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1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by

deficits in social communication, repetitive behaviors, and restricted interests (1). ASD is

associated with a broad range of concomitant conditions, with epilepsy being one of the

most significant and frequent (2, 3). Although ASD and epilepsy exhibit different

symptoms and underlying causes (4), there is a strong relationship in their physical and

cognitive manifestations (4, 5), as confirmed by the fact that up to 30% of individuals

with ASD may have epilepsy (6).

In a recent meta-analysis, a comprehensive exploration of seventy-three studies delved

into the point prevalence of active epilepsy, ultimately distilling 67 estimates from 63

unique studies for inclusion in the meta-analysis (6, 7). The resultant synthesis revealed

a pooled point prevalence of active epilepsy standing at 6.38 per 1,000 persons (7).

Shifting focus to the USA, several population-based studies in the pediatric realm

uncovered a notably higher incidence of epilepsy within the first year of life, ranging

from 82.1 to 118 per 100,000 person-years, eclipsing the rate observed in older children,

which hovered around 46 per 100,000 person-years. An additional prospective study

mirrored this trend, recording an incidence of 75 per 100,000 live births before 6

months and 62 per 100,000 between 6 and 12 months—an unprecedented revelation

that diverges significantly from previously published estimates (8). Beyond point

prevalence, twelve studies contributed insights into the annual prevalence of active

epilepsy (9). The pooled outcome showcased an annual prevalence of 2.83 per 1,000

persons, while the median annual prevalence charted at 3.91 per 1,000 persons (10).

Nestled within this complex tapestry of prevalence, the pediatric population grappling

with both ASD and epilepsy emerges as a multifaceted, multidimensional conundrum.

This intricate landscape unfolds against a backdrop of diverse symptoms, genetic

foundations, and clinical expressions (11). ASD and epilepsy embark on an evolutionary

journey from childhood to adulthood, casting a growing therapeutic demand that

resonates not only with patients and their families but reverberates within educational

systems and society at large (11, 12).

Delving into the realm of seizures, their classification unfolds into episodes

characterized by either motor or non-motor symptoms—a spectrum encompassing

generalized tonic-clonic seizures, clonic seizures, tonic seizures, and myoclonic seizures

(13–15). Typical absences manifest with a sudden onset, interrupting ongoing activities,

featuring a fixed gaze, unresponsiveness to speech, and a duration spanning seconds to

half a minute, culminating in a swift recovery (16). Crucially, it’s paramount to

underscore that the term “absence” doesn’t equate to a fixed gaze, as this characteristic
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may also manifest in focal onset seizures (17). In contrast, atypical

absence displays more pronounced changes in tone compared to

typical absence, marked by a non-abrupt onset or termination.

Myoclonic absence introduces a sudden, brief (<100 ms),

involuntary, non-repetitive, and non-sustained contraction with

associated absence. Adding another layer to this intricate

spectrum, absence with eyelid myoclonia involves eyelid jerks

occurring at a frequency of less than 3 per second, often with

eyes deviated upward, typically lasting less than 10 s. This

phenomenon is frequently triggered by eye closure and bears a

high likelihood of photosensitivity (18).

In 2017, the ILAE Epilepsy Classification unfurled three

diagnostic levels (15), enriching our understanding of this

intricate landscape. The first level takes root in the seizure type,

encompassing an expansive array of concepts—be they focal,

generalized, or of unknown onset. This level also introduces two

pivotal concepts woven into the diagnostic fabric: comorbidity

(associated pathological entities) and etiology. Some patients may

find a resting place at this diagnostic level due to investigational

limitations, either as a valid endpoint or as the precursor in their

diagnostic journey (19). Stepping into the second diagnostic level,

the scene unfolds when at least one EEG and brain imaging

study graces the diagnostic landscape. Here, the focus shifts to

determining the type of epilepsy—focal, generalized, combined

(merging both focal and generalized seizures, a common theme

in various epileptic syndromes), or of unknown origin.

