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Olive (Olea europaea L. subsp. europaea) is one of the most important crops of

the Mediterranean Basin and temperate areas worldwide. Obtaining new olive

varieties adapted to climatic changing conditions and to modern agricultural

practices, as well as other traits such as biotic and abiotic stress resistance and

increased oil quality, is currently required; however, the long juvenile phase, as in

most woody plants, is the bottleneck in olive breeding programs. Overexpression

of genes encoding the ‘florigen’ Flowering Locus T (FT), can cause the loss of the

juvenile phase in many perennials including olives. In this investigation, further

characterization of three transgenic olive lines containing an FT encoding gene

from Medicago truncatula, MtFTa1, under the 35S CaMV promoter, was carried

out. While all three lines flowered under in vitro conditions, one of the lines

stopped flowering after acclimatisation. In soil, all three lines exhibited amodified

plant architecture; e.g., a continuous branching behaviour and a dwarfing growth

habit. Gene expression and hormone content in shoot tips, containing the

meristems from which this phenotype emerged, were examined. Higher levels

of OeTFL1, a gene encoding the flowering repressor TERMINAL FLOWER 1,

correlated with lack of flowering. The branching phenotype correlated with

higher content of salicylic acid, indole-3-acetic acid and isopentenyl adenosine,

and lower content of abscisic acid. The results obtained confirm that

heterologous expression of MtFTa1 in olive induced continuous flowering

independently of environmental factors, but also modified plant architecture.

These phenotypical changes could be related to the altered hormonal content in

transgenic plants.
KEYWORDS

Olea europaea L. subsp. europaea, FT gene, TFL gene, flowering, branching phenotype,
hormonal content
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1 Introduction

Olive (Olea europaea L. subsp. europaea var. europaea) is one of

the oldest crops in the Mediterranean Basin, its origin dates back to

theMiddle East around 6,000 years ago. It was probably domesticated

from its wild progenitor, the oleaster (Olea europaea L. subsp.

europaea var. sylvestris), in the area between Turkey and Syria

(Zohary and Spiegel-Roy, 1975; Baldoni et al., 2006; Besnard et al.,

2013; Diez et al., 2015). Olive oil consumption is steadily increasing

worldwide because of its nutritional, therapeutic and organoleptic

properties. Its well-balanced fatty acid composition, with a higher

proportion of oleic acid (Contreras et al., 2020), contributes to

reducing the risk of cardiovascular diseases, moreover, the presence

of antioxidant compounds such as phenolic compounds (e.g.

oleuropein), vitamin E and w-3 fatty acids (a–linolenic acid),

makes olive oil a valuable product to introduce in the diet (Conde

et al., 2008; Kiritsakis and Shadini, 2017). Today, olive remains the

most economically important oil tree crop in temperate areas

worldwide, with 12.7 million ha under cultivation (FAOSTAT, 2020).

Olive cultivars and their wild relatives (oleasters) are diploid (2n

= 2x = 46), predominantly allogamous, and interfertile (Belaj et al.,

2007). Wild olives reproduce sexually by wind pollination, while

olive cultivars are currently propagated by cuttings, grafting

(Baldoni et al., 2006; Alagna et al., 2019) and nodal segments in

vitro (Lambardi et al., 2013). One of the most striking difficulties in

olive breeding, as in many woody plants (Zhang et al., 2010;

Srinivasan et al., 2012; Klocko et al., 2016), lies in its long juvenile

phase, which can last up to 15-20 years. This fact has hindered the

development of new varieties (Diez et al., 2015; Rallo et al., 2018).

Biotechnological approaches to improve this crop are also difficult

to apply due to the recalcitrance of olive tissues to regenerate in

vitro. Along this line, few transgenic olive plants have been

generated (Palomo-Rıós et al., 2021).

The transition from the vegetative to the reproductive stage, in

annuals as well as in woody perennial plants, appears to be

determined by the balance between the floral integrator

FLOWERING LOCUS T (FT) and the flowering repressor

TERMINAL FLOWER 1 (TFL1), both homologues of the

phosphatidylethanolamine-binding protein (PEBP) family

(Hanzawa et al., 2005; Ahn et al., 2006; Laurie et al., 2011; Brunner

et al., 2014; Putterill and Varkonyi-Gasic, 2016). FT and TFL1 genes

encode related proteins with opposite functions: FT induces flowering

while TFL1 represses it. In Arabidopsis thaliana, the swap of a single

amino acid is enough to convert TFL1 into FT function and vice versa

(Hanzawa et al., 2005; Ahn et al., 2006; Ho and Weigel, 2014); in this

species, flowering occurs under long days when the floral promoter

CONSTANS (CO) activates the expression of the FT gene (Samach

et al., 2000), producing a small mobile protein (FT, the major

florigen) in the companion cells of the phloem in the leaf veins

(Amasino and Michaels, 2010; Yoo et al., 2013; Jin et al., 2015; Chen

et al., 2018). Later, FT enters the sieve elements and is translocated via

the phloem to the shoot apical meristem (Corbesier et al., 2007),

where it recruits the bZIP transcription factor FD (Wigge et al., 2005),

forming a complex, together with 14-3-3 protein (Taoka et al., 2011,

Taoka et al., 2013), that initiates flowering by activating the

expression of floral meristem-identity MADS BOX genes such as
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APETALA1 (AP1), FRUITFUL (FUL) and SUPPRESSOR OF

OVEREXPRESSION OF CONSTANS1 (SOC1) (Teper-Bamnolker

and Samach, 2005; Yoo et al., 2013; Abe et al., 2015). A general

model depicting the major events leading to flower induction by long

photoperiods in Arabidopsis is available (Andres and Coupland,

2012). The effect of cold winter temperatures in promoting FT

expression has also been unraveled (Amasino and Michaels, 2010).

