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The various vegetation types in the karst landscape have been considered the

results of heterogeneous habitats. However, the lack of a comprehensive

understanding of regional biodiversity patterns and the underlying ecological

processes limits further research on ecological management. This study

established forest dynamic plots (FDPs) of the dominant vegetation types

(shrubland, SL; mixed tree and shrub forest, MTSF; coniferous forest, CF;

coniferous broadleaf mixed forest, CBMF; and broadleaf forest, BF) in the karst

landscape and quantified the species diversity patterns and potential ecological

processes. The results showed that in terms of diversity patterns, the evenness

and species richness of the CF community were significantly lower than other

vegetation types, while the BF community had the highest species richness. The

other three vegetation types showed no significant variation in species richness

and evenness. However, when controlling the number of individuals of FDPs, the

rarefied species richness showed significant differences and ranked as BF > SL >

MTSF > CBMF > CF, highlighting the importance of considering the impacts of

abundance. Additionally, the community assembly of climax communities (CF or

BF) was dominated by stochastic processes such as species dispersal or species

formation, whereas deterministic processes (habitat filtering) dominated the

secondary forests (SL, MTSF, and CBMF). These findings proved that

community assembly differs mainly between the climax community and other

communities. Hence, it is crucial to consider the biodiversity and of the potential

underlying ecological processes together when studying regional ecology and

management, particularly in heterogeneous ecosystems.
KEYWORDS

vegetation types, community assembly, karst landscape, species diversity, species
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1338596/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1338596/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1338596/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1338596/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1338596/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1338596&domain=pdf&date_stamp=2024-02-22
mailto:cafzanglp@163.com
https://doi.org/10.3389/fpls.2024.1338596
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1338596
https://www.frontiersin.org/journals/plant-science


Meng et al. 10.3389/fpls.2024.1338596
1 Introduction

As the global species extinction rate increases with habitat

degradation, maintaining biodiversity has become a severe

ecological issue, especially in extreme ecosystems (Butchart et al.,

2010; Johnson et al., 2017). Previous studies suggested that

biodiversity reflects the extent of the history of life on Earth and

serves as an essential foundation for ecosystem sustainability (GE,

2017; Mi et al., 2021). The four levels of biodiversity include gene,

species, ecosystem, and landscape, and species diversity is crucial

for biodiversity conservation as it directly reflects the community

structure, stability, and development stage (Wang et al., 2022).

Numerous studies have explored large-scale species richness

variations along elevation or latitude (Chen et al., 2015; Fontana

et al., 2020). However, the regional diversity patterns and driving

mechanisms among vegetation types are unclear, thus requiring

academic attention.

A growing body of studies showed that species richness depends

heavily on abundance (Xue et al., 2021; Feng et al., 2022), emphasizing

the importance of considering the confusing impacts of abundance

accumulation. However, researchers prefer to correct rather than

quantifying confusing impacts of sample sizes. Consequently, the

current challenges under confusing impacts of sample sizes leads to a

misunderstanding of species diversity patterns in ecological researches

(Feng et al., 2022). Despite its intuitiveness and universality, species

richness is oversimplifying as it is determined by combining the total

numbers of species (Chao et al., 2014), and it increases nonlinearly with

the increasing sampling size (Chase et al., 2018). Therefore, in addition

to the traditional richness index, more convictive indices such as the

rarefied species richness should be employed to address the impact of

varying sample sizes when exploring species diversity pattern

differences (Roswell et al., 2021). Although species richness and

species evenness are both important components of species diversity,

previous studies focused mainly on species richness while seldom

considering species evenness (Huang et al., 2015; Villa et al., 2018).

Since the mono diversity index can not account for various community

components and almost all ecological factors or processes in a

community can potentially affect species abundance or regulate

species relative abundances (Feng et al., 2021), the species diversity

patterns must be explored based on comprehensive, multi-index

measurements rather than a single component.

Species abundance distribution (SAD) effectively reflects the

species richness and evenness as it directly quantifies the species

and its dominance in the community (McGill et al., 2007; Baldridge

et al., 2016). However, the multiple dimensions and components of

biodiversity render it difficult to identify the model fitting the SADs

best and, in turn, reveal species diversity patterns (Feng et al., 2022).