Etiological diagnoses cast their net into structural, genetic,

infectious, metabolic, immune, or unknown categories (20). In

the intricate dance of medical complexities, a patient may wear

more than one etiological hat. For instance, a patient with

tuberous sclerosis might proudly display cortical tubers,

embodying both a structural and genetic etiology (21). The final

frontier, the third diagnostic level, immerses us in the realm of

epileptic syndromes—a composite tapestry weaving together

common characteristics such as seizure types, specific EEG

findings, age-dependent imaging features, onset and remission

age, specific triggering factors, daily variations, prognosis

nuances, and distinctive intellectual and psychiatric

comorbidities. It’s a canvas where etiological and treatment

implications unfurl their tales (22, 23). This paradigm-shifting

classification boldly swaps out the term “benign” for the more

apt descriptors “self-limited” or “drug-responsive.” The unfolding
TABLE 1 Comorbidities associated with ASD or epilepsy condition.

Disorders/Comorbidities ASD (%) Epilepsy (%)
Anxiety disorder 10–80 64

Sensory processing disorder >80 20–35

Sleep disorder 40–80 2.7

Attention deficit Hyperactivity disorder 30–80 4.4

Oppositional defiant disorder 20–80 1.7

Intellectual disability 20–60 1.8–4.1

Obsessive-compulsive disorder 10–40 12

Depression 10–30 2.1

Tics 10–20 -

Adapted from Popow et al. (24) and Boesen et al. (25).
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narrative beckons further exploration and inquiry into the ever-

evolving lexicon of epilepsy classification.

Regarding ASD, there is significant interindividual clinical

variability. Within families, it has been indicated that both

genetic and environmental factors influence the phenotypic

expression of ASD (12, 13). Many of the core or nuclear

symptoms, while reduced to deficits in social communication and

interaction and repetitive or stereotyped behaviors, do not

manifest their extensive symptomatic expression (10–13).

The neural pathways proposed as the biological basis in ASD

associated with epilepsy are related to: (1) imbalance between the

glutamatergic (excitatory) and GABAergic (inhibitory) pathways;

(2) alteration in the cholinergic pathway; and (3) disruption in

synaptic plasticity and oxidative stress (23).

ASD and epilepsy are associated with a high level of psychiatric

comorbidity, including anxiety, self or hetero-aggression,

depression, hyperactivity, obsessive-compulsive disorder,

attention difficulties, tics, eating disorders, executive function

impairment, and sleep disorders, which may require

pharmacological therapy at some stage of evolution, as well as

other relevant symptoms (24), highlighted in the following Table 1:

There are commonly other comorbidities related to severe

neurological alterations. A well-studied example of which

association between ASD and epilepsy is tuberous sclerosis, in

which infantile epileptic spasms appear to be a risk factor for

ASD regardless of the location and number of brain tubers (26).

All of this is related to the fact that, during the ontogenesis of

the nervous system, certain brain areas mature chronologically

before others, following a genetically determined program (27). If

this maturation process is interfered with by frequent seizures,

the consequences can be serious for the consolidation of

emerging cognitive functions and the development of the social

brain (28). Moreover, epileptiform discharges can occur in the

absence of clinical seizures but still impact the brain’s maturation

process (29). Therefore, tuberous sclerosis represents one of the

most attractive etiopathogenic models—genetic, biochemical,

structural, and neurophysiological—to understand the

bidirectional interaction between ASD and epilepsy (27).

Considering this information, the main objective of this

opinion article is to discuss and update the primary

pharmacological and surgical treatments for the care of the

pediatric population diagnosed with ASD and epilepsy.
2 Pharmacological treatment in the
pediatric population with ASD and
epilepsy

The pharmacological treatment choice in the pediatric

population with ASD and epilepsy is complex and requires an

interdisciplinary approach. Specialists in neurology, pediatrics,

and psychiatry must design a personalized treatment plan to

address the child’s needs (28).

As mentioned earlier, the comorbidity of ASD and epilepsy

presents a wide range of associated symptoms in individuals (29).

The pharmacological care for this population becomes
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significantly complex. Many experts recommend treatment plan

begins with the management of ASD-related symptoms using

medications that help reduce or alleviate these symptoms (30).

Several studies refer to the administration of drugs such as

antipsychotics or antidepressants to address the semiological

characteristics that appear in this disorder (31). Table 2 provides

a list of the most common alterations in ASD and their

pharmacological treatment.