In other species, the mechanisms that regulate the expression of FT

involve transcription factors, biochemical modifications of histones,

alternative splicing of mRNA, post-transcriptional control of FT

mRNA levels by miRNAs, and post-translational changes of FT

(Qin et al., 2017).

The olive tree develops inflorescences from lateral buds in

spring after the cold requirements have been fulfilled. Early

studies suggested that flower induction in olive occurs before

winter, around the time of endocarp sclerification (Rallo and

Martin, 1991; Fernandez-Escobar et al., 1992; Rallo et al., 1994;

Ulger et al., 2004). Recent evidences indicate that inflorescences are

formed at the end of winter, and cold temperatures are likely

required for floral induction (Haberman et al., 2017; Engelen

et al., 2023). Haberman et al. (2017) identified two FT genes in

olive, cv. ‘Barnea’, OeFT1 and OeFT2, observing that their

expression in mature leaves of adult plants increased at the

beginning of winter, from December to February, preceding olive

inflorescence initiation. Moreover, the overexpression ofOeFT1 and

OeFT2 in Arabidopsis thaliana caused early flowering, showing that

these genes could play an essential role in promoting flowering in

olive. Artificial application of warm temperatures during winter

reduced OeFT expression, and olives did not flower (Haberman

et al., 2017).

In several perennial species, heavy fruit load (HFL) in one year

can inhibit flower induction in the following year, leading to

alternate bearing (Samach and Smith, 2013). There is molecular

evidence that HFL can increase TFL1 expression in meristems in

apples and olives (Haberman et al., 2016, Haberman et al., 2017), as

well as reduce FT expression in leaves of citrus, mango, avocado and

olives (Muñoz-Frambuena et al., 2011; Nakagawa et al., 2012; Ziv

et al., 2014; Haberman et al., 2017).

A successful approach aimed at shortening the juvenile phase in

perennial woody species has been the overexpression of FT genes;

e.g., in poplar (Zhang et al., 2010), citrus (Endo et al., 2005), plum

(Srinivasan et al., 2012), eucalyptus (Klocko et al., 2016) and olive

(Haberman et al., 2017) resulted in early flowering. A different

approach that shows promise is silencing of the TFL1 encoding

gene (Kotoda et al., 2006; Flachowsky et al., 2012; Freiman et al.,

2012), supporting the hypothesis that a coordinated balance

between FT and TFL1 levels may be decisive in the transition to

flowering (Lifschitz et al., 2014). New strategies in woody plants

combining the overexpression of heterologous FT genes with

suppression of expression of the endogenous TFL1 homologs

using plant viral vectors and VIGS (virus-induced gene silencing)

have succeeded in promoting early and continuous flowering in

pear and apple (Yamagishi et al., 2014; Yamagishi et al., 2016). In

addition to flower induction, the interaction between FT and TFL1

orthologs also controls other processes in plants, such as the

indeterminacy of apical meristem and plant architecture
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(Srinivasan et al., 2012; Brunner et al., 2014; Lifschitz et al., 2014;

Klocko et al., 2016; Jin et al., 2021).

The key role of FT genes in olive flowering was demonstrated by

the constitutive expression of theMedicago truncatula MtFTa1 gene

in transgenic olive plants (Haberman et al., 2017). Three out of the 9

olive transgenic lines constitutively expressing the MtFTa1 gene

flowered prematurely under in vitro conditions. The repetitive

conversion of the apical meristems to floral buds caused

continuous growth of lateral shoots, an added difficulty in the

micropropagation of these lines. After acclimatisation, two of the

in vitro flowering lines produced new flowers year-round. In the

present study, we have characterised the three MtFTa1 transgenic

lines to elucidate the mechanisms underlying flowering in this

species. Thus, the effects of MtFTa1 overexpression on growth

habit, hormonal content and endogenous transcript levels of the

main olive flowering genes in stem tips were analysed.
2 Materials and methods

2.1 Plant material

Three transgenic olive lines (FT5, FT7 and FT15) overexpressing

the FT orthologue gene from Medicago truncatula (MtFTa1) were

employed in this study. These transgenic lines had been obtained by

Haberman et al. (2017) after Agrobacterium tumefaciens

transformation of the embryogenic line P1, derived from the

radicle of a mature zygotic embryo of cv. ‘Picual’ (Torreblanca

et al., 2010). Plants from non-transformed control and transgenic

lines were regenerated from somatic embryos as described by Cerezo

et al. (2011), acclimated to ex vitro conditions and maintained for ten

years in a confined greenhouse with a cooling system, 30°C

maximum temperature, and daylight conditions. Average

temperature during the winter season was 16°C, with a minimum

temperature of 4.5°C. Plants were grown in 24 cm pots containing a

mixture of substrate:sand 70:30 and were fertilized weekly. Three

plants per genotype were used.
2.2 DNA extraction

Stem tips, including apical and lateral buds and the first two pairs

of young developing leaves, were collected from olive plants, washed

briefly in distilled water, dried on filter paper, and immediately frozen

in liquid nitrogen and stored at -80°C until DNA extraction.