In addition to revealing the biodiversity patterns, determining the

ecological process driving the observed biodiversity patterns is

another crucial unsolved issue. Traditional niche theory holds

that species coexist and maintain diversity over time only if

specific factors, such as niche differentiation, prevail during

community construction (Haegeman and Loreau, 2011).

However, this theory faces a vital challenge in explaining why so

many species with similar niche spaces coexist at the local scale.

Neutral theory proposed by Hubbell (2001) suggests that species
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exhibit similar population dynamics due to shared characteristics.

Stochastic processes control community construction, including

birth, death, colonization, and speciation (Zhou and Ning, 2017).

Numerous studies indicated that both deterministic and stochastic

processes contributed to community construction (Vilmi et al.,

2021). Various deterministic and stochastic processes acting across

scales form the actual community (Yuan et al., 2011; Su et al., 2023).

Normally, species diversity pattern variations are primarily affected

by dispersal limitations, local species pools, habitat filtering, and

species interactions at local scales (Sabatini et al., 2022). However,

the processes maintaining the species diversity patterns and the

extent are still under debate. Previous research indicated that

species dispersal limitations and habitat filtering played distinct

roles in the plant community across the environmental gradients

(Flinn et al., 2010). Sperry et al. (2019) found that species migrated

from high-diversity areas to low-diversity areas, and species with

greater dispersal abilities were more likely to spread from high-

diversity areas to low-diversity areas. A study by Parra-Tabla et al.

(2018) concluded that habitat filtering constitute a major driver of

plant diversity and species composition.

Constructing suitable models to fit SAD curves can well reflect

various community structures and the underlying ecological

processes (Tan et al., 2020). For example, the most common

lognormal and logseries methods depict different scenarios of the

relative abundance of species relative to the size and structure of an

assemblage (Magurran, 2021). The logseries distribution derives

from Poisson sampling of a gamma distribution, while the

lognormal distribution represents a situation in which the

logarithms of the different species’ abundances follow a Gaussian

distribution (Matthews and Whittaker, 2014b). Previous studies

suggested three steps for fitting and evaluating SAD models: 1)

fitting the model and estimating the parameters; 2) determining the

goodness of fit of the model; and 3) comparing the goodness of fit of

the model with that of other models (Matthews and Whittaker,

2014a). In recent years, many studies have attempted to describe the

shape of the SAD distribution, and quantifying the shape of SAD

facilitates the detection of SAD differences and the identification of

their drivers (Baldridge et al., 2016; Feng et al., 2021). For example,

Yin et al. (2018) found that the SADs of the log Cauchy model could

better reveal the inherent features of community structure and

dynamics. Qiao et al. (2015) fitted a non-neutral model of

community assembly to these SADs, calculated the fitted

deviation from neutrality, and observed the correlations between

the fitted deviation from neutrality and geographical and

environmental variations. The neutral community model (NCM)

has been considered a convictive local-scale model to predict the

SADs and reveal the ecological processes (Matthews and Whittaker,

2014a). By comparing the actual SAD with the zero-sum

multinomial distribution, a most important hypothesis of neutral

theory, the dominant ecological process can be determined.

However, NCM allows species to have a competitive advantage or

disadvantage, and the nearly neutral model transforms the model

into a continuous form (Sloan et al., 2006; Chen et al., 2019).

Karst landform is an exceptionally distinctive geological

phenomenon, rising to vegetation types that are entirely distinct

from subtropical evergreen broadleaf forests at the same latitudes,
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normally characterized by subtropical mixed evergreen and

deciduous broad-leaved forests (Dai et al., 2023). Due to shallow

soil layers and poor water retention and fertility capabilities, the

karst forest is vulnerable to various anthropogenic disturbances

such as logging, commercial exploitation and shifting cultivation

(Wang et al., 2023). During the last century, it facing various

degradation to shrubland or other vegetation types, even

degradation of rocky desertification, with biodiversity lost and

ecosystem functioning disordered (Yao et al., 2023). Balancing

environmental quality and societal development has been a

fundamental issue for regional environmental management.