Medications administered for psychiatric symptoms work by

reducing or preventing abnormal electrical activity in the brain

that leads to seizures. Currently, there are different drugs

available, and their selection depends on the type of seizure, the

child’s age, and comorbid conditions (32–35). In cases where a

person with ASD does not experience seizures, the

administration of medications to address psychiatric symptoms

will focus on addressing behavioral, emotional, or cognitive

aspects associated with ASD. These medications may be

prescribed to manage issues such as anxiety, hyperactivity,

aggression, sleep disorders, or other psychiatric symptoms that

may arise in individuals with ASD. The choice of medication will

depend on the specific nature of the symptoms and the

assessment by the healthcare professional. Medications

administered for psychiatric symptoms associated with ASD are

often used in combination with other types of medications such

as anxiolytics, antipsychotics, and antidepressants, depending on

the epileptic symptoms and the severity of the epilepsy episodes

the person is experiencing (35). Table 3 details the main drugs

for treating epilepsy based on the symptoms presented by

individuals with ASD and epilepsy.

Another significant challenge is the high interaction among the

drugs described above (26–37). Antipsychotic drugs have

significant reactions and drug interactions with anticonvulsants

and mood stabilizers, including carbamazepine, though not all of

these interactions occur negatively (38, 39). Identifying the

consequences of such combinations is highly relevant, as, in

some cases, serious adverse reactions may develop. This is

exemplified by De León et al.’s (40) of interactions between anti-

seizure medicines (ASMs) and second-generation antipsychotics

potentially leading to exceptional cases of pancreatitis,

agranulocytosis/leukopenia, and heatstroke. Additionally,

Hitchings (41), in a review study, suggests that antipsychotics, by
TABLE 2 Pharmacological Treatment of symptoms associated with ASD.

Symptoms Available medications
Behavioral symptoms,
restlessness, self-aggression

Antipsychotics, Anticonvulsants

Socialization problems Oxytocin, D-cycloserine, Memantine
(experimental)

Sleep disorders Melatonin, Antipsychotics, Antihistamines

Attention deficit hyperactivity
disorder (ADHD)

Atomoxetine, Methylphenidate, Amphetamines,
Desmethylamphetamines, Guanfacine

Tics Antipsychotics, α2 agonists, SSRIs

Depression SSRIs, SNRIs + Antipsychotics

Anxiety and OCD SSRIs (high doses), Pregabalin

Psychosis Antipsychotics

Adapted from Popow et al. (24).
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reducing the antiepileptic effect of these drugs, may reduce the

efficacy of anti-seizure drugs.

Clozapine, known for reducing the seizure threshold, is

linked to dose-dependent electroencephalographic alterations,

impacting approximately 3%–6% of patients under

clozapine treatment.

Asenjo Lobos et al. (42) highlight favorable outcomes in

combined therapy involving antipsychotics for patients exhibiting

partial response, as evidenced in several double-blind studies.

The combinations encompass olanzapine paired with lithium or

valproate, risperidone combined with lithium or valproate,

haloperidol alongside lithium or valproate, and quetiapine in

conjunction with lithium or valproate.

Similarly, the effectiveness of combined therapy has been

demonstrated in open-label studies for patients with both ASD

and epilepsy showing partial response. Such studies endorse

combinations like olanzapine with lithium, valproate, or

carbamazepine; risperidone paired with lithium or valproate, and

quetiapine combined with lithium or valproate (43). The

simultaneous administration of these medications should be

approached with caution due to the potential emergence of toxic

symptoms at high doses. Moreover, acute manic symptoms,

extrapyramidal effects, physiological disorders, or brain damage

could manifest, altering the neurological structure in which the

epilepsy focus is located (44–46).
3 Surgical treatment in the pediatric
population with ASD and epilepsy

Medical treatments for ASD and epilepsy typically focus on

managing the core symptoms of both disorders (ASD and

epilepsy), addressing concurrent physical conditions such as sleep

disorders, gastrointestinal issues, and sensory difficulties (47).

However, unresolved issues persist in understanding the

comorbidity between ASD and epilepsy. One fundamental

challenge lies in the relationship between seizures and the central

social symptoms of ASD. Although there is a high prevalence of

epilepsy in individuals with ASD, the exact nature of how

seizures contribute to the social aspects of ASD remains an

actively researched area. Significant variability in the frequency of

seizures also raises questions. While some children with ASD

and epilepsy experience recurrent episodes, others may have a
TABLE 3 Preferred pharmacological treatment for addressing epilepsy in
the pediatric population with ASD.

