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Microorganisms can takeover criticalmetabolic pathways in host cells to fuel their
replication. This interaction provides an opportunity to target host metabolic
pathways, in addition to the pathogen-specific ones, in the development of
antimicrobials. Host-directed therapy (HDT) is an emerging strategy of anti-
infective therapy, which targets host cell metabolism utilized by facultative and
obligate intracellular pathogens for entry, replication, egress or persistence of
infected host cells. This review provides an overview of the host lipid metabolism
and links it to the challenges in the development of HDTs for viral and bacterial
infections, where pathogens are using important for the host lipid enzymes, or
producing their own analogous of lecithin-cholesterol acyltransferase (LCAT) and
lipoprotein lipase (LPL) thus interfering with the human host’s lipid metabolism.
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Introduction

Lipids are essential for a wide range of cell maintenance activities including, energy
production and storage, vesicle transport and participation in immune signaling (Horn and
Jaiswal, 2019; Jarc and Petan, 2019; Herker et al., 2021). Intracellular pathogens have
highjacked the use of host lipids throughout infection by adapting processes for utilization
of a number of host lipids, thereby supporting the pathogen’s replication and sustainability
(Allen and Martinez, 2020). The replication of these intracellular microbes, both facultative
and obligate, progresses via their regulation: 1) of host cell exogenous lipid uptake, resulting
in pathogen-altered host lipid composition; and, 2) expression of host enzymes involved in
lipid biosynthesis (Toledo and Benach, 2015; Gago, Diacovich, and Gramajo, 2018; Lin
et al., 2020; O’Neal et al., 2020; Theken et al., 2021). Advantages to high jacking and altering
host lipid composition by pathogens is evolutionarily beneficial to the pathogen since it
takes over multiple biosynthetic and physiologic processes that could be metabolically
costly. For example, these can include fundamental functions such as energy production
through the utilization of stored and/or free lipids including lipid droplets (LDs), and free
fatty acids. ATP from these substrates is produced by various processes such as,
phospholipase selective catabolism, lipolysis, and lipophagy (Saito et al., 2019).
Pathogenic microbes also exhibit the capability to utilize these catabolic pathways
through application of their prokaryotic phospholipases, which also allows them to
generate energy by intracellularly using a combination of the release and sequestration
of metabolites, thus resulting in the generating of their own ATP. Furthermore, shifts in
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energy production through regulation of host lipid metabolism is
also implicated in affecting host cell persistence, pathogen longevity,
and downregulation of inflammation. This pathogen regulation of
host lipid metabolism appears to play a role in their persistence
within host cells, and downregulation of inflammation in addition to
energy production.

Along with energy production, intracellular pathogens can utilize
highly organized membrane regions, i.e., lipid rafts, for entry into the
host cell. Lipid rafts within host membranes function as critical
organizational areas that play an important role in signaling
pathway regulation by enabling receptors to associate with external
and internal stimuli. In addition to their cell-cell communication
function, lipid rafts are also responsible for the release of fatty acid
molecules, e.g., arachidonic and polyunsaturated fatty acids (PUFA), as
lipid droplets (Toledo and Benach, 2015; Danielli et al., 2023). These
acids serve as precursors for important host immune modulators
including prostaglandins and leukotrienes, which in turn effect
symptomatology during the infectious process (Noverr et al., 2003;
Roingeard and Melo, 2017; Ripon et al., 2021). In addition to host lipid
rafts, synthesis of intracellular pathogen membranes can have
distinctive features with respect to lipid composition, with some
intracellular pathogens expressing unique lipids within their
membranes, unlike common bacterial lipids, as well as their role in
host signaling pathways.With regards to some pathogen-associated cell
membranes, it is interesting that these lipids are unable to be
synthesized by the pathogen’s biosynthetic enzymatic systems,
making it likely that these lipids are host-acquired (Toledo and
Benach, 2015; Lin et al., 2020).

The three primary blood lipids are triacylglycerols, phospholipids,
and cholesterol. Of these, triacylglycerols and cholesterol are the focus of
pharmaceutical cardiovascular drug development. Triacylglycerols
(TGs) are a high-energy source that account for more than three-
quarters of the fuel needed for heart and liver function, which is
accomplished by oxidation of TG’s long fatty acyl chains (Cox and
Nelson, 2005). With regards to cholesterol, it plays an essential role in
mammalian cytoplasmic membrane integrity together with
phospholipids, as well as bile acid and steroid synthesis. Because of
the potential for off-label usage of the large and growing number of
drugs targeting the initiating and potentiating factors associated with
cardiovascular disease, the focus of this review is on key enzymes
involved in cholesterol and tryglycerides metabolism, respectively,
specifically lecithin-cholesterol acyltransferase (LCAT)- and
lipoprotein lipase (LPL)-activating compounds.

