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We propose a closed-form system of nonlinear equations for the pitch plane or
longitudinal motions of a fixed-wing aircraft and use it to demonstrate a possible
path to the unification of theoretical flight dynamics and practical analysis of
aircraft manoeuvres. The derivation of an explicit model free of data tables and
interpolated functions is enabled by our use of empirical formulae for lift and drag
which agree with experiments. We validate the model by recovering the well-
known short period and phugoid modes, and the regions of normal and reversed
command. We then use the model to present detailed simulations of two
acrobatic manoeuvres, an Immelmann turn and a vertical dive. Providing new
quantitative insights into the dynamics of aviation, our model-based manoeuvre
analysis has the potential to impact both the academic flight dynamics curriculum
and the ground training program for pilots of manned and unmanned aircraft.
Possible consequences of future model-centric pilot training may include
improved safety standards in general and commercial aviation as well as
expedited theoretical course completion in air transport.
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1 List of symbols

The list of symbols used in this article is given in Table 1 below.

2 Introduction

The dynamics of aircraft flight is a subject which is of relevance to two classes of
technical audiences—university students and teachers, and pilots and flight instructors.
Currently, this subject is presented to these two audiences in completely disparate ways.

If we look at a sample of academic textbooks on flight dynamics (Etkin, 1971;
Nelson, 1998; Phillips, 2004; How, 2004; Caughey, 2011), we find that the greatest
emphasis by far is on the normal modes of an aircraft—short period, phugoid, spiral,
roll subsidence and Dutch roll—and their stabilities. This material (or a subset thereof if
primarily pitch plane motions are focused on) is present in almost every instance. The
rationale behind this topic selection has been excellently explained by George Bryan,
whose seminal work (Bryan, 1911) in 1911 opened the field of academic flight dynamics:
“In reading the accounts of accidents, both fatal and otherwise, that appear every few
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days in the daily papers, it is difficult to avoid coming to the
conclusion that much of this loss of life and damage could be
avoided by a systematic study of stability and certain other
problems regarding the motion of airplanes particularized in
this book.” The technique as well as philosophy behind the
approach to academic flight dynamics has seen little change
during the 110 years since Bryan’s groundbreaking work.
Modern textbooks with a more applied flavour (Anderson,
1989; Pamadi, 1998; Saarlas, 2007), such as books on aircraft

performance, supplement the stability calculations with
discussions of runway length, thrust or braking force required
during takeoff and landing runs, climb performance and range
optimization considerations. Only rarely do we see instances of
actual flight simulations entering the curriculum; one example
where this does happen is in Sinha and Ananthkrishnan (2014).
Here too the simulations, demonstrated for a modified
FA18 fighter jet, are pretty basic, mostly covering the response
of the aircraft to step changes in thrust, elevator deflection and
other control inputs.

Literature on the theory of piloting begins with Wolfgang
Langewiesche’s pioneering 1944 work (Langewiesche, 1944). To
quote him, “What is wrong with the theory of flight ..... is that it
is the theory of the wrong thing—it usually becomes a theory of
building the airplane rather than of flying it. [This theory] neglects
those phases of flight that interest the pilot most.” The theory that
Langewiesche was referring to was Bryan's theory of stability, which
explains his comment. Langewiesche presents his own intuitive and
entirely qualitative treatment of flight dynamics, going as far as one
can go without taking recourse to mathematical equations. The
content of his book appears essentially invariant in similar works
upto the present (Hurt, 1959; Barnard and Philpott, 2010; CAE
Oxford Aviation Academy, 2014; Badick and Johnson, 2022). The
reduced dependence on mathematics here sometimes restricts the
scope of the treatment. We shall see examples of this in the
present article.

It is natural to wonder, if the runway length during landing
can be calculated in detail, then why cannot the same hold true
for the approach and flaring technique. Perhaps this is because
runway lengths are obtained from explicit equations of motion
(Newton’s laws with thrust, drag and friction) while full-scale
flight manoeuvres such as flaring are not. Beginning with Bryan’s
work, all current equations for aircraft motion use coefficients of
lift, drag and elevator moment, denoted CL, CD and Cm, which are
unspecified functions of the speed, angle of attack and other
variables. These functions exist only as data tables, obtained from
experiments and/or computational fluid dynamics (CFD)
simulations. Given these tables, two approaches are commonly
used. The first, propounded by Bryan himself, is to work in terms
of linearized equations, valid near the linearization point. The
second approach is to use nonlinear equations. This requires one
to construct CL, CD and Cm by interpolation from the data tables,
with linear, cubic or higher-order polynomial interpolants being
typical. Some examples of studies using such an approach are
Refs. (Jahnke, 1990; Guicheteau, 1998; Lowenberg and
Champneys, 1998; Macmillen, 1998; Hassan and Taha, 2017;
Rohith and Sinha, 2020).

The only explicit equation till date for a flying vehicle is the
model derived independently by Lanchester (Lanchester, 1908) and
Zhukovsky (Zhukovsky, 1949) for a glider (unpowered aircraft):

dV
dt

� −aV2 − sin η (1a)
dη
dt

� V2 − cos η
V

, (1b)

where V denotes the speed of the glider and η denotes the angle
which the flight pathmakes with the horizontal. The system Eq. 1a, b
ignores the aircraft’s pitch as a separate variable. Since the pilot uses

TABLE 1 List of symbols used in this article.