Drug Adverse effect Indicated for epilepsy
type

Carbamazepine Sedation, drowsiness, anxiety,
visuomotor incoordination,
attention deficit, hyperactivity,
behavioral disorders, or learning
problems (27–30, 33–36)

Focal and focal to bilateral
tonic clonic

Sodium
valproate

Drowsiness, irritability, sleep
disturbance, or motor
incoordination (26–32)

Focal, focal to bilateral tonic
clonic, generalized tonic
clonic, and myoclonic
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single episode in their lifetime. This variability not only

complicates the understanding of the relationship between

seizures and ASD but also presents challenges in identifying

predictive patterns and personalized treatment strategies. Epilepsy

itself represents a significant clinical problem, but the decision to

resort to surgery must be approached with caution and is

reserved for cases of refractory epilepsy with clearly defined

cortical abnormalities that require surgical intervention (48). This

decision entails the need for an accurate diagnosis and the

identification of suitable candidates for surgical procedures,

which remains an area in development. The comorbidity between

ASD and epilepsy remains an unresolved clinical issue,

exacerbated by a substantial lack of data and the complexity of

interactions between both disorders (49). Ongoing research is

essential to unravel the underlying mechanisms, better

understand the variability in clinical presentation, and develop

more effective and personalized treatment approaches for those

affected by this comorbidity (50).

Upon receiving a referral, it is customary for the patient to

undergo a thorough preoperative evaluation with the aim of

identifying the epileptogenic zone and evaluating the patient’s

suitability for surgery (51). This evaluation typically includes

a detailed medical history (analyzing clinical semiology,

seizure frequency, severity, and prior treatments), video

electroencephalography (EEG), magnetic resonance imaging

(MRI) using an epilepsy protocol, and neuropsychological

testing (52). Depending on the clinical context, additional tests

such as positron emission tomography, single-photon emission

computed tomography, magnetoencephalography, functional

magnetic resonance imaging, and Wada testing may be

considered (52, 53). The results of these assessments are then

reviewed by a multidisciplinary team, which provides

treatment recommendations. In certain cases, supplementary

information is gathered through the surgical placement of

intracranial electrodes to enhance the localization of the

epileptogenic focus and identify critical brain areas for

preservation during surgery (53).

For focal-onset seizures that can be localized in a surgically

manageable area, available options encompass lesionectomy,

temporal lobectomy, or extratemporal cortical resection. These

procedures may be executed as a single intervention or in two

stages, occasionally preceded by invasive EEG monitoring (54).

In more severe epilepsies, alternatives may include

functional disconnection (hemispherotomy) or anatomical

hemispherectomy (complete removal of a hemisphere)

(53, 54). Patients experiencing drop seizures, ineligible for

resective options, may be candidates for palliative

disconnection through a callosotomy of the corpus callosum.

Palliative interventions like vagus nerve stimulation (VNS),

and more recent approaches such as responsive

neurostimulation (RNS) and deep brain stimulation (DBS), are

also viable for patients not suitable for resection (55). Lastly,

advancing technologies like laser ablation and gamma knife

radiosurgery (GK) are continuously emerging, fostering

ongoing exploration of minimally invasive approaches to

addressing epileptogenic lesions (55, 56).
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3.1 Surgical resective techniques for
epilepsy

Lesionectomy stands out as a viable choice for addressing

diverse lesions that provoke seizures, including neoplasms (such

as gangliogliomas, oligodendrogliomas, astrocytomas, and

dysembryonic neuroepithelial tumors) and vascular

malformations (cavernomas and arteriovenous malformations)

(57–59). In situations where there is alignment among seizure

semiology, EEG monitoring findings, and lesion localization on

magnetic resonance imaging (MRI), lesionectomy without the

need for invasive monitoring is regarded as a favorable option

(55–59). While the ultimate objective is complete lesion removal,

this can prove challenging in eloquent regions. In many

instances, the resection is confined to a portion of the lesion,

such as retaining surrounding hemosiderin in the case of

cavernomas and arteriovenous malformations (60).

Results after lesionectomy are generally excellent, particularly

in pediatric patients. The extent of resection is critical, as total

resection has been positively correlated with seizure freedom,

reaching approximately 80%, while subtotal resection has a

success rate of around 50%. Intraoperative electrocorticography

guides resection and often results in the removal of perilesional

tissue, with the potential to improve long-term seizure freedom

rates (60, 61).