The enzyme LCAT links phospholipid acyl chains to cholesterol
molecules, thus, produces cholesterol esters (CEs). These esters, which
are predominantly formed in high-density lipoprotein (HDL) particles,
are essential in HDL-mediated reverse cholesterol transport (RCT)
wherein intracellular cholesterol with phospholipids are transported to
the liver (Feingold, 2022). In addition, HDL particles also remove
cholesterol from lipid-loaded macrophages which play an essential role
in initiation of atherosclerotic plaques (Lewis and Rader, 2005). Thus,
the RCT efficacy is believed to be associated with coronary heart disease
development (Haase et al., 2012; Peloso et al., 2014; Rader andHovingh,
2014). In addition to RCT effectiveness, lipid homeostasis plays an
important role in cardiovascular disease (CVD). The enzyme that is a
major player in lipid homeostasis by mediating lipolysis of
triacylglycerol rich lipoproteins is LPL. Dyslipidemia can occur when
LPL malfunctions leading to hypertriacylglycerolemia

(hypertriglyceridemia, chylomicronemia), an independent risk factor
for CVD due to plasma accumulation of chylomicrons and very low-
density lipoproteins (VLDL).

The focus of this review is to address the link between the
infectious processes of pathogenic bacterial, parasites, and viruses,
and the utilization, with or without alteration, of LCAT and LPL
during human lipid homeostasis and dysmetabolism. This review
first addresses current knowledge on the alteration and use of LCAT
and LPL during human lipid homeostasis and dysmetabolism. It
then addresses the links between the enzyme’s respective pathways
and microbial infections as well as the relationship between the
presence of the eukaryotic or eukaryotic-like LCAT/LPL in bacteria
and parasites, and the opportunities and challenges associated with
antimicrobial drug development.

Roles of eukaryotic LCAT and LPL in
host lipid metabolism—a brief overview

Fatty acids and monoacylglycerols that are absorbed through the
intestinal cells postprandially are utilized to synthesize triacylglycerols.
The key enzymes required for triacylglycerol synthesis are
monoacylglycerol acyltransferase (MGAT) and diacylglycerol
transferase (DGAT). MGAT catalyzes the addition of a fatty acid to
monoacylglycerol, while DGAT catalyzes the addition of a fatty acid to
diacylglycerol resulting in triacylglycerol formation. The majority of the
cholesterol absorbed by the intestine is esterified to cholesterol esters by
acyl-CoA cholesterol acyl transferase (ACAT). The triacylglycerols and
cholesterol esters are subsequently packaged into chylomicrons in the
endoplasmic reticulum of the intestinal cells. The size and composition
of the chylomicrons formed in the intestine are dependent on the
amount of fat ingested and absorbed by the intestine and the type of fat
absorbed. Increased fat absorption results in larger chylomicrons
(Wolska and Remaley, 2021; Feingold, 2022).

LPL metabolizes the chylomicrons

Chylomicrons which are triacylglycerols rich particles are
secreted into the lymph and delivered via the thoracic duct to
the circulation, which facilitates delivery of the nutrients
contained in chylomicrons to muscle and adipose tissue
(Figure 1). LPL itself is synthesized at high levels in muscle and
adipocytes then transported to the luminal surface of capillaries.
Lipase maturation factor 1 (LMF1) plays a key role in the
stabilization and movement of LPL from muscle cells and
adipocytes to the capillary endothelial cell surface. (LMF1) is a
protein bound to the endoplasmic reticulum (ER) membrane which
functions in the maturation, i.e., folding and assembly LPL, among
others (hepatic lipase (HL) and endothelial lipase (EL). High-density
lipoprotein binding protein 1, anchored by
glycosylphosphatidylinisitol (GPIHBP1), binds LPL, transports it
to the capillary lumen then, anchors LPL to the capillary
endothelium. Activation of LPL by Apo C-II, carried on the
chylomicrons, leads to the hydrolysis of triacylglycerols carried in
the chylomicrons, resulting in the formation of free fatty acids
(Feingold, 2022). In addition to LPL activation, major functions
of apolipoproteins include that of a structural component, binding
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to lipoprotein receptors, chaperoning the formation of lipoproteins,
and assisting as inhibitors or activators of enzymes involved in the
metabolism of lipoproteins. For example, Apo B-48 is the major
structural protein of chylomicrons and chylomicron remnants,
while Apo-E swaps between various lipoprotein particles and is
connected with chylomicron remnants, chylomicrons, VLDL, IDL,
and HDL particle subgroups. The free fatty acids released from the
chylomicrons can subsequently be taken up by adjacent muscle cells
and adipocytes for energy production or storage. The uptake of fatty
acids is facilitated by CD36, in addition to fatty acid transport
proteins (FATPs) (Drover et al., 2005; Feingold, 2022; Wolska and
Remaley, 2021). CD36, which can be found on the cytoplasmic
membrane of a variety of epithelial cells as well as mononuclear cells,
platelets, and adipocytes, functions as a nonspecific scavenger
receptor (Coburn and Abumrad, 2003). Among a variety of other
functions, e.g., angiogenesis and cellular adhesion, CD36, also
known as fatty acid (FA) translocase (FAT), is involved in
lipoprotein binding, endocytosis as well as long-chain FAs uptake
(Tandon et al., 1989; Endemann et al., 1993; Dawson et al., 1997;
Coburn et al., 2000).