Previous studies have focused on soil properties and microbial

community structure under various vegetation types (Yan et al.,

2020; Guan et al., 2022; Lu et al., 2022). However, as the basis for

understanding regional environment management, the plant

biodiversity pattern and its underlying ecological processes

among various vegetation types have received less consideration,

which should be the scientific basis of regional environmental

management. Thus, by establishing FDPs in dominant vegetation

types and quantifying the species biodiversity patterns, this study

aimed to solve the following questions: (1) How do species diversity

patterns vary among vegetation types in karst landscape? (2) What

process determines the variations in diversity patterns?
2 Materials and methods

2.1 Study area and data collection

This study was conducted at Maolan National Nature Reserve

(107°52’E to 108°05’E and 25°09’N to 25°20’N) (Figure 1), with a

total area of 21,285 hectares. It is the only remaining, original, stable

karst forest system at the same latitude worldwide, with a mean

elevation of 800 m. The rocks in the region consist predominantly

of pure carbonate limestone and dolomite, while the soil is

primarily weakly alkaline black lime soil. The region has an

average annual temperature of 15.3°C, averaging 5.2°C in January
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and 23.5°C in July. The growing period spans 237 days, while the

frost-free period totals 10 days. The annual precipitation is

1752 mm, typically from May to October. Additionally, the

annual average relative humidity is 83% (Zhang et al., 2012). The

most widely distributed vegetation types in the nature reserve

include SL, MTSF, CF, CBMF, and BF. The SL communities are

mainly dominated by Cornus parviflora and Celtis sinensis, while

Liquidambar formosana and Castanopsis fargesii were the

dominant species in CF. Pinus kwangtungensis was the

constructive species in the CF, and Pinus massoniana was

the dominant species in CBMF. In addition, Acer wangchii and

Boniodendron minus were the dominant species in BF.

According to the standard raised by Condit (1998) for the

standard handbook of forest dynamic plots (FDPs) establishment,

we established 9 to 10 FDPs for each of five dominant vegetation

types: shrubland (SL), mixed tree and shrub forest (MTSF),

coniferous forest (CF), coniferous broadleaf mixed forest (CBMF),

and broadleaf forest (BF) (Table 1). The distance between every two

plots is greater than 50 m to avoid the confusing impacts of spatial

autocorrelation and ecotone and all the woody individuals with

DBH > 1 cm in the FDPs were tagged, measured, and identified to

species (Condit, 1998).
2.2 Statistical approaches

2.2.1 Variations in species a-diversity patterns
among vegetation types

In this study, a-diversity was quantified based on Margalef’s

index (Equation 1) and Pielou’s index (Equation 2) (Margalef, 1957;

Levins, 1970). To eliminate the influence of sample size on the

diversity index, the Rarefied species richness index (Equation 3)

(Rarefied SR) was used as an auxiliary parameter for diversity

comparison (Hurlbert, 1971). One-way ANOVA was adopted to

reveal the significance of the differences among vegetation types.

The specific formula is as follows:

Margalef 0 s   index   = (S−1)
ln N= (1)
FIGURE 1

Geographic location and sampling site of the study areas. SL, shrubland; MTSF, mixed tree and shrub forest; CF, coniferous forest; CBMF, coniferous
broadleaf mixed forest; BF, broadleaf forest.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1338596
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Meng et al. 10.3389/fpls.2024.1338596
Pielou0s   index = H
lnS= (2)

Rarefied   SR =oS
i=1 1 −

N−xi
n

� �
N
n

 !
(3)

where S is the number of species, N is the total number of

individuals of all species, and n is the size of samples taken during

the sparsity process. In this study, n = 10, xi is the abundance of

species i, H =os
i=1Pi(lnPi), and Pi is the relative abundance of

species i.

The plant importance value (IV) index (Equation 4) is

calculated with the following formulas (Skeen, 1973):

IV = (Rf＋Rd＋Rdo)=3 (4)

In the formula Rf =
Fs
Tf
, Rf is the relative frequency, Fs is the

frequency of species occurrence, and Tf is the total frequency of all

species. In Rd =
Ds
Ts
, Rd is the relative density, Ds is the species

density, and Ts is the total species density. In the formula Rdo =
Dos
Td
,

Rdo is the relative significance, Dos is the species significance, and Td
is the total significance of all species.