As for temporal lobectomy, one of the most studied surgical

options, randomized controlled trials have shown that 58% of

patients are seizure-free one year after surgery, compared to only

8% with medical management. The complication rate is relatively

low, although side effects such as contralateral upper

quadrantanopsia, loss of verbal memory, and, rarely, depression

may arise (60–62). The success rate of temporal lobectomy in

children is reported to be around 76% (62).

Extratemporal resection typically requires prior implantation of

intracranial electrodes to map the epileptogenic focus and preserve

eloquent brain areas. Although the effectiveness of extratemporal

resection is lower than that of temporal foci, it significantly

surpasses continuous medical management, with seizure freedom

rates close to 56% in pediatric patients, according to a meta-

analysis. Variability in results is associated with seizure duration,

the presence of epileptogenic lesions, and/or partial seizures (63).

In extreme cases of catastrophic epilepsy in children and

adolescents, such as hemimegalencephaly, hemispherectomy is

presented as an option. This intervention aims to functionally

disconnect or, in more aggressive cases, physically remove an

affected cerebral hemisphere (64). “Hemispherotomy,” a less

resective variant, has demonstrated similar success rates, with an

overall seizure freedom rate of 73.4%. Functional disconnection,

known as “disconnective hemispherectomy,” reduces

intraoperative blood loss and minimizes anatomical resection,

albeit with slightly higher risks of hydrocephalus (14%) and

superficial hemosiderosis (65). Other less resective modifications

have emerged under the term “hemispherotomy.” It is

emphasized that up to approximately 14 years of age, pediatric

and adolescent patients experience greater brain plasticity,
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contributing to substantially higher neurological recovery

compared to adults undergoing more aggressive surgical

interventions (64–66). Systematic studies have reviewed various

hemispherectomy techniques in the pediatric/adolescent

population, reporting an overall seizure freedom rate of 73.4%,

with no significant differences in outcomes based on the type of

hemispherectomy. Hemispherotomies, however, are associated

with a lower risk of complications compared to other techniques.

Additional research supports similar outcomes, highlighting

seizure freedom rates of 63% or higher in patients five years

post-surgical intervention (67).
3.2 Palliative procedures

Callosotomy is frequently reserved as a surgical intervention

for managing medically resistant atonic seizures. Its primary

objective is to reduce the occurrence of drop attacks,

subsequently minimizing injuries resulting from falls. In contrast

to procedures aiming for complete seizure freedom, callosotomy

is considered a palliative measure (60–62).

Within this intricate landscape, the decision-making process

between opting for a partial callosotomy, involving the anterior

two-thirds of the corpus callosum, and a complete callosotomy

remains a nuanced endeavor without a definitive consensus. The

pursuit of superior seizure control leans decisively towards a

complete callosotomy, boasting a remarkable 91% achievement of

Engel class I–III, in stark comparison to the relatively lower 75%

observed in partial callosotomies (59–61). The inclination

towards the latter procedure may stem from a strategic intent to

mitigate the occurrence of disconnection syndromes. While

transient acute disconnection syndromes find a place in relative

commonality, the occurrence of permanent disconnection

syndromes is a rare phenomenon. Furthermore, strategic

measures such as restricting the extent of callosal transection and

orchestrating the procedure at a younger age or in staged

interventions appear promising avenues to curtail the risk of

disconnection syndromes (64).

On a divergent note, Vagus Nerve Stimulation (VNS), having

received FDA approval in 1997, emerges as a compelling

alternative for grappling with intractable partial-onset epilepsy,

particularly in patients aged 12 and older. Despite the enigma

surrounding its mechanism of action, VNS is postulated to exert

its effects through thalamocortical projections. While the surgical

complications of VNS are notably infrequent, boasting an

infection rate of 4%–6%, and accompanied by generally well-

tolerated side effects like hoarseness and voice changes, the

occurrence of asystole is an exceedingly rare event, reported in

less than 0.1% of patients. A recent meta-analysis paints a

compelling picture, revealing a 50% reduction rate in seizures for

half of the patients undergoing VNS therapy. Notably, this

therapeutic avenue extends its benefits to both pediatric and

adult populations with generalized epilepsy, despite its off-label

application in both cohorts (58, 64).

