, and F1 score of 96.64%. The Me-NN classifier got the

second best accuracy of 96.2%. The confusion matrix of the Wi-NN

classifier is shown in Figure 7D, which can be utilized to confirm the

overall computed performance measures. This figure shows that the

malignant class correct prediction rate is 95.9%, better than the

previous three experiments. Every classifier’s computation time has

been recorded, and the Bi-NN classifier demonstrates a relatively
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shorter execution time (5.9234 s) compared to the other classifiers.

Compared to the performance of the recent three experiments, the

feature selection technique improved the computational time. It

increased the overall performance of the proposed framework (i.e.,

accuracy, precision, Kappa, G measure).
4.2 Discussion

2This section explains the suggested framework along with a

thorough discussion of it. In the first stage, the accuracy and

computation time of the suggested framework’s performance were

compared to those of many neural nets. Alexnet, VGG19, Resnet50,

ResNet101, MobileNet-V2, and Densenet201 are the neural nets

that were chosen. The accuracy and time-based comparison are

displayed in Figure 8. The accuracy-based comparison of several

deep neural networks, including pre-trained and proposed three-

and four-block BN networks, is displayed on the left side of this
B

C D

A

FIGURE 7

Confusion matrices of all experiments: (A) confusion matrix of experiment 1, (B) confusion matrix of experiment 2, (C) confusion matrix of
experiment 3, and (D) confusion matrix of experiment 4.
TABLE 1 Classification results using a proposed four-block bottleneck network deep features on INbreast dataset.

Classifiers
Acc
(%)

Sensitivity
Rate (%)

Precision
Rate %

F1
Score
(%)

FNR
(%)

MCC
(%)

Kappa
(%)

AUC
Time
(s)

Na-NN 94.3 94.25 94.25 94.48 5.75 88.51 88.51 0.96 122.47

Me-NN 94.3 94.3 94.35 94.58 5.7 88.68 88.68 0.96 102.92

Wi-NN 95.3 95.25 95.3 95.49 4.75 90.57 90.56 0.97 343.18

Bi-NN 94.6 94.6 94.6 94.83 5.4 89.19 89.19 0.97 123.39

Ti-NN 94.9 94.85 94.85 95.07 5.15 89.71 89.71 0.97 176.51
fro
Bold values denotes the best results.
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image. The proposed four-block bottleneck reached the highest

accuracy of 95.3% bottleneck CNN design (four-block BN), while

94.6% was obtained by the second proposed architecture, three-

block bottleneck (three-block BN). The accuracy of the remaining

pre-trained models was 90.2, 90.9, 91.3, 92, 92.6, and 93.1%, in that

order. A time-based comparison is also made, and it is found that

because of their bigger parameters, the AlexNet and VGG19 models

require the longest runs, 344.56 (s) and 326.1 (s), respectively. The

suggested three-block BN architecture completed its execution in

87.22 s at the very least, and the four-block BN architecture took

102.92 s.

Different optimization algorithms, including the original

GNDO, the proposed quantum GNDO, PSO, Whale

Optimization, Jaya Optimization, BCO, Ant Lion Optimization,

and Tree Growth Optimization, are compared in Figure 9. Each

technique is substituted for the suggested quantum GNDO

algorithm in Figure 1, and the outcomes (accuracy and time) are
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computed. This graphic displays the accuracy plot on the left and

the time plot on the right. By analyzing this left-side plot, the Q-

GNDO algorithm’s accuracy is higher than that of all the other

specified methods. Furthermore, the graphic on the right side

demonstrates that the computing time of the suggested GNDO

algorithm is lower than that of the other feature selection methods.

Student’s t-test analysis. A statistical test called the Student’s t-

test is carried out to contrast the means of two independent groups

and analyze if there is a difference between them that is statistically

significant. We initially selected two classifiers, Me-NN and Ti-NN,

based on the highest and lowest accuracy. Then, we define a

hypothesis that ho = there is no significant difference in the

accuracy of the selected classifiers. Table 5 describes the

accuracies of selected classifiers. Initially, the difference is

computed, as shown in this table, and the mean value is 0.775.

After that, a standard deviation is computed, and a value of 0.531 is

obtained by employing Equation 28.
TABLE 4 The final classification results utilizing the proposed quantum GNDO based best feature selection technique.

Classifiers
Acc
(%)

Sensitivity
Rate (%)

Precision
Rate %

F1
Score
(%)

FNR
(%)

MCC
(%)

Kappa
(%)

AUC
Time
(s)

Na-NN 96.1 96.05 96.1 96.24 3.95 92.11 92.11 0.97 6.4629

Me-NN 96.2 96.2 96.25 96.39 3.8 92.45 92.45 0.97 6.4024

Wi-NN 95.8 95.75 95.85 96.01 4.25 91.61 91.59 0.98 10.089

Bi-NN 96.5 96.45 96.5 96.64 3.55 92.97 92.97 0.98 5.9234

Ti-NN 96.1 96.05 96.2 96.34 3.95 92.30 92.27 0.97 6.1177
fro
Bold values denotes the best results.
TABLE 3 Classification results using the proposed fusion of three-block bottleneck network and four-block bottleneck deep features.

Classifiers
Acc
(%)

Sensitivity
Rate (%)

Precision
Rate %

F1
Score
(%)

FNR
(%)

MCC
(%)

Kappa
(%)

AUC
Time
(s)

Na-NN 94.3 94.25 94.3 94.52 5.75 88.51 88.50 0.96 34.417

Me-NN 94.3 94.25 94.25 94.49 5.75 88.51 88.51 0.98 31.923

Wi-NN 94.7 94.7 94.65 94.88 5.3 89.37 89.37 0.98 41.374

Bi-NN 93.7 93.65 93.65 93.88 6.35 87.32 87.31 0.95 33.409

Ti-NN 93.1 93.05 93.05 93.32 6.95 86.11 86.11 0.95 40.857
Bold values denotes the best results.
TABLE 2 Classification results using a proposed three-block bottleneck network deep features on INbreast dataset.