Genomic DNA was isolated using the procedure described by

Gawel and Jarret (1991). DNA concentration and purity were

estimated using a Nanodrop ND-1000 device (Nanodrop

Technologies, Inc., Montchanin, DE, United States) and by

electrophoresis on agarose gels stained with SYBR Safe (Invitrogen).
2.3 Gene copy number analysis of MtFTa1
by Southern blot

The presence of MtFTa1 was monitored in the olive transgenic

lines by Southern analysis. Before digestion, genomic DNA was
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treated with Ribonuclease A (DNAse-free, Roche), purified by

phenol:chloroform:isoamyl alcohol extraction, precipitated using

sodium acetate and ethanol and resuspended in sterile deionised

water. To determine the transgene copy number, ten µg of DNA were

digested sequentially with XhoI and KpnI, two restriction enzymes

that are not present in the T-DNA of the 35S:MtFTa1 plasmid.

Subsequently, DNA was precipitated with sodium acetate and

ethanol, air-dried and finally resuspended in 30 µl of sterile

deionised water. Then, DNA was fractionated by electrophoresis on

0.8% agarose gel and transferred onto positively-charged nylon

membranes using standard procedures, fixed to the filter using UV

light and hybridised with the labelled probe. The 35S:MtFTa1 plasmid

was used as template for the synthesis of the probe, which was

obtained using the “PCR DIG Probe Synthesis Kit” (Roche), 5´-

GGAAATCAACCGAGAGTGAG-3´ as forward primer (MtFTa1-

For), and 5´-AAGAAGACAGCAGCAACAGG-3´ as reverse primer

(MtFTa1-Rev). Amplification conditions were: 3 min at 95°C, 30

cycles of 45 s, 95°C, 45 s at 55°C, and 1 min 30 s at 72°C, with a final

extension step of 7 min at 72°C. PCR was carried out in a final volume

of 50 µl in an Eppendorf Mastercycler Personal System, obtaining a

PCR product 340 bp long, labelled with digoxigenin-dUTP as a probe.

Hybridisation was performed using the “DIG High Prime DNA

Labelling and Detection Starter Kit II” (Roche), according to the

manufacturer´s instructions. The membrane was incubated at 42°C

for 30 min in the prehybridization solution and then in the

hybridisation solution overnight at 42°C. Later, the membrane

was washed at room temperature twice for 5 min in (2X SSC,

0.1% SDS) solution and then at 68°C twice for 15 min in (0.5X SSC,

0.1% SDS). The labelled probe was immunodetected with sheep

anti-digoxigenin antibody conjugated with alkaline phosphatase

and then visualised using the chemiluminescent substrate CSPD

(Roche) for alkaline phosphatase.
2.4 Total RNA extraction

Stem tips from control and transgenic plants were collected at

different times during a growing cycle, spring (April-30-2018),

autumn (October-26-2018) and winter (January-22-2019). Once

collected, samples were transported on ice, washed in distilled

water, dried on filter paper, and immediately frozen in liquid

nitrogen and stored at -80°C until RNA isolation. Three

independent RNA isolations were carried out per sample, and three

technical replicates were used per RNA isolation. Plant material was

ground with mortar and pestle using liquid nitrogen and weighted

before RNA extraction. Total RNA was isolated using the Spectrum

Plant Total RNA Kit (SIGMA), starting with 100 mg of ground plant

tissue, according to the manufacturer´s instructions. The

concentration and purity of RNA were estimated using a

Nanodrop ND-1000 device and by electrophoresis on agarose gels.
2.5 cDNA synthesis and gene
expression analysis

Before cDNA synthesis, RNA samples were treated with DNase I

(RNase-free, Roche), extracted with phenol:chloroform, ethanol-
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precipitated and quantified in a Nanodrop spectrophotometer. Single-

stranded cDNA was synthesised from 1 µg of pure total RNA using

iScript cDNA Synthesis Kit (BIO-RAD), according to the

manufacturer´s indications. cDNA amplification was evaluated by

PCR amplification of the olive ubiquitin gene (Gómez-Jiménez

et al., 2010).

The expression of the MtFTa1 transgene and three endogenous

olive genes, OeFT1, OeFT2 and OeTFL1-1, during the three sampling

periods was monitored by Quantitative real-time PCR (qRT-PCR).

qRT-PCR was performed in a final volume reaction of 20 µl containing

SsoAdvanced Universal SYBR™ Green Supermix 1X (BIO-RAD), 0.5

µM of each specific primer and 1 µl of diluted cDNA (1:20).