Community composition was evaluated by applying a Bray-

Curtis dissimilarity index to an untransformed abundance matrix

for each vegetation types, and then a nonmetric multidimensional

scaling method (NMDS) using the ‘metaMDS’ function of the

‘vegan’ package in R statistical software was adopted to illustrated

results (Murray-Stoker and Murray-Stoker, 2020). The function has

a stable solution with several random starts and standardizes the

scaling in the results through principal component rotation. In this

way, the variance of the points along the first axis is maximized so

that the configurations are easier to interpret. Whether the graph

accurately reflects the actual data ordering distribution can be

determined based on the stress values. A stress value closer to 0

indicates a better dimensionality reduction effect. The number of

dimensions was set to 2 to minimize the stress (Norden et al., 2009).

2.2.2 Variation in first-order community assembly
among vegetation types

The SAD curves usually represent the species richness and

evenness. The horizontal axis is ranking of species number, while

the vertical axis is the actual abundance value. Species richness

denotes the number of varied species in the diagram, whereas

species evenness is represented by the slope of the curve

(Baldridge et al., 2016). The species accumulation curve reflects
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the cumulative changes in the number of recorded species as the

sample size increases within a specific environment. It helps to

assess the total number of species in a given area and compare

species diversity among different communities.

To estimate the effects of stochastic processes on the plant

community assembly among vegetation types, Sloan et al. (2006)

constructed an NCM, applying non-linear least-squares to generate

the best fit between the frequency of species occurrence and their

relative abundance. The R2 value indicates the goodness of fit of the

model and is calculated with the “Östman’s method” (Östman et al.,

2010). When R2 is close to 1, the community assembly is fully

consistent with stochastic processes. When not describing the

community composition, R2 can be ≤ 0. Here, Nm represented

the relationship between the probability of occurrence and the

relative abundance in the region (Chen et al., 2019; Mo et al., 2021).

All data were analyzed using “Hmisc”, “stats4”, “minpack.lm”,

“vegan”, and other packages in R 4.2.2 (R Core Team, 2022).
3 Result

3.1 Species composition among
vegetation types

The NMDS show the stress is less than 2, the result is meaningful,

furthermore significant differences between CF and other vegetation

types on one axis, and its most concentrated on two-axis. Therefore,

significant species composition differences between CF and other

vegetation types, and the species composition of CBMF was similar to

that of MTSF and significantly different from that of BF and CF.

(Figure 2). The dominant species varies among vegetation types. SL is

dominated by C. parviflora, with an IV of 6.92, while MTSF is

dominated by L. formosana, with an IV of 10.27. As for CF, P.

kwangtungensis is the dominant species, with an IV of 43.03, and P.

massoniana dominates CBMF, with an IV of 23.73. A. wangchii, B.

minus (6.03), and Platycarya strobilacea (4.69) are the dominant

species in BF (Supplementary Table S1).
3.2 Species a-diversity index variations
among vegetation types

BF had the highest Margalef’s index of species richness among

the five vegetation types, indicating the most species in plots. No
TABLE 1 Basic information of the established plots: shrubland (SL), mixed tree and shrub forest (MTSF), coniferous forest (CF), coniferous broadleaf
mixed forest (CBMF), and broadleaf forest (BF).

Vegetation types Number Area (m2) Elevation(m) Slope Latitude Longitude

SL 10 100 762-866 10°-30° 25°09′55″-25°26′19″ 107°46′56″-107°56′19″

MTSF 10 400 334-870 5°-45° 25°28′02″-25°32′06″ 107°50′26″-108°16′30″

CF 9 400 851-950 20°-60° 25°35′35″-25°36′16″ 107°42′21″-107°42′31″

CBMF 9 400 400-799 10°-35° 25°25′57″-25°33′25″ 107°42′10″-108°13′47″

BF 10 400 743-840 7°-32° 25°11′46″-25°14′03″ 107°54′55″-107°56′02″
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significant variation was found among the other four vegetation types

in Margalef’s index (Figure 3A). The Pielou’s index of species

evenness of CF was significantly lower than those of the other four

vegetation types, indicating a significant species dominance trend

compared with other vegetation types (Figure 3B). The rarefied

species richness results showed significant observed variations

among all five vegetation types after controlling the confusing

impacts of abundance. Besides, the BF still had the highest richness

and significantly different from other vegetation types, and the CF is

the lowest and significantly different from SL and MTSF (Figure 3C).
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3.3 SADs and first-order assembly
processes among vegetation types in
karst landscape