Pathologic changes

Genetic predisposition for hypertriacylglycerolemia in
individuals can be due to mutations in genes associated with Apo
C-II, GPIHPB1, lipase maturation factor 1a, and loss of function

mutations in LPL and Apo A-V, which plays an important role in
LPL activity, Apo C-II, GPIHPB1, and lipase maturation factor 1 can
result in marked hypertriacylglycerolemia. In addition, loss of
function mutations in Apo C-III, which inhibits LPL activity, are
associated with increases in LPL activity and decreases in plasma
triacylglycerols levels. Similarly, angiopoietin–like protein 3 and 4,
which target LPL for inactivation, regulate LPL activity. Loss of
function mutations in these proteins are also associated with
decreases in plasma triacylglycerols levels. Finally, the expression
of LPL by muscle cells and adipocytes is regulated by hormones,
particularly insulin, nutritional status, and inflammation (Wolska
and Remaley, 2021; Feingold, 2022).

Human gene polymorphisms in APOA5 have been reported to
be associated with high and low triacylglycerol concentrations.
Triacylglycerols deficiency results in reduced LPL activity and
type V dyslipidemia. This possibly occurs through Apo A-V’s
effect on the lipolysis of triacylglycerol-rich lipoproteins, through
its binding to lipoprotein, endothelial proteoglycans and LPL
resulting in stabilization of the lipolytic machinery.

Chylomicrons and high-density lipoprotein
(HDL) formation and maturation

Metabolism of the triacylglycerols carried in the chylomicrons
results in a marked decrease in the size of these particles leading to
the formation of chylomicron remnants, which are enriched in

FIGURE 1
Exogenous Lipoprotein Pathway (figuremodified from “Introduction to Lipids and lipoproteins”. K.R.Feingold, https://www.ncbi.nlm.nih.gov/books/
NBK305896/).
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cholesterol esters and acquire Apo E (Figure 1). As these particles
decrease in size, phospholipids and apolipoproteins (Apo A and C)
on the surface of the chylomicron remnants are transferred to other
lipoproteins, mainly HDL. The transfer of Apo C-II from
chylomicrons to HDL decreases the ability of LPL to further
breakdown triacylglycerols. These chylomicron remnants are
cleared from the circulation by the liver (Wolska and Remaley,
2021; Feingold, 2022). LPL hydrolyses the TG to FA that can be
taken by cells, thus, transforming the chylomicrons and VLDL to
smaller lipoprotein particles, chylomicron remnants and
intermediate density LPs (IDL) (Figure 2). The major structural
component of VLDL, IDL, and LDL is Apo B-100 which is
manufactured in the liver. VLDL, IDL, and LDL each contain a
single molecule of Apo B-100 per moiety. Apo B-100 functions as an
attachment ligand that binds to the LDL receptor; hence, it is of
relative importance in the clearance of lipoprotein particles. The
presence of elevated levels of Apo B-100 are associated with
increased risk of atherosclerosis. Inversely related to
atherosclerotic risk is the level of mature HDL particles. Several
steps are required to generate mature HDL particles. The cholesterol
that is effluxed from cells to HDL is free cholesterol that is localized
on the surface of HDL particles.

To form mature large spherical HDL particles with a core of
cholesterol esters, the free cholesterol must be esterified in order to
be transferred from cells to the HDL particles (Wolska and

Remaley, 2021; Feingold, 2022). The major structural protein of
HDL is Apo A-I, which also plays a role in HDL interaction with
ATP-binding cassette protein A1 (ABCA1), ABCG1, and class B,
type I scavenger receptor (SR-B1) (Oram and Lawn. 2001; Van Eck
et al., 2005). In addition, Apo A-I also serves as a lecithin:
cholesterol acyltransferase (LCAT) activator. LCAT is an
enzyme that converts free cholesterol into cholesteryl ester
(CE). High levels of Apo A-I are associated with a lowered risk
for atherosclerosis.