Amplification reactions were performed in a CFX96™ Real-Time

PCR System (BIO-RAD), using the following PCR program: 95°C

for 30 s; 40 cycles at 95°C for 5 s, 60°C for 30 s; and a melting curve

from 65°C to 95°C with 0.5°C increments at 5 s intervals. Specific

primers used for real-time amplification of each gene are shown in

Supplementary Table 1. Olive cDNA sequences used for primer design

were obtained from the olive cultivar Barnea and the published olive

genome data (Cruz et al., 2016; OE5A transcripts databases), and

Medicago truncatula cDNA used for MtFTa1 primers were obtained

from GenBank, NCBI (Laurie et al., 2011); the accession numbers for

the sequences are as follows: OeFT1 (OE5A107414T1), OeFT2

(OE5A103537T1), OeTFL1-1 (OE5A037908T1), and MtFTa1

(HQ721813.1). Ubiquitin was used as housekeeping gene for

normalisation of the expression in all the qRT-PCR experiments

(Gómez-Jiménez et al., 2010). Relative amounts of each transcript

were calculated with the 2-DDCT method (Livak and Schmittgen, 2001).

Three independent RNA isolations were carried out per sample, and

three technical replicates were used per RNA isolation. A relative

expression value of 1.0 was given to the control with the lowest

expression among the three sampling dates evaluated.
2.6 Hormonal analyses

The following plant growth regulators, natural and deuterium

labelled standards (IDS), were obtained from Sigma Aldrich (St.

Louis, MO, USA): abscisic acid, ABA; indol-3-acetic acid, IAA;

jasmonic acid, JA; salicylic acid, SA; SA-d6. In addition,

benzyladenine, BA; gibberellin, GA7; isopentenyl adenosine, iPR;

ABA-d6; IAA-d5; BA-d7, were from Olchemin Ltd. (Olomouc,

Czech Republic). Accurately weighed solid portions of both natural

standards and deuterium-labelled compounds were dissolved in

methanol to prepare all the stock working solutions. Methanol

(HiperSolv CHROMANOR MS grade) and formic acid were

obtained from VWR BDH Chemical (Barcelona, Spain);

hydrochloric acid from PanReac (Barcelona, Spain); 2-propanol

(super pure solvent) and dichloromethane (HPLC/MS grade) from

Romil (Cambridge, UK); ammonium formate from Sigma Aldrich (St.

Louis, MO, USA). DeionizedMilli-Q water was obtained bymeans of a

Milli-Q® Advantage A10 (Millipore, Darmstadt, Germany).

UHPLC System (1290 Infinity Binary LC System, Agilent

Technologies, Madrid, Spain) composed of a binary pump,
Frontiers in Plant Science 04
autosampler, thermostat and DAD detector, was coupled to a

6460 Triple QuadLC/MS fitted with ESI ion source (Agilent

Technologies, Madrid, Spain). Data acquisition and processing

were performed using MassHunter Workstation software (Agilent

Technologies, Madrid, Spain).

Stem tip samples from control and transgenic plants obtained in

spring (April-30-2018) were collected, transported in tubes on ice,

frozen in liquid nitrogen and stored at -80°C until analysis. The

extraction of phytohormones was done from 0.15 g fresh weight

according to the protocol of Pan et al. (2010) with modifications

from Delatorre et al. (2017). Three biological replicates per line and

three technical replicates per sample were used. To enhance matrix

removal and obtain better sensitivity and signal-to-noise, four Bond

Elut QuEChERS Dispersive Kits were tested. QuEChER 5982-5221

CH (QuEChERS dSPE 2 mL Pigments EN with CH, 100 pk

contains 25 mg PSA, 150 mg MgSO4, 2.5 mg GCB; Agilent

California, USA) was ultimately selected and used to clean up

several samples. Samples were injected into UHPLC System (1290

Infinity binary LC system, Agilent Technologies, Madrid Spain).

The UHPLC was coupled to a Triple Quadrupole (6460 Triple

Quad, LC/MS equipped with ESI-Ion Source). All compounds were

separated and quantified following the protocol described by

Delatorre et al. (2017).
2.7 Characterisation of flowering behaviour
in FT7 plants

The flowering behaviour of FT7 plants, a transgenic line which

flowered all year round in the greenhouse, was characterised at

three time points throughout the year: autumn (October-23-2020),

winter (February-12-2021), and spring (May-5-2021). Flowering

shoots and inflorescences from nine FT7 plants were marked with

ribbons and characterized at these time points. A total of 24

flowering shoots, approximately 3 shoots per plant, were labelled

and monitored. To describe the flowering habit, several variables

were analysed on each flowering shoot: (i) average length of shoots,

(ii) percentage of shoots developing lateral shoots, (iii) average

number of lateral shoots developed, (iv) average length of the lateral

shoots, and (v) average number of inflorescences formed in each

flowering shoot. Additionally, the following variables were recorded

in each inflorescence: i) number of groups of flowers forming the

inflorescence and ii) total number of flowers per inflorescence.