In tandem with VNS, Responsive Neurostimulation (RNS)

emerges as a notable player, securing FDA approval in 2013.
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Current indications cast a broad net, encompassing individuals

aged 18 or older who grapple with at least three partial-onset

seizures monthly, have experienced treatment failures, and have

undergone comprehensive diagnostic tests to pinpoint a seizure

focus amenable to stimulation (65). While the current approval

lends credence to its clinical utility, ongoing research endeavors

strive to illuminate its long-term efficacy, particularly in the

context of treating medically resistant epilepsies in the pediatric

population. A recent multicenter, double-blind, randomized

controlled trial involving 191 patients paints an optimistic

picture, indicating a median reduction of 44% in seizures at 1

year and an even more encouraging 53% at the 2-year mark

within an open-label treatment interval (68). These strides in

neuromodulatory therapies underscore a continuously evolving

landscape, offering renewed hope and options for patients

ensnared by the clutches of treatment-resistant epilepsy.

Finally, the precise mechanism by which Deep Brain

Stimulation (DBS) exerts its anticonvulsant effect is not precisely

known, but the most widely accepted explanation is that it

induces an acute electrical disruption of synchronous activity at

its origin, necessary for the propagation of ictal activity (48). It is

noteworthy that, in DBS, most efferents of a target can follow

action potentials at the stimulation frequency (49, 50). However,

the generation of action potentials may be interfered with by the

stimulation of afferent fibers towards the dendrites and somas of

the target neurons, which can be excitatory or inhibitory,

affecting the soma (49, 50). Nevertheless, the palliative option of

deep brain stimulation for patients with poorly localized focal or

generalized-onset epilepsy has been proposed for analysis,

considering it as an emerging treatment in pediatrics, although it

lacks FDA approval (49, 61).
3.3 Emerging minimally invasive therapies

In the realm of cutting-edge therapeutic approaches, interstitial

laser thermal therapy guided by MRI emerges as a promising, less

invasive method for ablating epileptic foci. This innovative

procedure involves the meticulous placement of an optical fiber

catheter, encased in a cooling sheath, within an identified

epileptogenic focus. The subsequent application of laser energy

orchestrates thermal ablation in the region of interest, unfolding a

novel frontier in epilepsy treatment (67). Executed within the

confines of the MRI suite, this procedure leverages real-time

thermal imaging to meticulously monitor the treatment’s

progression, estimating the size and final location of the lesion with

unparalleled precision. Currently, the narrative of its application in

epilepsy treatment is predominantly woven through the fabric of

case reports and small case series (68–70). The roster of treated

lesions encompasses periventricular heterotopias, hypothalamic

hamartomas, cortical dysplasia, and tubers. A groundbreaking study

featuring 268 consecutively treated patients with Magnetic

Resonance-guided Laser Interstitial Thermal Therapy (MRgLITT)

in the medial temporal lobe has unveiled compelling rates of

seizure freedom over time: 55.8% at 1 year, 52.5% at 2 years, and

49.3% at the last follow-up of ≥1 year (median of 47 months).
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Further bolstering these findings, combined results of Engel I or II

showcase encouraging rates of 74.2% at 1 year, 75.0% at 2 years,

and 66.0% at the last follow-up. Notably, an independent

association has been discerned between preoperative focal to

bilateral tonic-clonic seizures and the recurrence of seizures. In

a striking turn of events, among patients grappling with

seizure recurrence, a significant cohort attained seizure freedom

post subsequent surgeries—be it anterior temporal lobectomy

(ATL) or a repeat of MRgLITT—underscoring the profound

effectiveness of these supplementary approaches in the realm of

long-term seizure control (71).

Turning the narrative lens to another groundbreaking frontier,

Gamma Knife (GK) radiosurgery has ascended in recent years as a

precision-driven, stereotactic powerhouse for delivering focal

radiation to intracranial epileptogenic targets, all while sparing

surrounding tissues from appreciable radiation damage (72). This

sophisticated tool offers a ray of hope in the treatment of epilepsy,

presenting the capability to administer targeted radiation doses to

specific regions of the affected brain. By elegantly sidestepping the

need for whole-brain irradiation, the GK minimizes the collateral

damage and toxicity associated with conventional radiotherapy. Its

prowess in delivering focused and precise treatments positions it as

a valuable asset in the nuanced landscape of epilepsy management,

particularly when pharmacological avenues have proven futile.