Symbol Significance

B The aircraft centre of mass

C The centre of pressure of the wings

C The drag constant

d The aircraft body-fixed axis running along the fuselage centreline

d1 � − �d 1 The distance between the centre of mass and the centre of pressure
of the wings

d2 � − �d 2 The distance between the centre of mass and the tail

E The tail

e1, e2, e3 An orthonormal basis corresponding to span, chord and normal for
an airfoil

fp � − �f p
The force applied at the elevator

g The acceleration due to gravity

h � −�h The distance from the fuselage centreline to the line of action of the
thrust

I The moment of inertia of the aircraft

KC The lift constant of the wings

kE The lift constant of the tail

m The mass of the aircraft

o The aircraft body-fixed axis perpendicular to q and d

q The aircraft body-fixed axis running directly to starboard

t The time

U The velocity of an airflow

V The velocity of the aircraft

x, y, z An orthonormal basis fixed to the ground

α The angle of attack

ε A scale factor in an airfoil aerodynamics

Γ Damping constant for rotational motions

γ The camber

θ The pitch of the aircraft

θE The pitch of the tail

τ A torque

ω The aircraft’s angular velocity

η The angle of elevation of the trajectory, i.e., climb angle
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pitch control to regulate the flight path of a real aircraft, be it
powered or unpowered, this makes Eq. 1a, b simplified to the point
of being divorced from reality. Stengel (2004) presents an instance
where Eq. 1a, b is used to analyse the dynamics of a paper plane; even
so, the author acknowledges the limitations to the analysis arising
from the absence of pitch.

While aircraft manoeuvres have not entered the mainstream flight
dynamics curriculum so far, we would be remiss if we do notmention a
few research articles which touch upon the issue. In these studies, given
the aircraft dynamic model and the desired trajectory, the technique of
inverse simulation (Hess et al., 1991) has been used to obtain the
control inputs which must go into generating the trajectory. Examples
include barrel roll in an F4 fighter jet (Hess et al., 1991), a helicopter
flying a slalom (Thomson and Bradley, 2006) and an unmanned air
vehicle (UAV) performing different manoeuvres (Murray-Smith and
Mcgookin, 2015). A more theoretical treatment can be found in
Krishchenko et al. (2009) which incidentally uses a slightly
modified version of Eq. 1a, b as the underlying model. Modelling
of human pilots can also be found in Padfield (2011); Lone and Cooke
(2014), the first using τ-theory and the second using transfer functions
modelling various aspects of a human pilot such as perception and
neuromuscular reaction. We are yet to realize the full impact of these
works on either academic or operational flight dynamics.

In this article, we show the beginnings of how one may bridge the
gulf between theoretical flight dynamics and practical aircraft operation.
To this end, we first construct a closed-form dynamic model of the
aircraft. Compared to a data table model, this will help significantly
because the complete tables exist in the public domain for only a
handful of aircraft models, such as an F4 model (Lowenberg and
Champneys, 1998), F16model (Saetti andHorn, 2022) and FA18model
(Sinha and Ananthkrishnan, 2017). If one desires to construct a generic
model not tailored to a particular aircraft, then it is difficult to figure out
the generalizations and modifications which need to be made to the
tables.With a closed-formmodel however, the unknowns are constants
rather than multivariate functions. We can choose the constants to
make the model represent the type of aircraft we want, for instance a
passenger airliner, a piston-engine trainer or a stealth fighter. An explicit
equation will enable full flight manoeuvres to attain the same status as
considerations like runway length, climb gradient and range. Closed-
form equations also enable a large range of nonlinear dynamical

techniques to be brought to bear on the problem, which data-centric
equations do not. We shall see this later on in the article.

To construct themodel, we recognize that although the fundamental
origins of lift and drag on an aerodynamic body immersed in an airflow
are still subject to debate (Regis, 2020; Gonzalez and Taha, 2022; Liu,
2023), the resulting expressions for forces and torques on the body are
simple (especially in the non-stall regime), and those alone are sufficient
to yield the dynamics of a single aircraft flying in isolation. For simplicity,
we restrict ourselves to two-dimensional motions in the pitch plane or
longitudinal plane. This is where lift is generated, and many interesting
manoeuvres such as takeoff and landing also take place in the pitch
plane.Hence it is natural to consider this case atfirst. After proposing the
model, we validate it by demonstrating the short period and phugoid
modes as well as the regions of normal and reversed command. The
successful derivation of the normal modes and their stabilities also
ensures that our model passes the basic requirements of the university
curriculum.We then show how the external excitations in the equations
of motion—the thrust and elevator force (pilot stick input)—can be
chosen tomake the (model) aircraft perform differentmanoeuvres. Here
we consider twomanoeuvres, both taken from acrobatic flying. The first
is the Immelmann turn while the second is the vertical dive (and
recovery!). After these demonstrations, we conclude with a discussion
of the implications and ramifications of our results.

3 Methods

3.1 Lift formula

To derive the closed form aircraft dynamic model, we start from the
simplestmathematical expression for lift and drag on an airfoil (aircraft’s
wings and tail) which agrees with experiments. Let x, y, z denote a
ground-fixed dextral, orthogonal axis triplet and let e1, e2, e3 be a triplet
corresponding to the span, chord and normal for an airfoil. When the
airfoil ismounted in an airflowU, the e1-component of the flowdoes not
generate lift, so we assume that the flow occurs in the e2-e3 plane only.
Without loss of generality, we take e1 = x andU � −Uŷ (throughout this
article, hat denotes unit vector); we rotate the airfoil about the e1-axis to
achieve different flow geometries. Let the axes e2 and e3make an angle of
attack α with y and z. We can see the geometry in Figure 1.

FIGURE 1
The airfoil showing the relevant axes and angles. U represents the airflow in a reference frame where the airfoil is stationary.
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Now, define a scale factor ε and the camber γ such that when the
airfoil’s true angle of attack is α, its effective angle of attack is

α′ � ε α + γ( ) (2)
Here, ε is of order unity while camber γ, when non-zero, is typically a
few degrees. Let e2′ and e3′ denote axes rotated through α′ relative to y
and z. Then, our formula for the aerodynamic force on the airfoil is

F � −KUe2′Ue3′ ê′ 3 (3)
where K is a constant which we call the “lift constant”. The
expression (Eq. 3) has the following features (note that in the
‘base case’ of ε = 1 and γ = 0, α′ = α):

• The magnitude of the lift FL (component of F normal to U) is
KU2 sin α′ cos2α′. Practically, α′ must be small for the airfoil
not to stall. In this case, the lift is proportional to U2 and α′,
both of which agree with experiments. If K is made
proportional to the density ρ of the air, then that
dependence agrees with experiment also.