These variables were recorded in, at least, 21 inflorescences.
2.8 Statistical analysis

Data were subjected to ANOVA, and mean separation was

performed with the HSD-Tukey test using R. For non-parametric

data a Kruskal-Wallis Rank Sum test was performed. Percentage

data were analysed by Chi-squared test. All tests were performed

at P=0.05.
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3 Results

3.1 Phenotypical characterisation of
MtFTa1 olive plants in the
confined greenhouse

Haberman et al. (2017) obtained three olive transgenic lines

(FT5, FT7 and FT15) transformed with the MtFTa1 gene from

Medicago truncatula under the control of the constitutive promoter

CaMV35S; these lines flowered under in vitro conditions

Micropropagation of the flowering lines was difficult since most

vegetative buds gave rise to flower buds. Plants of the control and

transgenic lines were acclimated in a growth chamber and some of

the FT7 lines could be transferred to a confined greenhouse where

they showed continuous flowering. The growth pattern and

flowering behaviour of the three transgenic lines have been

characterized in the present research. In successive years of

growth in the confined greenhouse, control plants maintained the

typical monopodial branching in olive, and no significant

alterations in the growth habit were detected (Figure 1A). These

plants were recurrently pruned to limit their growth. This treatment

maintained control plants in a juvenile state, and no flowering was

observed during the culture period.

Regarding the transgenic lines, plants from FT7 maintained the

continuous flowering behaviour throughout successive years, while,

by contrast, FT5 never developed flowers under greenhouse

conditions (Figures 1B–E). FT7 plants also produced occasionally

some fruits in the greenhouse. Flowering behaviour from FT15

plants was abnormal (only flower bud-like structures were

observed, which did not show further development). Additionally,

the three transgenic lines displayed a dwarf branching phenotype.

The sympodial growth habit is not usual in olives, generally
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characterised by a solid apical dominance. In the case of FT7 and

FT15, the conversion of apical meristems to floral buds led to the

inhibition of apical meristem growth and the development of lateral

shoots, resulting in dwarf, highly branched plants. Even though FT5

plants never flowered, the dwarf branching phenotype was also

noticeable in this line.
3.2 Molecular characterisation of MtFTa1
olive plants

Olive OeFT1 and OeFT2 are 90% identical at mRNAs sequence

level and their predicted proteins share around 84% of identity.

Both genes show a 70% identity at mRNA level and 70% identity at

protein sequence with the Medicago transgene MtFTa1

(Supplementary Figure 1). The copy number of MtFTa1 in the

transgenic lines was determined by Southern blot using genomic

DNA isolated from leaves. FT5, FT7, and FT15 lines contained 5, 3

and 2 copies of the transgene, respectively (Figure 2). As expected,

no hybridisation signal was observed in control plants. Due to the

differences in the phenotype found among the three lines, we

decided to study the expression of the transgene by qRT-PCR in

stem tips from the different lines along the year: spring (April-30-

2018), when anthesis naturally occurs in field grown adult olives in

Spain, autumn (October-26-2018) and winter (January-22-2019),

towards the end of flower induction in field conditions (Haberman

et al., 2017). The three transgenic lines overexpressed the MtFTa1

gene throughout the year, with higher levels of transcripts in spring

in the FT5 line (Figure 3). The highest levels of MtFTa1 mRNA in

all periods were detected in FT5 plants, the line with the highest

copy number, also showing a pronounced dwarfing phenotype, but

that never flowered under greenhouse conditions.
FIGURE 1

Control plant (P1) (A), and 10-year-old olive transgenic plants transformed with MtFTa1 gene from Medicago truncatula: FT15 (B), FT5 (C) and FT7 (D)
with a detail of its flowers (E).
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3.3 Expression of the flowering-related
genes OeFT1, OeFT2 and OeTFL1-1 in
transgenic plants

Previous research studied expression of FT-encoding olive

genes in mature leaves, following expression in the same leaves, at

different times from summer till the end of winter in trees exposed

to outside conditions (Haberman et al., 2017). OeTFL1-1 gene

expression was detected in lateral meristems (Haberman et al.,

2017). Here we were interested in studying the tissues that went

through a change in growth pattern in the transgenic plants, the tips

of shoots containing apical and lateral buds and the first two pairs of

young developing leaf primordia. We followed the expression of the

endogenous FT genes (OeFT1 and OeFT2) as well as OeTFL1-1 in

these tissues, in control and transgenic plants grown in greenhouse

conditions, at three timepoints during the year (Figure 4). In

control, non-flowering plants there were no significant seasonal

changes in OeFT1 expression, while OeFT2 and OeTFL1-1

transcripts were significantly higher in spring. For the FT5 line,

there were no significant seasonal changes in OeFT1 expression,

while OeFT2 transcripts were significantly higher in spring.