CF has the highest decline rate and similar trends were observed

on the species rank-abundance curves of MTSF and CBMF. BF and

SL has slow decline rate on the species rank-abundance curves,

which had lower species evenness than CF, MTSF and CBMF

(Figure 4A). On the species accumulation curve, MTSF showed a

similar trend to that of CBMF, and the species accumulation rate of
B CA

FIGURE 3

Variations in Margalef’s index of species richness (A), Pielou’s index of species evenness (B), and Rarefied species richness (C) among vegetation
types. Multiple comparison tests were performed to determine the statistical significance, with p < 0.05 indicating significance. Scales labeled with
identical letters have insignificant differences in their community feature values, and scales labeled with different letters have significant differences in
their community feature values.
FIGURE 2

Non-metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity showing the community composition variations of the
five vegetation types. SL, shrubland; MTSF, mixed tree and shrub forest; CF, coniferous forest; CBMF, coniferous broadleaf mixed forest; BF,
broadleaf forest.
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CF was lower than other vegetation types and BF was

largest (Figure 4B).

The NCM results showed that the R2 of CF (0.679) and BF

(0.533) were significantly higher than the other three vegetation

types, suggesting that the neutral process dominated the

community assembly in BF and CF, while the niche process

dominated the community assembly of the other three vegetation

types (Figure 5). In addition, the highest Nm value in BF suggested a

greater degree of species diffusion than other communities.
4 Discussion

This study compared the patterns of species diversity and

potential community assembly of five vegetation types within the

Maolan National Nature Reserve. The findings indicated that the

CF community within the reserve exhibited strong uniqueness, with

significant differences in species a-diversity and species

composition. In terms of community assembly, significant

differences were observed between the climax communities of CF

and BF and the secondary SL, MTSF, and CBMF in the

karst landscape.
4.1 Biodiversity patterns among
vegetation types

As the comprehensive component of biodiversity, species

composition can reflect the ecosystem structure and function

(Rahman et al., 2022). Since the species diversity pattern involves

the number of species and the species evenness, any changes in both

components can lead to species composition variations (Chao et al.,

2014). Our results showed significant variations among vegetation

types in the karst landscape (Figure 2). Among all the five

vegetation types, BF had the highest species richness, and CF had

the lowest Pielou’s index of species evenness (Figure 3).
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As a single dominant species in CF communities, P.

kwangtungensis significantly controls the vegetation type structure

and the community environment formation, with no obvious

subdominant species and numerous rare species with low species

evenness (Figure 4A; Supplementary Table S1). CF is normally

distributed in habitats with higher altitudes or deeper slopes, where

fewer species could colonize (Wang and Cui, 2023). Additionally,

the aggregation strength of P. kwangtungensis increases with

increasing elevation, thus occupying the niche space of other

species. This could explain the lower species richness and

evenness in CF than other vegetation types. On the other hand,

the higher migration rate of rare species in CF inhibits the increase

of species richness, leading to a pattern with a lower species richness

and slower species accumulation rate (Stanley Harpole and Tilman,

2006; Xu et al., 2019). Thorn et al. (2020) found that rare species

were the main factor of species composition differences. A higher

rare species proportion in CF might be the main reason for its

species composition variation compared with others (Figure 2).

Consistent with the results of Zhang et al. (2012), our results

showed that BF had the highest species richness and fastest

species accumulation rate, with no obvious dominant species. BF

in this study was established in subtropical evergreen deciduous

broadleaf mixed forest, considered the climax in the karst

landscape. Such a community normally features a complex

community structure and a higher species richness (Qi et al.,

2021). BF is used to considered in a relatively favorable

environment. The relatively higher soil quality results in more

individuals or abundance, possibly leading to a pattern with

higher species richness (Zhang et al., 2022b). In addition, the

stronger habitat heterogeneity at local scales supports various

micro-habitats, which helps feed more species (Bátori et al.,

2023). Thus, the relatively higher quality of habitat conditions

and the stronger habitat heterogeneity might be the main reason

for high species richness and evenness.