• F also has an induced drag FD (component ofF parallel toU) with
the value FL tanα′. Induced drag directly proportional to the lift is
a hallmark of all real airfoils. The lift-to-drag ratio (L/D) is cotα′.
Decreasing L/D with increasing angle of attack is observed in
experiments (Webb et al., 2001; Noronha and Krishna, 2021),
beyond the smallest α′s where parasitic drag dominates. For a
given airfoil, the parameter ε controls L/D at a particular α.

• Eq. 3 is a quadratic polynomial in velocity components, which
results in analytical simplicity of all equations derived on its basis.

Note thatK, ε and γ are constant if the air density is constant and the
wing geometry i.e., flap setting does not change, all of which hold true for
typical flight manoeuvres. The distribution of F over the surface of the
airfoil determines the torque exerted on it. The torque is equivalent to the
entire force acting through one point called the centre of pressure (CP).
For our purposes it will be sufficient to treat the location of CP as a given.

Since we shall be performing the stability analysis and
demonstrating the manoeuvre simulations for a hypothetical aircraft
rather than an actual one, let us take γ = 0 and ε = 1 for the remainder of
this article so that α′ = α and ê2,3′ � ê2,3. This assumption results in a

minimal model, and also makes the geometry easier to visualize while
not discarding any physical phenomena. In addition to lift on an airfoil,
we shall also need a formula for the parasitic drag acting on the fuselage
and wings. We use the standard formula

FD � CU2Û (4)
where C, like K in Eq. 3, is a constant that factors in the density of air,
the dimensions of the body and other quantities unrelated to the flow
geometry. Before proceeding further, we again note that Eqs 3, 4 are
phenomenological in origin, and make no reference to the flow field
surrounding the aircraft. For this reason, our model is applicable only
to a single aircraft flying in isolation, and not to aircraft flying close
together, such as in formations. Civilian aviation however features
with overwhelming preponderance the former case.

3.2 Geometrical features, elevator model

For the derivation of the equation of motion, we assume that the
air is still (i.e., there is no wind) and that the aircraft is not in a stall.
The point B is the centre of mass (CM) of the aircraft, C the CP of the
wings and E the tail (assumed small enough to be treated as a point).
Let the ground-frame axes be x, y, z with z vertically upwards. With
origin at B, let the aircraft’s direct axis d run along the fuselage from
tail to nose, quadrature axis q point directly to starboard and
orthogonal axis o be perpendicular to these two, so that q, d, o
form a triplet. Let q, d, o be coincident with x, y, z when all orientation
angles are zero. As already mentioned, all our work in this article is in
the pitch plane (y-z plane or d-o plane) alone.We assume that C and E
are both located on the d-axis, with C behind B (as conventional for an
aircraft) and E of course behind C. Let V be the velocity vector of B
and η the angle of elevation of V, i.e., η � arctan(Vz/Vy). Let θ be the
pitch. Assuming the wings’ e2-axis to be parallel to the fuselage d-axis,
θ − η becomes α, the angle of attack. Letm be the aircraft mass, d1 the
length BC and d2 the length BE. Let h be the distance from the d-axis
to the centreline of the engines. Let us also define �d 1 to be −d1, �d 2 to
be −d2 and �h to be −h, so that the barred quantities are positive. LetKC

be the lift constant of the wings and kE be that of the horizontal tail; let
C be the drag constant of the fuselage. The geometrical features are
shown in Figure 2.

FIGURE 2
The aircraft showing axes, angles and dimensions. The q-axis comes out of the plane of the page.
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We recognize that the axis nomenclature and conventions defined
above differ from most Literature items which have x forward, y to
starboard and z vertically downwards. Moreover, these works do not
use descriptive names (such as direct, quadrature, or orthogonal) for the
body axes. Our rationale for choosing a different axis convention is that
in aviation, altitude is measured positive upwards and most engineers
and scientists outside of aerospace are also accustomed to a convention
where z points vertically upwards. Since our methods and results are
intended for aircraft operations personnel in addition to aerospace
engineers, and also have significant potential interest to a general
audience, an axis convention where negative altitude is higher might
appear counter-intuitive to some readers. The primary tradeoff with this
axis choice is that in the three-dimensional situation, a starboard turn
features a positive bank angle and a negative yawing angle (assuming
rotations to be counter-clockwise positive). In our opinion the benefit
outweighs the cost, because in the pitch plane model, the yaw and bank
angle do not appear.

Nowwe consider the model of the tail. In the spirit of achieving a
minimal workable aircraft model, we assume that the aircraft has a
single movable tailplane, which we call the elevator (the word
“stabilator”, though more appropriate for this device, is less
familiar than “elevator”). We can see a schematic representation
of an elevator in Figure 3. Like the wing, it is an airfoil; unlike the
wing, it is pivoted to the fuselage instead of being rigidly attached. It
is also connected to the stick in the cockpit. When the pilot
manipulates the stick, a torque acts about the pivot.