OeTFL1-1 transcripts were significantly higher in spring and in

fall. For the FT7 line, there were significantly higher levels in spring

for both OeFT1 and OeFT2 transcripts. For the FT15 line, there

were significantly lower levels in spring for OeFT2 transcripts, and

significantly higher levels of OeTFL1-1 transcripts in the fall. The
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analysis of the expression of the endogenous flowering genes in the

transgenic lines revealed that all of them were significantly under-

expressed with respect to the control line in spring (Figure 4). The

gene with expression in shoot tips showing correlation to flowering

was OeTFL1-1 in spring, since its expression was significantly

higher in lines that did not flower: the control line and the FT5 line.
3.4 Endogenous contents of different plant
hormones in MtFTa1 olive transgenic plants

We then asked whether hormone levels within the shoot tips

correlated with flowering (not all transgenics) or with the growth

phenotype (all transgenics). We analysed hormone levels of shoot

tips in spring, since this was the season that showed interesting

differences in gene expression (Figure 4). Apparently, no changes in

any hormone level correlated with flowering (Figure 5). The unique

branching behaviour of all the transgenic plants was correlated with

significantly higher levels of salicylic acid (SA), indole acetic acid

(IAA) and isopentenyl adenosine (iPR) and with significantly lower

levels of ABA. We did not detect significant differences between the

transgenic and non-transgenic lines for the hormones jasmonic acid

(JA), GA7 and Benzyladenine (BA). No significant differences were

observed within the three transgenic FT lines, except for FT15,

which showed a significantly higher amount of SA than the other

transgenic lines.
3.5 Characterisation of flowering in FT7
olive transgenic plants

The growth and flowering behaviour in FT7 transgenic plants,

the line which exhibited continuous flowering, was characterised

along the year (Table 1). The average length of the flowering shoots

was similar on the three sampling dates. However, shoots developed

more lateral shoots during spring. Furthermore, all lateral shoots

were in flowering at this sampling date, while the percentage of

lateral shoots in flowering decreased in autumn and winter. The

length of the lateral shoots was also slightly higher in spring.

There was an increase in the number of inflorescences per

flowering shoot observed in spring with respect to autumn and

winter. These inflorescences were formed by a variable number of

groups offlowers, each one containing three flowers. The number of

groups per inflorescence and, therefore, the total number of flowers

per inflorescence were lower during winter (Table 1). A very small

number of fruits was obtained during the year of analysis.
4 Discussion

The main goal of this work was to characterise olive plants

transformed with the MtFTa1 gene from Medicago truncatula to

shed light on the unique phenotypes obtained by this transgene. For

this purpose, three independent transgenic lines displaying some
FIGURE 2

Southern blot analysis of MtFTa1 gene in genomic DNA extracted
from stem tips of control (P1) and transgenic olive plants (FT5, FT7
and FT15). Genomic DNA was digested with XhoI and KpnI, two
enzymes that do not cut within the T-DNA of 35S:MtFTa1 plasmid. A
340 bp PCR product amplified from MtFTa1, labelled with DIG-dUTP
was used as a probe. A digoxigenin-labelled lHindIII DNA (MW) is
shown in lane 1.
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differences in the flowering and growth habits were studied along

the year: autumn, winter, and spring. In other species, tomato

(Lifschitz et al., 2014), pepper (Elitzur et al., 2009) or cotton

(McGarry et al., 2016), an appropriate balance between TFL1-

orthologues, flowering repressors, and FT-orthologues, flowering

inductors, has been revealed to be essential in flower induction as

well as in the determination of growth habit. For this reason, we

studied the expression of these genes, as well as hormone levels in

the different lines.
4.1 Control olive plants did not form
flowers under greenhouse conditions
probably because of an altered OeFT/
OeTFL1-1 ratio

In this research, control and transgenic plants derived from the

same embryogenic line were cultured for several years in a

greenhouse with a cooling system, 30°C maximum temperature,

average temperature during the winter season was 16°C, with a

minimum temperature of 4.5°C. These conditions should be

sufficient for winter flower induction in olive (Engelen et al.,

2023). Non-transgenic plants of the same line flowered after 3-4

years when cultured under standard conditions (Bradaï et al., 2016).

Here, our non-transgenic control plants had to be repeatedly

pruned to control their growth in the greenhouse (maintenance

of unpruned plants under confined conditions results in severe

attacks of sooty mould and olive scale, probably due to lack of

aeration). As a result, they were kept in a juvenile phase (did not

flower) for nearly 10 years. Previous research showed that juvenile

olive seedlings, compared to mature trees, expressed low levels of

OeFT2 in mature leaves towards the end of winter, and expressed

higher levels of flower inhibitors (OeTFL1 and OeAP2) in lateral
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meristems (Wechsler et al., 2022). In citrus, CsTFL transcript

accumulation is associated with maintenance of juvenile traits

(Pillitteri et al., 2004) while in Arabis alpina, AaTFL1 expression

prevents flowering in young plants and increase duration of cold

treatments in older material (Wang et al., 2011). Here we studied

expression in the shoot tip of the control and transgenic plants and

noticed high levels of OeTFL1-1 in the control plants in spring. This

could explain the lack of flowering in the control plants.

High levels of OeFT2 expression during spring were detected in

shoot tips of control trees as well as FT5 and FT7 trees. Expression

was higher in trees that did not flower (control and FT5). Does the

OeFT2 protein have an additional function in shoot tips during

spring? Besides inflorescence initiation, OeFT2 could be responsible

for the induction/maintenance of vegetative growth observed in

spring. A role for an FT protein in shoot growth was documented in

Populus (Brunner et al., 2014). The FT7 line, displaying continuous

flowering, exhibited high levels of OeFT1 mRNA in spring. The

analysis of flowering-related parameters along the year showed that,

although these plants formed flowers all year round, the flowering

rate rose sharply in spring. In addition, the percentage of flowering

branches that developed lateral shoots increased dramatically in

spring (up to 100%) as well as the number of lateral shoots

generated per flowering branch. Interestingly, MtFTa1 share 70%

identity at protein level with OeFT1 and OeFT2, therefore, a

negative effect of high MtFTa1 levels on the expression of

endogenous FTs cannot be discarded.
4.2 Why does not the FT5 plant flower in
the greenhouse?