However, the species richness differed greatly among the five

vegetation types after controlling the confusing impacts of
BA

FIGURE 4

Species abundance distribution among vegetation types: (A) Species rank-abundance distribution curves. (B) Species-abundance accumulation curves.
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abundance. A significant trend of BF > SL > MTSF > CBMF > CF

was found in terms of rarefied species richness, which emphasized

the importance of considering the impacts of sample size. In other

words, individual variations among vegetation types could lead to a

misunderstanding of species richness in the karst landscape. The

species richness of SL was significantly higher than MTSF and

CBMF after removing the influence of abundance on species

richness (Figure 3C). In addition, the species richness of MTSF

was significantly higher than that of CBMF, SL and MTSF are

common secondary forests in karst areas, dominated by species

such as C. parviflora, L. formosana, and C. sinensis (Supplementary

Table S1). The lack of human disturbance allows shrubs to persist,

with small-diameter tree species being the mainstay, leading to a

scattered community advantage. Therefore, their species

accumulation rates are second only to that of BF (Figure 4B),

with high species evenness and no significant differences in species

composition from other vegetation types except CF. Xiao et al.

(2023) also suggested that high habitat heterogeneity of rocks

increased shrub richness. In the MTSF community, tall deciduous

trees gradually closed the canopy, limiting the understory light

conditions (Li et al., 2016; Lu et al., 2016). Those heliophilous shrub

species can not adapt to such poor light conditions and are

excluded, thus exhibiting decreased species richness. However, the

occurrence of tall deciduous trees facilitates the decomposition of

fallen leaves and litter and promotes soil function recovery (Zeng

et al., 2020). As a result, the immigration of shade-tolerant tree

species, such as Machilus nanmu, Quercus glauca, and Cornus

kousa, is promoted, leading to a higher species richness relative to

CBMF. Like CF, CBMF was strongly dominated by extremely few
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species, such as P. massoniana and L. formosana. Such a

monodominant community often leads to higher dominance and

lower evenness. Consistent with the results of Zhang et al. (2022a)

that P. massoniana – L. formosana mixed forest has higher species

richness than CF, this study also showed a similar trend after

controlling the sample size. The main reason is that adding

broadleaf trees can increase the number of plant species and

provide different types of litter for forest soil, thereby improving

the physical and chemical properties of the soil (Zhang et al.,

2022a). Moreover, adding broadleaf tree species also changes the

resource acquisition strategies of the plants. Qin and Shangguan

(2019) reported that compared with P. massoniana plantations, P.

massoniana – L. formosanamixed forests show the most significant

increase in leaf nutrient content and the best resource acquisition

strategy to adapt to different environmental conditions.
4.2 Community assembly among
vegetation types

The stochastic spread of species mainly depends on the

difference between local species richness and diversity and the

degree of diffusion restrictions. As a neutral-based process model,

NCM is a valid approach for inferring stochastic processes acting on

community assembly (Chen et al., 2019). This study used neutral

models to simulate different vegetation types and found that both

CF and BF communities were primarily governed by neutral

processes, with CF being more strongly influenced by neutrality

(R2 = 0.68, explained by NCM), indicating that stochastic processes
B C

D E

A

FIGURE 5

Fit of neutral community models(NCM) of community assembly among vegetation types. (A) NCM of shrubland. (B) NCM of mixed tree and shrub
forest. (C) NCM of coniferous forest . (D) NCM of coniferous broadleaf mixed forest. (E) NCM of broadleaf forest. The predicted occurrence
frequencies for the variations among vegetation types, plants, and communities, representing the differences in community ecological processes.
The solid blue line is the best fit for the neutral community model (NCM) by Sloan et al. (2006), and the dashed blue line indicates 95% confidence
intervals around the NCM prediction. Plants occurring more or less frequently than the NCM predictions are shown in green and red, respectively. R2

represents the fit of this model. Nm indicates the community size times immigration.
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dominate the community assembly of CF (Figure 5C). The main

reason is that in the CF community, P. kwangtungensis occupies an

absolutely dominant position, with no obvious co-occurring species

and relatively high rarity of other species (Figure 4A;

Supplementary Table S1). In contrast, the species are more

susceptible to stochastic processes due to their small population

size, high migration rate, and limited geographical range (Xu et al.,

2019; Zhang et al., 2022c). Additionally, the P. kwangtungensis

population is large as it is adapted to high altitudes with low survival

pressure. Coniferous trees often have allelopathic effects that inhibit

the occurrence of other species and compress the ecological niche of

other species within the community (Ehlers et al., 2014; Wang and

Cui, 2023), resulting in strong randomness in species occurrence

and stochastic processes dominating the community.