Let τpê1 (where e1, e2, e3 is the elevator airfoil basis) be the torque
applied on the elevator by the pilot (the subscript “p” stands for pitch).
Since the elevator has an equilibriation timescale much shorter than the
whole aircraft, we assume that it is always in a state of torque
equilibrium. The only external torque acting on the elevator comes

from the lift fp, as shown in Figure 3. By Eq. 3 and our assumptions of
ε = 1 and γ = 0, fp acts through the CP along the e3-direction; evidently,
τp= lfpwith l being the distance from theCP to the pivot. Henceforward,
we shall treat fp rather than τp as the fundamental pilot-inputted
quantity. Let θE be the angle which the elevator (i.e., its chord)
makes with the y-axis, let VE be its velocity with respect to the
ground and let η′ be the angle between VE and the y-axis. The
angle of attack of the elevator then is αE = θE − η′; expressing (Eq. 3)
in terms of magnitude and angle rather than components we have

fp � kEV
2
E

2
sin 2αE , or (5a)

αE � 1
2
arcsin

2fp

kEV
2
E

0 θE � η′ + 1
2
arcsin

2fp

kEV
2
E

. (5b)

If the stick force is zero, then the elevator floats freely i.e., it lies parallel
to the flight path and not to the fuselage. A pull force on the stick, which
is required for steady flight, corresponds to negative fp, so we define the
positive �f p as −fp. Note that the pivoting location and the “artificial
feel”mechanismmay change the relationship between the pilot-applied
τp and fp; this does not affect the validity of Eq. 5a, b. Also, if the tail has
two pieces (separate horizontal stabilizer and elevator), then �f p will be
given by the sum of the forces on both of them.

3.3 Forces and torques

The five forces acting on the aircraft can be seen in
Figure 4. They are wing lift (plus induced drag) F, weight −mgẑ,
thrust T, fuselage drag D and tail lift (plus induced drag) �fp.

We shall now describe the details of the derivation of the
equation of motion. The derivation involves lengthy expressions,

FIGURE 3
Schematic representation of the elevator pivoted to the fuselage. We can see the aft section of the fuselage, minus the vertical tail. In this Figure we
assume that the elevator’s velocity VE is horizontal, for easier understanding. The angle of attack of the elevator is negative, so its lift is negative also.
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so we have used the computer algebra software WXMaxima (Rand
and Armbruster, 1987) for it.

We start from the rotation matrices connecting the different
bases—y, z attached to the ground, d, o attached to the aircraft and
e2, e3 attached to the tail. We have

Vd

Vo
[ ] � cos θ sin θ

−sin θ cos θ
[ ] Vy

Vz
[ ], (6a)

V2

V3
[ ] � cos θE sin θE

−sin θE cos θE
[ ] Vy

Vz
[ ], (6b)

Vd

Vo
[ ] � cos θ − θE( ) sin θ − θE( )

−sin θ − θE( ) cos θ − θE( )[ ] V2

V3
[ ], (6c)

where V denotes an arbitrary vector. Since rotation matrices are
orthogonal, the inverse equals the transpose.

We now write quantitative expressions for each of the
forces listed in Figure 4 and the torques which they exert about B.

3.3.1 Wings
Using Eq. 3, the lift is

F � −KCVCdVCoô, (7)
where VC denotes the velocity of point C. This has two contributions,
one from the translation of the aircraft and the other from the rotation
of the aircraft about B. That is,

VC � V + ωq̂ × d1d̂, (8)
where ω = dθ/dt is the aircraft’s angular velocity. In a typical
scenario, the first term outweighs the second by order of
magnitude, so we drop the latter and write

F � −KCVdVoô. (9)
Note that KC takes into account both wings. The torque which the
lift generates about B is

τ � d1d̂ × FLô � d1FLq̂. (10)
Since d1 is negative, the torque is negative if the lift is positive, as is
evident from Figure 4.

3.3.2 Tail
The force is

F � fpê3. (11)

In Eq. 5a, b, VE has the form VE � V + ωq̂ × d2d̂; neglecting the
second term we can write

θE � η + 1
2
arcsin

2fp

kEV2
. (12)

Note that η′ of Eq. 5a, b has become η since we have assumedVE =V.
The torque is

τ � d2d̂ × fpê3, (13)
which, using the rotation matrices, gives

τ � fpd2 cos θ − θE( )q̂. (14)

When fp is negative, its torque is positive, consistent with Figure 4.

3.3.3 Thrust
The force is Td̂ and its torque is τ � −Thq̂. Since h is negative,

this torque is positive if T is positive, as is clear from Figure 4.

3.3.4 Gravity
The force is −mgẑ and the torque is zero since gravity acts

through the CM.

3.3.5 Drag
The force is −CV2V̂ as per Eq. 4. We assume that the fuselage

drag acts through the CM, so that its torque can be taken as zero.
There is however a drag torque which gets generated when the

FIGURE 4
Forces acting on themodel aircraft. F is the lift,mg theweight, T the thrust andD the drag. Pitch and elevation are 12° and 6°; the elevator deflection is
−3° from the flight path and −9° from the fuselage. The directions of all forces as well as the velocity are accurate but their magnitudes are not drawn
to scale.
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aircraft rotates in pitch. We model this as a simple damping
τ � −Γωq̂, where Γ is a constant.

Having obtained all the forces and torques, we substitute them
into Newton’s laws of motion.

m
dV
dt

� F, (15a)

I
dω
dt

� τ. (15b)

In the second equation above, I is the moment of inertia of the
aircraft about the q-axis and the vector nature of ω and τ has been
suppressed since they are all about the q-axis.

Using the rotation matrices, we get WXMaxima to express the
above five forces in the y-z basis, add them up, and equate the y- and
z-components of the resultant force to m times dVy/dt and dVz/dt
respectively. This generates expressions for dVy/dt and dVz/dt. We
then implement a variable transformation to express the equations
of motion in terms of the speed V and the elevation angle η of the
flight path. We have

Vy � V cos η, Vz � V sin η, (16)
wherefrom

V � V2
x + V2

y( )1/2 0 dV
dt

� 1
V

Vy
dVy

dt
+ Vz

dVz

dt
( ), (17a)

η � arctan
Vz

Vy
0

dη
dt

� 1
V2

Vy
dVz

dt
− Vz

dVy

dt
( ). (17b)

Getting WXMaxima to introduce the expressions for dVy/dt and
dVz/dt in the above, and also to evaluate the total torque gives us the
equation of motion.