Despite the very high levels of the MtFTa1 transcript found in

stem tips it is striking that FT5, the line with the highest transgene
FIGURE 3

MtFTa1 gene expression in olive transgenic plants, FT5, FT7 and FT15, and in control (P1) plants, along the year. Relative expression values were
referred to control non-transformed plants, with the lowest expression level. Expression was measured in stem tips using O. europaea ubiquitin
gene as reference. Each data point corresponds to the average of three independent biological repeats ± SE. Different lowercase letters over the
bars indicate significant differences in the expression of every line throughout time, while uppercase letters show significant differences in the
expression of the transgene among the different lines in every time point, according to the Tukey HSD test at P=0.05.
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FIGURE 5

Hormonal content in stem tips collected in spring from control (P1) and transgenic olive plants expressing MtFTa1 gene. Bars represent mean ± SD.
For each hormone, bars with different letters indicate significant differences by Tukey test at P=0.05. SA, salicylic acid; JA, jasmonic acid; ABA,
abscisic acid; GA7, gibberellin GA7; IAA, indol-3-acetic acid; iPR, isopentenyl adenosine; BA, benzyladenine. *IAA levels were too low and could not
be accurately quantified in control samples.
A

B

C

FIGURE 4

Expression of the endogenous olive genes OeFT1 (A), OeFT2 (B), and OeTFL1-1 (C), in control (P1), and transgenic FT lines throughout the year. Each
data point corresponds to the average of three independent biological repeats ± SE. Relative expression values of every gene were referred to the
control with the lowest expression level among the three periods (CP1, January-22-2019). Expression was measured in stem tips using O. europaea
ubiquitin as reference gene. In every single graph, different lowercase letters over the bars represent significant differences in gene expression
among the different lines in every time point, while different uppercase letters show significant differences in gene expression in every line
throughout time, according to the Tukey-Kramer HSD test at P=0.05.
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expression in all the periods, never flowered out of in vitro

conditions. The fact that it did flower in vitro, and then stopped,

might suggest that some culture conditions caused an epigenetic

change in this line, that lead to repression of flowering in a plant

with very high levels of FT. In Arabidopsis, hypomethylation of the

FWA gene, which is normally only expressed in embryos, causes

ectopic expression of the FWA protein in meristems. When

expressed in meristems, this protein inhibits Arabidopsis

flowering even in the presence of high FT (Soppe et al., 2000;

Ikeda et al., 2007). Further studies should compare MtFTa1

expression in mature leaves of these different transgenics as well

as an FWA homolog in shoot tips. We did observe high levels of

OeTFL1-1 in shoot tips of this transgenic line during spring and fall,

which might contribute to the lack of flowering.
4.3 The branching habit of the
transgenic lines

Although the FT5 plant stopped flowering, it was highly

branched. This trait was also observed in FT15 and FT7 plants. It

could be attributed to one of the other functions of the FT protein in

determination of plant architecture. The development of terminal

flowers induced by the overexpression of MtFTa1 interferes with

the correlative inhibition effect of the apical meristem allowing the

continuous growth of lateral shoots, as result, a highly branched,

sympodial growth habit, unusual in olive, is observed. This

branching habit has also been reported in Eucalyptus plants

overexpressing the AtFT gene (Klocko et al., 2016) or in plum

transformed with the Populus trichocarpa orthologue PtFT1 gene,

which not only showed continuous flowering but also exhibited

alterations in their dormancy requirements; in addition, these

plants exhibited shrub-type habit and panicle flowering

architecture (Srinivasan et al., 2012).
4.4 Changes in hormone levels in the
transgenic lines

Hormonal content in stem tips was measured in spring when

control plants were actively growing and transgenic MtFTA1 lines

displayed an enhanced flowering phenotype. The main differences

between control and transgenic plants were the reduced levels of

ABA and the increments on iPR, IAA, and especially SA in FT lines.

The three transgenic lines behaved similarly, except FT15, which

showed increased SA compared to the other transgenic lines. Since

the changes in hormone levels were common to all three transgenic

lines, including FT5 that did not flower, one simple explanation is

that these changes in hormone levels are associated with the unique

plant architecture of these lines, and not to their flowering response.

Still, if the flowering response in FT5 is blocked at an advanced stage

of inflorescence differentiation, some of the changes in hormone

levels might inform us on hormonal changes caused by FT, in the
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events leading to flowering. Thus, we will discuss possible roles for

these hormones in flowering and plant architecture.