Beyond the realm of epilepsy, this technology currently finds

widespread application in focal radiosurgical ablation, ranging from

intracranial metastatic diseases and pituitary lesions to acoustic

neuromas, refractory trigeminal neuralgia, and various other

neurosurgical conditions (73). Its efficacy has been scrutinized in

the context of mesial temporal lobe epilepsy, particularly when

there is telltale evidence of hippocampal sclerosis in magnetic

resonance imaging—a scenario traditionally addressed through

selective amygdalohippocampectomy (74). For those navigating the

treacherous waters of surgical risks or having faced disappointments

in prior surgical interventions for epilepsy, Gamma Knife

radiosurgery emerges as a beacon of hope—a non-invasive

alternative boasting successful long-term seizure freedom outcomes

of 60% or more (75–77). However, the saga continues with an

earnest call for further research and clinical studies to meticulously

evaluate the effectiveness and potential enduring benefits of

stereotactic radiosurgery, notably the kind bestowed by the Gamma

Knife, in the expansive tapestry of epilepsy treatment. This quest

extends to comparing its outcomes with other therapeutic

modalities, charting the course for the future of epilepsy care.
4 Discussion

This opinion article aimed to describe and analyze the most

effective pharmacological and surgical treatments for addressing

the symptoms in the pediatric population with ASD and epilepsy.

The analysis conducted in this study identified the challenge of

treating the clinical picture experienced by individuals with ASD

and epilepsy. Approaching this comorbidity from a pharmacological

perspective is a complex task. Firstly, pharmacological treatment

does not allow for the elimination of the aversive symptoms of
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ASD and epilepsy; instead, it focuses on alleviating and reducing

the patient’s symptoms. Furthermore, the heterogeneity of

symptoms in individuals with ASD and epilepsy significantly

complicates the selection of combined drugs to reduce behavioral

and physiological symptoms of ASD, as well as epilepsy episodes.

Additionally, drug interactions contribute to unwanted effects in

patients with this comorbidity.

Secondly, medical interventions focus on alleviating symptoms by

addressing concurrent physical conditions. For those resistant to

pharmacotherapy, surgery, such as temporal resection or functional

disconnection, is considered effective, with careful attention to

thorough preoperative evaluation. Additionally, palliative procedures

like callosotomy and neuromodulatory therapies such as VNS, RNS,

and DBS offer promising treatments for patients who are not

resection’ candidates. Emerging therapies, like laser ablation and

GK, present minimally invasive approaches. These surgical and

therapeutic options constitute comprehensive strategies to address

the complexity of the comorbidity between ASD and epilepsy,

emphasizing the need to consider approaches beyond conventional

medical options to enhance the quality of life for patients.

Current scientific literature does not present significant results

that allow determining the most effective treatment choice for the

pediatric population with ASD and epilepsy (37–42, 44, 53, 55–57).

In this regard, (I) the clinical, genetic, and physiopathological

heterogeneity, the multiple possible targets, and the different

pathways involved in the pathogenesis; (II) the lack of case-control

and cohort follow-up studies from the onset of symptoms in

preschoolers (2 years or less) that differentiate between the natural

evolution of the condition and the evolution of the condition

with intervention; (III) the difficulty in conducting studies

with patient and family consent; (IV) the absence of biomarkers

that allow grouping similar patients with more homogeneous,

evaluable, and reproducible clinical characteristics; (V) the lack

of randomized, placebo-controlled, and double-blind studies;

(VI) the difficulty in determining the duration of studies, as

the evolution of children with ASD and epilepsy undergoes

modifications not only attributable to pharmacological interventions

but also inherent to development; and (VI) the lack of family

adherence to research significantly limit the treatment plan for

individuals with this comorbidity (11–14).

In conclusion, the treatment of children with ASD and epilepsy

requires an interdisciplinary approach that includes rehabilitation,

pharmacology, and ultimately, surgical intervention (23). It is

important to mention that these treatments can be costly and may

not always be available to all children with ASD and epilepsy (2–5).

Accessibility to treatments is a significant concern for parents,

caregivers, and healthcare professionals (6), which can greatly

influence the choice of the most suitable treatment modality (24).

Additionally, pharmacological, and surgical treatments may have

side effects, emphasizing the importance of closely monitoring

children during treatment to minimize them as much as possible

(37). Finally, it is essential to consider the warning signs of ASD

and epilepsy to provide early attention to comorbidity, allowing for

a differential diagnosis and designing evidence-based personalized

interventions to enhance children’s development and ensure an

improvement in their quality of life (13).
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