We find

kEV2

2
sin 2 η − θE( ) � �f p (18)

and

dy
dt

� V cos η (19a)
dz
dt

� V sin η (19b)

dV
dt

� 1
m

KCV2

4
cos 3 θ − η( ) − cos θ − η( )[ ] + �f p sin θE − η( )[

+ T cos θ − η( ) −mg sin η − CV2]
(19c)

dη
dt

� 1
m
[KCV

4
sin 3 θ − η( ) + sin θ − η( )[ ] − �f p cos θE − η( )

V

+ T sin θ − η( )
V

− mg cos η
V

] (19d)

dθ
dt

� ω (19e)
dω
dt

� 1
I

−Γω − KC
�d 1V2

2
sin 2 θ − η( ) + �f p

�d 2 cos θ − θE( ) + T�h[ ],
(19f )

which is our proposed closed form model of the aircraft. Equation
(19) is a sixth order nonlinear equation set, though the first two

equations are decoupled from the rest. It has nine parameters—kE,
m, KC, C, I, Γ, �d 1, �d 2, �h (two more if ε and γ are included)—and two
external excitation functions T(t) and �f p(t) which are determined
by the pilot or autopilot’s inputs.

4 Results

In this Section, we first present the fixed point and stability
analysis of Eq. 19a–f and then demonstrate the manoeuvres. For this,
we consider a hypothetical aircraft having the parameter values as
given in Table 2. While these values are arbitrary, they have been
chosen to create an aircraft with characteristics similar to a 200-seat
passenger airliner like the Airbus A321.

4.1 Equilibria, stability and normal modes

We use the words “equilibrium”, “fixed point” and “steady
state” interchangeably, in their dynamical systems sense. For the
equilibrium analysis, we treat T and �f p as constants, which we
call T* and f*; let the fixed point values of speed, elevation and
pitch be V*, η* and θ*. f* leads to the fixed point tail angle θE* via
Eq. 18. For the equilibrium analysis, we exclude from
consideration Eq. 19a and Eq. 19b since the aircraft cannot be
stable to changes in position. In the remaining equations of the
set (Eq. 19a–f) we stipulate that the right hand sides be identically
zero. This gives us ω* = 0; the remaining variables V*, η* and θ*
must satisfy (letting α* = θ* − η*)

KCV*
2

4
cos 3α* − cos α*( ) + f* sin θE − η*( ) + T* cos α*

− mg sin η* − CV*2 � 0
(20a)

KCV*
4

sin 3 α* + sin α*( ) − f* cos θE − η*( )
V*

+ T* sin α*
V*

− mg cos η*
V*

� 0
(20b)

TABLE 2 Parameter values for the model aircraft, which we shall use for the
equilibrium and stability analysis as well as for the manoeuvre simulations.
m and T denote themaximumpossible values ofmass and thrust–MTOWor
maximum takeoff weight and TOGA or takeoff go around
thrust–respectively.

Parameter SI unit value

m 100000

g 9.8

KC 1500

kE 150

T 300000

�d1 1

�d2 25

�h 0.5

C 3

I 64m

Γ 192m
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− KC
�d 1V*

2

2
sin 2 α* + f* �d 2 cos θ* − θE( ) + T*�h � 0 (20c)

Using the parameter values of Table 2, we solve Eq. 20a–c via
Newton-Raphson method and then for stability analysis we
substitute the fixed points into the Jacobian of Eq. 19a–f, and
calculate its eigenvalues. As a concrete example, we consider
stability of fixed points corresponding to level flight (η* = 0) at a
range of speeds from 70 to 195 m/s (approximately 250–700 km/h,
practical operating speeds near ground). The eigenvalues are shown
in Figure 5.

We can see that one mode has real or complex eigenvalues with
strongly negative real parts while the other has eigenvalues with real
parts whose sign depends on velocity. These are of course the short
period and phugoid modes, known to exist for all aircraft. To
continue the modal analysis, we now show that the mode shapes
corresponding to these eigenvalues are as expected for a typical
aircraft. For this, we consider the fixed point corresponding to a
speed of 88 m/s at angle of elevation 0. Equation (20a–c) gives the
thrust required as 113530 N, the elevator force as 38507 N and the
equilibrium pitch as 0.087606 rad. Linearization about this point
yields the following eigenvalues and vectors.

λ1 � −2.1614 + j0.47249, λ3 � −0.00030416 + j0.012285, (21a)

v1 �
0.98363

−0.087548 − j0.007505
0.058969 − j0.026874
−0.11476 + j0.085947

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, v3 �

1
0.001576 − j0.001285
−0.000417 − j0.001270
0.000016 − j0.000005

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(21b)
Where j � ���−1√

. λ2 and λ4 are the complex conjugates of λ1 and λ3,
and the corresponding eigenvectors are conjugates also. We can see
that λ1, v1 correspond to the short period mode while λ3, v3
correspond to the phugoid mode.

To observe the short period behaviour, we set the initial
conditions to be V (0) = 88, η(0) = 0–0.01509, θ(0) =
0.087606–0.053748 and ω(0) = 0 + 0.171894. This way of writing
highlights the fixed point values plus the perturbations, which are
twice the numbers in the imaginary part of v1 in (21b). We also use y
(0) = 0 and z (0) = 300. Figure 6 shows what happens over the next
5 seconds. Within a couple of seconds, the angles attain their
equilibrium values. Hence, the short period mode consists
primarily of the damping of pitching motions. To observe the
phugoid mode, we now use the initial values V (0) = 88, η(0) =
0 + 0.0038547, θ(0) = 0.087606 + 0.0038091 and ω(0) = 0. The
perturbations are −3 times the numbers in the imaginary part of v3
in (21b). We also use y (0) = 0 and z (0) = 300. We plot the results in
Figure 7. We can clearly see the long-period oscillation in z and V.