As the typical climax community in this landscape, BF

communities have higher species richness and diversity than CF

(Figure 3). Rare species are fewer within the communities, and the

species distribution is relatively uniform. Therefore, the R2 value of

the NCM is slightly lower than that of CF (Figures 5C, E). However,

according to the calculated Nm values, species dispersal between

plots in BF is higher than that in CF, indicating species dispersal as

one of the important mechanisms of species coexistence in BF

communities. Contradicting the findings of this research, however,

Su et al. (2023) found that humidity and soil significantly impact

species composition in karst BFs, indicating the effects of

environmental filtering on ecological processes in the community.

The reason may be that in the current study, dominant species in

the karst BF community have adapted to the moisture stress and

regulated their water use strategies by root plasticity and leaf

shedding, adapting to the severe karstic habitat (Ding et al., 2023).

Previous studies suggested that secondary forests driven by

deterministic processes could recover their community structure to

the state before disturbance (Finegan, 1996; Letcher and Chazdon,

2009; Norden et al., 2009). In this study, the dominant ecological

process in SL, MTSF, and CBMF tends to be the niche process,

indicating that deterministic processes dominate the community

assembly of these forests, which was consistent with the studies of

tropical secondary forests by Norden et al. (2009), Cequinel et al.

(2018) and others, where deterministic processes drove the

composition of forest species. Previous studies have also reported

that the colonization and extinction processes in forest

communities are primarily determined by environmental

heterogeneity and species competition (He et al., 2022). SL,

MTSF, and CBMF are karstic secondary forest communities. The

biological and non-biological filtering frameworks may be

important in its ecological process (Münkemüller et al., 2020).

Despite the abundant rainfall in the karst landscape with a

subtropical monsoon climate, the aboveground and underground

dual-structure hydrological system often causes severe precipitation

leakage, resulting in severe surface drought and frequent temporary

droughts (Ding et al., 2023). Moreover, the karst surface is steep and

irregular, with low and discontinuous soil coverage (Qi et al., 2021).

Chase (2007) found that the community species composition

similarities increased after drought treatment, possibly due to the
Frontiers in Plant Science 08
strong drought-induced environmental filtering that filters out

species with weak competitiveness and increases species similarity

between communities. Therefore, environmental filtering may

affect the construction of secondary forest communities. Among

the three secondary forest communities, SL has the lowest R2

(Figure 5A), mainly because environmental filtering often has a

smaller impact on larger species (Kristiansen et al., 2012). The SL

communities are mostly dominated by small shrubs with a higher

resource utilization efficiency than large trees and, therefore, a

tendency to receive the most effects of ecological niche processes.

As the typical dominant community in the karst landscapes, BF has

high species diversities. Although CF communities’ species diversity

is lower than BF communities, they are both dominant

communities with stable community structures in karst areas.

Thus, it can be indirectly inferred that the different

developmental stages of karst communities may be governed by

different community assembly mechanisms.
5 Conclusion

By quantifying the species diversity patterns and community

assembly mechanisms among five vegetation types in the Maolan

karst area, we found that the CF community had lower species

evenness and richness, while the BF community had higher species

richness. However, after controlling the sample size, a significant

rarefied species richness trend of BF > SL > MTSF > CBMF > CF

was found, which emphasized the importance of considering the

confusing impacts of abundance. In addition, stochastic processes

drove the community assembly of CF and BF, particularly species

dispersal or formation, the climax communities in the karst

landscape, while deterministic processes determined the

community assembly of secondary communities such as SL,

MTSF, or CBMF. At local scales, the difference among vegetation

types was manifested in the potential community assembly rules in

addition to the diversity patterns and community structure. Besides

aboveground biomass and diversity, attention should also be

directed to sorting ecological processes in regional forest ecology

and management.

Our study provided clear evidence that the seeming different BF

and CF were dominated by stochastic process, which emphasized the

totally difference between climax communities and other communities.

These findings improve understanding of species diversity patterns and

community assembly rules in the karst landscape. However, we only

examined the biodiversity patterns and community assembly rules at a

given plot scale. Further study might benefit from performing relative

study across spatial scales. In addition, further research also should

consider more important explanatory deterministic factors and

their relative importance such as unmeasured environmental

conditions and species interactions. Furthermore, a focus should be

placed on comparing the contributions of subterranean

microorganisms in climax communities and other communities to

the species diversity pattern and community assembly of above-ground

vegetations communities.
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