Classifiers
Acc
(%)

Sensitivity
Rate (%)

Precision
Rate %

F1
Score
(%)

FNR
(%)

MCC
(%)

Kappa
(%)

AUC
Time
(s)

Na-NN 93.3 93.35 93.3 93.60 6.65 86.62 86.62 0.95 61.901

Me-NN 94.6 94.55 94.65 94.84 5.45 89.19 89.19 0.98 87.218

Wi-NN 94.1 94.15 94.05 94.29 5.85 88.18 88.17 0.98 181.96

Bi-NN 92.3 92.3 92.3 92.60 7.7 84.56 84.56 0.96 43.705

Ti-NN 93.4 93.4 93.45 93.68 6.6 86.79 86.79 0.96 59.943
Bold values denotes the best results.
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Standard  Deviation = s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(Diffi − m)2

N − 1

s
(28)

By employing the value of mean and standard deviation, the

final t value is computed by the following equation by Equation 29:

t − selection = t =

ffiffiffiffi
N

p � m
s

(29)

By this equation, the obtained value of t is 2.919, which is finally

employed for the confidence interval analysis. We checked the value

of t at p=0.05, and the returned value from the t-table is (−3.182,

+3.182), which shows that the value of t falls under this interval.

Hence, our hypothesis has been accepted.

In the last step, an indirect comparison of the proposed

framework’s accuracy with the recently published methods has

been conducted, as shown in Table 6. In this table, the authors in
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(30) obtained an accuracy of 83.19%, later improved by authors in

(42) at 95.6%. The other listed methods in this table, such as (43–

45), obtained accuracies of 95.1%, 93.0%, and 96.0%, respectively.

The proposed method obtained an accuracy of 96.5%, which is

better than the recently presented methods. In addition, for the

proposed method, the sensitivity rate is 96.45, the precision rate is

96.5, the F1 score value is 96.64, the MCC value is 92.97%, and the

Kappa value is 92.97%, respectively. Figure 10 illustrates the visual

results of the proposed architecture using the GradCAM technique.

The GradCAM is utilized for the localization of cancer regions

(malignant) after employing the deeper information of the last

convolutional layer. A red-to-blue scale is typically used in Grad-

CAM heatmaps, with red denoting the most relevant and blue the

least important. The color’s intensity indicates the level of

significance. Moreover, benign label images are also shown in this

image for visualization.
FIGURE 9

Comparison of proposed quantum GNDO features selection technique with several selection algorithms in terms of accuracy (%) and time (s).
TABLE 5 Selected classifiers for the evaluation of Student’s t-test.

Classifiers
Four-Bottleneck
Block Model

Three-Bottleneck
Blocks Model

Fusion
Generalized Normal

Distribution
Optimization

Medium NN 94.3 94.6 94.3 96.2

Tri-layered NN 94.9 93.4 93.1 96.1

Difference 0.6 1.2 1.2 0.1
FIGURE 8

Comparison of proposed deep neural nets with pre-trained deep neural networks in terms of accuracy (%) and time (s).
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5 Conclusion

In this proposed work, two novel deep learning architectures

(four- and three-block bottleneck) have been proposed along with a

novel Kernel CCA fusion and quantum GNDO optimization for the

improved classification accuracy of malignant and benign breast

cancer. The proposed architectures consist of a few parallel blocks

and a single bypass layer that improved the learning of a model on

the selected mammogram images. Bayesian Optimization is

employed to initialize hyperparameters of both architectures and

train up to 100 epochs. Features are extracted from the deeper layers

and fused using a novel Kernel CCA approach. Only important

features that improved the accuracy and precision rate of the

proposed framework compared to the individual proposed

architectures are fused in this step. In addition, to make the

proposed framework more efficient, we proposed a novel

quantum GNDO optimization algorithm that selects the best

features. The selection process improved the accuracy to 96.5%

and considerably reduced the computational time. The proposed
Frontiers in Oncology 15
framework is compared with state-of-the-art (SOTA) techniques

and achieves an enhanced accuracy.

Clinical challenge and future directions. In clinical practice, this

proposed architecture can face the following challenges: i) a higher

amount of training data is required; ii) high-computational

computers are required; and iii) an AI expert is required in the

clinic to evaluate the output. There are a few limitations of this work

that can be considered as an improvement in the future. The one

major limitation of this work is deeper layer feature extraction and

fusion of these features instead of fusion within the network. The out-

of-the-network fusion process consumed extra time. A self-attention

and vision transformer network will be designed to fuse the

information for improved accuracy and less computational time.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.
TABLE 6 Comparison of the proposed architecture accuracy with recent techniques.

References Year Dataset Method Accuracy (%)

(30) 2023 INbreast CAD methodology 83.19

(42) 2023 INbreast Feature Selection and Enhancement network (FSE-Net) 95.6

(43) 2023 INbreast computer Aided Diagnosis 95.1

(44) 2023 INbreast ResNet-50 convolutional neural network 93.0

(45) 2022 INbreast TwoViewDensityNet, an end-to-end deep learning-
based method

96.0

Proposed INbreast Accuracy=96.5%, Sensitivity Rate= 96.45, Precision rate=96.5,
F1 Score=96.64
FIGURE 10

Lesion localization results based on proposed four- and three-block bottleneck architectures using GradCAM.
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