FIGURE 5
Plot of the two pairs of eigenvalues as speed is varied in 200 steps from 70 to 195 m/s. Upper panel shows the short period mode and lower panel
shows the phugoid mode. In each panel, blue denotes one eigenvalue and green the other. The speed is labelled on the plot at significant or
representative points.
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The mode eigenvalues and shapes are in accordance with what is
known in Literature, thus validating our model (Eq. 19a–f).

As another validation procedure, we plot in Figure 8 the thrust T*
and pitch θ* corresponding to fixed points at a range of speeds and three

different climb rates. From this point onwards, as we gravitate towards
more practical applications of aircraft dynamics, we implement a change
of Units. It is a fact that aviation features a mix of SI and non-SI Units.
Whereas we continue to perform all calculations in SI, we now resort to

FIGURE 6
Time traces of the variables after an initial perturbation which excites the short period mode. All variables are in SI Units.

FIGURE 7
Time traces of the variables after an initial perturbation which excites the phugoid mode. All variables are in SI Units.
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some non-SI Units in reporting results. This is to achieve partial
alignment with the aviation community and increase readability of
themanuscript to aircraft operations personnel. For speed, we have used
km/h rather than knots (kts) since (a) kts are unfamiliar outside the
aviation industry and (b) km/h is the future ICAO recommended unit
(ICAO, 2010). For displacements, we use metres for horizontal and feet
for vertical. This is because feet for altitudes are ingrained into modern
aviation, on account of the minimum safe vertical separation between
co-located aircraft being approximately 1,000 ft, and the
permissible cruising altitudes thereby being stipulated to be
integer thousands of feet. In this case, for Figure 8 we choose
speeds ranging from 250–700 km/h and climb rates of 0, 200 and
500 feet per minute (fpm; 1 m/s is very nearly 200 fpm). We call
such plots the “characteristics” in line with similar curves for
electric motors and generators in electrical engineering (Krishnan,
2010). The V-shaped curve of thrust is familiar.

Let us consider the fixed thrust level of 40 percent. For each of
the three climb rates, this thrust level gives one equilibrium to the
right and one to the left of the minima of thrust. We show these
equilibria in Table 3.

In the right-hand region, a higher pitch corresponds to a higher
climb rate, while in the left hand region, a higher pitch corresponds
to a lower climb rate. Moreover, the same power gives a lower speed
coupled to a lower climb rate on the left. These are well-known
performance features of aircraft (Langewiesche, 1944; Hurt, 1959;
Barnard and Philpott, 2010; Cae Oxford Aviation Academy, 2014;
Badick and Johnson, 2022) the two regions are called the regions of
normal command (right) and reversed command (left).

Thus, our new model (Eq. 19a–f) has successfully yielded the
textbook results thereby demonstrating that it is as capable as the

traditional models of predicting the equilibria and stability of
the aircraft.

4.2 Manoeuvre analysis

Having validated the model, we now turn to its central use, which is
the explicit demonstration of manoeuvres. We will first plan the
manoeuvres qualitatively and quantitatively basis the model and then
use the equations of motion in a simulator environment to show the
details of the execution. We consider two speciality manoeuvres, the
Immelmann turn and the vertical dive. In this article, we focus on
these two manoeuvres rather than the mainstays of civilian
aviation (takeoff, landing, etc.) to keep the treatment brief.
Any analysis of civilian aviation, if we are to perform it with
the thoroughness it deserves, will require an extended discussion
of safety as well as performance, and we leave this heavy lifting to
future work. Despite our chosen manoeuvres being more suited
to tailormade aircraft, here we exploit the advantages of the
virtual environment to retain the model aircraft of Table 2. We do
however reduce its mass to m = 80000 kg to generate a greater
thrust-to-weight (and drag-to-weight) ratio.

In Figure 9 we plot the characteristics for this aircraft.
Structurally similar to Figure 8, the three climb rates this time
are 0, 1,000 and 3,000 fpm respectively (typical climb rates in a
civilian context). We also show the required �fp in a separate panel.
These plots will help us execute the manoeuvres.

To execute and demonstrate the manoeuvres, we use Eqs 18, 19a–f
to set up a flight simulator with a basic user interface. We call this the
academic flight simulator, and intend it to be the primary realization of
ourmodel in the flying school environment. The simulation proceeds in
discrete cycles of user-defined time duration (here we have chosen 1 s of
flight time per cycle). At the completion of each cycle, the machine
displays to the user the values of relevant variables such as speed,
altitude and pitch (the specific instruments simulated vary by
manoeuvre—during a simulation of landing for instance, we show
the deviation from the glideslope), and invites the user to enter the
values of T and �f p to be used during the next cycle. The user makes
these inputs basis of the displayed variables, just as in a real flight the
pilot adjusts his/her control inputs in reaction to the instrument

FIGURE 8
Plot of fixed points for the model aircraft. Solid, dashed and dotted lines denote climb rates of 0, 200 and 500 fpm respectively.

TABLE 3 Climb rate (fpm), speed (km/h) and pitch (degrees) for six equilibria
corresponding to 40 percent thrust, with three equilibria to the left of the
minima of thrust (L) and three to the right (R).

L R

Climb rate 0 200 500 Climb rate 0 200 500

Speed 303 327 378 Speed 654 628 579

Pitch 5.50 5.33 4.91 Pitch 1.17 1.61 2.40
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readings. Unlike in a real-time flight simulator, the pauses at the end of
each cycle in the academic flight simulator allow the user to think
carefully and come up with an optimal input. In our opinion, this
maximizes the learning outcomes. Once the inputs are received, the
simulator then substitutes these values into Eqs 18, 19a–f, and
numerically integrates them over the duration of the cycle using the
initial conditions from the end of the preceding cycle (for the first cycle,
the initial conditions are defined by the user). Integration method is
fourth order Runge Kutta with a time step of 10–4 s.