Salicylic acid induces the defence mechanism known as

systemic acquired resistance (SAR), but this plant hormone can

also induce flowering in some species (Cleland and Ajami, 1974;

Martinez et al., 2004; Endo et al., 2009; Shah et al., 2021). In this

research, the significantly higher levels of SA in transgenic plants

suggest that FT can lead to an increase in SA levels with or without

(FT5) leading to flowering. On the other hand, the enhanced lateral

branched and reduced shoot length phenotype observed in

transgenic olive plants resembled the phenotype of mutants or

transgenic plants overproducing cytokinins (CKs) (Srivastava,

2002). The levels of iPR were significantly higher in stem tips

from transgenic plants than in control. This fact could also explain

the difficulty of rooting transgenic shoots in vitro, especially those

from the FT5 line (data not shown), since an excess of CKs inhibits

root formation. The role of CKs in regulating floral transition can

differ between species. High cytokinin levels induced early flowering

in Arabidopsis while cytokinin-deficient mutants exhibited a late-

flowering phenotype (Izawa, 2021). However, exogenous

application of 6-benzylaminopurine (BAP) to maize and rice

plants delayed flowering time and reduced the expression of the

florigen geneHeading date 3a (Cho et al., 2022). If the enhanced CK

content is directly linked to FT overexpression needs further

research. Surprisingly, IAA content was also higher in transgenic

stem tips. Usually, both hormones are in close homeostasis, i.e.

increased levels of IAA reduce free CKs and vice versa (Srivastava,

2002). This regulatory control was lost as a result of

FT overexpression.

The role of ABA on olive floral induction is unclear. Baktir et al.

(2004) suggested that the ratio GA/ABA could play a key role in this

process; vegetative bud formation would be favoured if ABA levels

were lower than GA, while the contrary favoured flower bud

formation. In that study, both hormones were detected at similar

concentrations, and also similar to the GA content reported in the

present work; however, ABA levels in control and transgenic FT

stem tips were several times higher than those reported by Baktir

et al. (2004). In any case, the three transgenic lines contained

significantly lower ABA than the control, challenging the

hypothesis suggested by Baktir et al. (2004); however, this lower

ABA content could be associated with the branching phenotype as

demonstrated by Yao and Finlayson (2015) in Arabidopsis thaliana.
5 Conclusions

Our results confirm that the MtFTa1 gene from Medicago can

function as effective florigen in a distant species such as olive,

leading plants of some transgenic lines to flower continuously

throughout the year, independently of environmental factors like

temperature. However, flowering in the transgenic lines might also

depend on low levels of OeTFL1-1 in meristems. Interestingly, the

heterologous expression of MtFTa1 markedly modified the
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hormonal content of transgenic plants, highlighting the higher

content of salicylic acid, IAA and isopentenyl adenosine (iPR)

and lower values of ABA. The two main characteristics of the

MtFTa1 transgenic phenotype, continuous flowering and high

branching, could be related to these hormonal changes (Figure 6).

Further work can test whether reducing levels of one of these

hormones, or inhibiting their activity, could affect one or both

phenotypes. The development of novel olive varieties adapted to

new environmental conditions is urgently needed. Because of

climate change, warmer winters are expected, which can alter

flowering time and reduce yield in traditional olive-growing areas.

This work highlights the potential of a single transgene to modify

vegetative and reproductive traits that could be very helpful in olive

breeding and production.
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FIGURE 6

Summarizing scheme of hormonal changes and effects caused by MtFTa1 overexpression in transgenic olive plants.
TABLE 1 Flowering related variables measured in FT7 olive transgenic plants.

Spring Autumn Winter

Length of flowering shoots (cm) 13.6 ± 4.35a 15.3 ± 5.0 a 14.3 ± 4.0 a

Flowering shoots developing lateral shoots (%) 100a 37.5c 62.5b

Number of lateral shoots developed 4.9 ± 2.8 a 2.4 ± 1.7b 2.9 ± 1.9 b

Length of lateral shoots developed (cm) 3.3 ± 1.6 a 2.8 ± 1.2 a 2.8 ± 1.7 a

Number of inflorescences per flowering shoot 5.2 ± 2.9 a 1.8 ± 1.5 b 1.9 ± 1.6 b

Number of groups of flowers per inflorescence 5 ± 2 a 7 ± 3 a 3 ± 2 b

Total number of flowers per inflorescence 16 ± 8 a 19 ± 7 a 12 ± 12 b
fro
Characterization of tagged flowering shoots measured at three time points along the year, in autumn (Oct-23-2020), winter (Feb-12-2021) and spring (May-05-2021). Numbers are mean values
of 24 flowering shoots, from 9 different plants, ± SE (standard error). Regarding inflorescence characterization, each value corresponds to the mean value of 21 inflorescences ± SE. Different
letters indicate significant differences in each variable over time, according to the Tukey-Kramer HSD test or to the non-parametric Kruskal-Wallis Rank Sum test, both at P=0.05. Percentages of
flowering shoots developing lateral shoots were analysed by Chi-squared test at P=0.05.
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SUPPLEMENTARY FIGURE 1

Multiple Alignment of FT proteins from Medicago truncatula (MtFTA1),

Arabidopsis (AtFT) and Olive (OeFT1, OeFT2). Alignment was performed at
the EMBL-EBI Website using the Clustal Omega tool (Sievers et al., 2011), with

alignment presented using Jalview (Waterhouse et al., 2009). The colour of
the fonts was based on Clustal.
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