Given the academic flight simulator, we have used it to obtain
the input signals for the manoeuvres through the time-honoured
strategy of practice makes perfect. Operating the simulator
ourselves just as a student pilot would, we have continually
refined our inputs to make the manoeuvre approach closer
and closer to the stated targets. Once our execution has
attained demonstration quality, we have then included the
attempt in this article. Thus, we can say that our input
histories for each manoeuvre are based on human learning
from the model-generated data.

4.2.1 Immelmann turn
This manoeuvre consists of a 180° vertical loop from straight

flight to inverted flight on the reciprocal heading, followed by a 180°

bank to cancel the inversion. Here we shall analyse only the half-loop
as that takes place in the pitch plane alone. To pull an Immelmann
turn, we need to command high �f p (for the simulation we choose
100 kN) so as to pitch up rapidly. At the end of the manoeuvre, when
the aircraft is inverted, the lift required to balance gravity must be
negative (relative to the aircraft’s d, o axes), so α and �fp must be
negative also. Since α is always small, positive �f p gives positive
torque and the transition from high positive to negative �f p at the
end of the manoeuvre should automatically cause the desired sign
change of α as well. A climb against gravity will require as much
thrust as possible to minimize the loss of speed, so the thrust remains
set to 99 percent throughout. Figure 10 shows a schematic
representation of the trajectory together with the aircraft itself at
suitable intervals on it. Figure 11 shows the time traces of the pilot’s
commands and the most significant dynamical variables.

High �f p causes both pitch and elevation to increase quickly.
The first reduction of �f p causes α to flip sign while further reduction
to negative values stabilizes η at 180°, just as we expected. The speed

FIGURE 9
Characteristics for the model aircraft with m = 80 tons.

FIGURE 10
Profile of the model aircraft during the Immelmann manoeuvre.
The trajectory is to scale and the pitch is accurate but the aircraft itself
is over-large for clarity. The high negative α in the last snapshot is
noteworthy.
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drops sharply as the aircraft climbs through a significant altitude,
explaining the asymmetry between distance and pitch in Figure 10.

4.2.2 Vertical dive
The dive has three parts—preparation for the dive, entry into the

dive and exit from the dive. In the preparation phase, we decelerate to
level flight at the slowest possible speed. To achieve this, we retard
throttles to idle (here assumed 10 percent of TOGA thrust); since angle
of attack must increase as speed decreases, a gradual raising of the nose
is required during deceleration. When α approaches the stalling value
(here taken to be 15°), we initiate the dive by pushing the nose down.
The target for the dive has to be η = θ = −90°; (Eq. 19a–f); admits such a
solution with �f p � 0 and V increasing monotonically upto the
terminal velocity (whatever it may be). The strongly stable short
period mode at all relevant speeds suggests that this state, once
entered, will be stable to deviations in θ. To reach η = −90°, we need
to eliminate the y-component of velocity present at the initiation of
the dive. When the aircraft’s nose is below horizontal, a negative α
will result in the lift’s acquiring the desired −y-component; this α
must however be sufficiently small in size as to prevent the aircraft
from entering retrograde motion (η < − 90°). Since negative lift
causes a nose-up moment, a fairly strong nose-down elevator must
be applied to counteract it and hold α steadily negative. As η

approaches −90°, we will need to reduce the elevator force to bring
α closer to zero, ideally reaching this state at the same instant as η
reaches −90°. After the dive is over, exit will have to be achieved
using maximum nose-up elevator input, and when a climb is
established, we will need to reapply thrust. Let us specify a
target climb rate of 3,000 fpm for this phase of flight.

FIGURE 11
Time traces of different variables during the Immelmann manoeuvre. The elevation is the flight path angle η. The symbol “k” denotes thousand.

FIGURE 12
Schematic profile of the model aircraft during the most
important portion of the vertical dive (from approximately t =12 to
t =41 s of the simulation). The trajectory is to scale; for clarity, the
aircraft is over-large, the d-axis is highlighted by a yellow line and
the angle of attack is enlarged by a factor of three, thus θ in the Figure
is η +3α. We can see α varying from snapshot to snapshot–it is very
high positive in the first to balance the weight at a low speed, low
negative in the second to retard the forward speed, zero in the third by
design and moderately high positive in the fourth which combines
with the high speed to generate a lift significantly exceeding
the weight.
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Figures 12, 13 show the aircraft profile and the relevant time
traces. The ideal dive (η = θ = −90°) is held from t = 32 to t = 35 s.
We can see that the elevator states attained through practice on
the simulator are close to the predictions of Figure 9 wherever the
latter are applicable. For instance, during the preparation phase,
Figure 9 suggests �f p just above 30 kN to maintain equilibrium
flight at 250 km/h and below; Figure 13 shows a slightly higher
elevator force being required since we need to raise the nose as
well. Again during the pull-up phase, when the climb rate reaches
close to 3,000 fpm, the speed is about 580 km/h. Figure 9 suggests
for this operating condition a thrust of about 55 percent and �f p

of about 29 kN. In the last 11 s of Figure 13 we can see that
60 percent thrust and alternating elevator force between 28 kN

and 30 kN give us a steady 3,000 fpm climb with a very slow
acceleration.

5 Discussion

In our planning of the dive, we saw one concrete instance
where dynamical systems theory as applied to the closed-form
model (Eq. 19a–f) gave us the existence as well as the stability of
the solution θ � η � �f p � 0. It would have been far more difficult
to extract this solution from a data table model. Similar
advantages, on a much larger scale, pertain to calculations of
takeoff, landing and civilian aviation manoeuvres, as will be

FIGURE 13
Time traces of different variables during the vertical dive. The elevation is the flight path angle η. The symbol “k” denotes thousand.
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shown in future works. It is also interesting that a model-based
treatment is sometimes capable of greater accuracy than a
qualitative treatment alone. In Langewiesche’s pioneering
work (Langewiesche, 1944), we find in Chapter 2 a discussion
of “the airplane’s gaits”. Two of these gaits are level flight at low
and high α′s while two more relate to steady climbs and descents.
In our view, all these (and everything in between) are pitch plane
equilibria, as shown in Figures 8, 9. Corresponding to each steady
state flight condition we have a required thrust, pitch attitude and
elevator trim. A further gait in Langewiesche (1944) is the dive;
the book says that for a vertical dive, one must have the nose
pointing slightly backward, i.e., if η = −90° then θ < − 90°. From
our analysis, we can see that a negative α is required during dive
entry but α = 0 suffices during the vertical portion of the dive.

An additional advantage of our model-based manoeuvre analysis is
the introduction of the aircraft characteristics, as in Figures 8, 9. With
the exception of the power curve—a plot of thrust vs. speed for level
flight which makes no reference to the elevator state—such
characteristics do not appear in existing Literature. They do however
have significant utility in manoeuvre planning and execution. In this
article they yielded the values of T and �f p to be used for the 3,000 fpm
climb at the end of the dive in Figure 13. Characteristics were not used
more extensively here because the rest of the manoeuvres did not
feature equilibrium flights; civil aviation manoeuvres do so to a much
greater extent.

With respect to the limitations of the study, we have already
mentioned that the empirical lift formula Eq. 3 is not equipped to
describe the flow field around the aircraft and hence is not applicable
to studies involving multiple mutually interacting aircraft
(formation flight, wake turbulence). We have also enunciated
that this limitation does not carry over to the analysis of a single
aircraft, which is the topic of this article (and indeed, of almost the
entire flight dynamics Literature). In Table 4, we enumerate the
assumptions in the model and the expected consequences of relaxing
these assumptions.

Further, in the simulations here, we have used a model of a
passenger airliner to demonstrate speciality manoeuvres. This is
because of our plan to use the same model aircraft to demonstrate
manoeuvres pertinent to civil aviation. Many acrobatic stunts are
prohibited for passenger airplanes not for reasons of dynamical
feasibility but because the resulting stresses may exceed the
airframe’s ultimate design limit. On a simulator of the dynamics
alone, this is not a relevant factor. In these simulations, we have also

implemented altitude changes of several thousand feet without
varying KC, kE and C to account for the dependence on air
density. This is for simplicity and in our opinion is acceptable as
long as we are aware of it; incorporating the density will not
introduce any qualitatively significant changes to the dynamics,
and the model aircraft is a hypothetical one anyway.

6 Conclusion and future directions

In this article we have proposed a closed form dynamic model
for the pitch plane or longitudinal motions of an aircraft. After
validating it by the derivation of standard results, we have shown
how it can be used to plan and execute two acrobatic manoeuvres.
Demonstration of many more manoeuvres such as takeoff, landing
and stall recovery are planned for the immediate future. Our hybrid
of theory and practice makes our work equally applicable to the
university and the flying school.

Here, our demonstration aircraft has been a fictitiousmodel. Future
work will aim to create models of real airliners such as Airbus A320 and
Boeing 777. Since the (pitch plane) model has only eleven unknown
parameters and no unknown functions, it should be possible to estimate
the best-fit values of these parameters from flight data recorder
observations alone. To the best of our knowledge, no public domain
model exists for a passenger airplane. A more distant future work is the
extension of the model (Eq. 19a–f) to the general case of three
dimensions, which will enable us to plan and demonstrate all
possible manoeuvres.

Currently, we are seeing a global surge in demand for pilots on
account of rapid growth in the airline industry. Due to the rigorous
training requirements for air transport pilots, such demand is not
easy to satisfy quickly. If the on-ground pilot training program is
modified to include model-based manoeuvre analysis, then itmay be
possible to expedite the ground training phase without
compromising pilot proficiency and safety. Model-based pilot
training might also help to improve safety standards in general
and non-transport commercial aviation, where accidents due to
pilot error are far more prevalent than in airline flights. Of course, all
these are still very much future possibilities. But as they say, the
journey of eight thousand miles begins with a mile-and-a-quarter
takeoff, and our article shows a credible path towards such a future.
Demand for UAV pilots is also expected to rise significantly over the
coming years due to proliferation of drones for transport and

TABLE 4 Table showing the assumptions in the model and the anticipated results of relaxing these assumptions.

Assumption Consequence

The parameter ε in Eq. 2 set to unity while deriving Eq. 19a–f With nonzero ε, we will get a different L/D ratio and hence the location and value of minima in
characteristic curves will be different. There will be no qualitative change in aircraft behaviour

The camber γ in Eq. 2 set to zero while deriving Eq. 19a–f The behaviour of a camberless wing at angle of attack α equals that of a cambered wing at angle of
attack α − γ. Hence, camber will cause a shift of characteristic curves with respect to α

Horizontal stabilizer plus elevator replaced by stabilator With a two-piece tail, Eq. 18 will have to be replaced by two similar equations, one for each piece. The
total �f p will be the sum of the two forces

Elevator downwash, i.e., effect on the tail of downward airflow aft of
wings, neglected

Downwash will cause a change in the effective angle of elevation of the tail, replacing η in Eq. 18 by
some η′

Pitch rate terms excluded in the derivation of Eq. 19a–f There will be a correction to wing lift and tail pitch θE if pitch rate terms are included. Since, for a
civilian aircraft, the rotation rates are small, ωd1,2 ≪ Vy,z and the corrections will be small
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delivery purposes. We are currently far from a systematization and
formalization of a drone training curriculum, and building in a
model-based component at the outset might well be beneficial for
the safety and efficiency of UAV operations. Concurrently,
introduction of some applied aspects into the university flight
dynamics curriculum will enable the aerospace engineering
graduates to get a greater feel for the practical consequences of
the mathematical equations, and will be especially useful in
preparing them for a career in industry.

In conclusion, our article shows the beginnings of a new
approach to flight dynamics which synthesizes the Bryan and
Langewiesche philosophies; in future we hope to see a further
unification of these two branches, and reap the theoretical as well
as practical benefits of such a synergy.
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