Lecithin–cholesterol acyltransferase (LCAT)

As indicated above, LCAT activity is required for the formation
of large HDL particles (Figure 3). LCAT is an HDL-associated
enzyme that catalyzes the transfer of a fatty acid from
phospholipids to free cholesterol, resulting in the formation of
these cholesterol esters. The cholesterol ester formed is then able
to move from the surface of the HDL particle to the core of the HDL
particle (Feingold, 2022). The esterification process of LCAT is
facilitated by Apo A-I, an LCAT activator. LCAT deficiency in
humans results in decreased HDL cholesterol, Apo A-I levels, and a
higher percentage of small HDL particles. Pathologically, LCAT
deficiency can result in impaired vision, due to cholesterol corneal
opacities, as well as anemia and renal damage as occurs in familial

FIGURE 2
Endogenous Lipoprotein Pathway (figure modified from “Introduction to Lipids and lipoproteins”, K.R.Feingold, https://www.ncbi.nlm.nih.gov/
books/NBK305896/).
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lecithin:cholesterol acyltransferase deficiency (FLD) disease, an
autosomal recessive disorder (Feingold, 2022).

Current therapeutic approaches for
activating LCAT and LPL in
host disorders

Defects in LCAT

LCAT gene polymorphisms play a role in several physiologic
disorders, with138 mutations of the LCAT gene reported (Mehta
et al., 2021). Genetic LCAT deficiency is a rare autosomal recessive
disorder with an incidence of less than 1 in 200,000, although the
frequency is likely to be higher due to misdiagnosis, or under
diagnosis. Mutations in the LCAT protein, which causes a loss,
or reduction, of LCAT activity, are responsible for familial LCAT
deficiency (FLD), or fish eye disease (FED). FLD is characterized by
the absence of LCAT activity for both HDL and LDL. FED is a partial
LCAT deficiency characterized by the absence of LCAT activity
toward HDL only. Originally, it was thought the different
manifestations of FLD and FED may be due to the residual
amount of LCAT activity present on either HDL or LDL
particles. It is now understood that these two disorders represent
a continuum of LCAT deficiency with FLD patients having a more

profound decrease in total LCAT activity. Clinically, the absence of
proteinuria and other signs of renal damage are often used to
distinguish between these two disorders, although the
development of renal disease often takes decades to manifest, and
thus, the prognosis of a patient with a new LCATmutation diagnosis
may remain uncertain (Wolska and Remaley, 2021; Feingold, 2022).

FLD is characterized by extremely low or absent HDL, mild to
moderate hypertriacylglycerolemia, the development of cloudy
cornea in the teenage years, followed by early asymptomatic
proteinuria. Normochromic anemia often then develops over the
next decade, but it is typically mild. Proteinuria typically steadily
progresses to nephrotic syndrome, resulting in end stage renal
disease in the fourth or fifth decade of life. The clinical features
of FED are also extremely low or absent HDL, and development of
cloudy corneas in the teenage years, but the absence of any
significant proteinuria and renal disease. Heterozygotes for FLD
or FED have no outward clinical symptoms and only have a mildly
reduced HDL-C (20–30 mg/dL, 0.52–0.78 mmole/L), but may be at
an increased risk for cardiovascular disease (Wolska and Remaley,
2021; Feingold, 2022).

Another genetic defect in LCAT can result in the formation of
Lipoprotein X (LpX), an abnormal cholesterol and phospholipid
rich lipoprotein particle that is poor in neutral lipids (cholesterol
esters and triacylglycerols). Unlike normal lipoproteins, which have
a micellar-like arrangement of a single layer of phospholipids

FIGURE 3
LCAT in HDL metabolism (figure modified from “Introduction to Lipids and lipoproteins”, K.R.Feingold, https://www.ncbi.nlm.nih.gov/books/
NBK305896/).
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surrounding a hydrophobic core of cholesterol ester and
triacylglycerols, LpX has a vesicular structure. Because of the
high ratio of amphipathic surface lipids (unesterified cholesterol
and phospholipids) to neutral core lipids, LpX forms a bilayer of
phospholipids, or even a multilamellar phospholipid arrangement,
which results in its “onion-like” appearance on electron microscopy.
LpX particles are heterogeneous in size (30–100 nm) and can have a
density between that of LDL and VLDL. The genesis of LpX in
patients with FLD is not known, but the low level of plasma
cholesterol esters most likely contributes to its formation in this
disorder. In addition, it is likely that the presence of LpX particles is a
major precipitating factor in the development of renal disease in
FLD patients (Wolska and Remaley, 2021; Feingold, 2022).

Clinically, in certain instances LCAT inhibition is appropriate,
such as in lysosomal acid lipase (LAL) deficiency, a rare autosomal
recessive disorder. Children born with mutations in both copies of
the gene for the lysosomal acid lipase enzyme are unable to process
cholesterol esters and triacylglycerols resulting in liver fibrosis,
cirrhosis, and liver failure. The most severe form of LAL
deficiency, Wolman’s disease, is fatal in the first year of life due
to the rapid buildup of cholesteryl esters and triacylglycerols in the
liver, gut, and blood vessels. A more prevalent and benign form of
LAL-deficiency is cholesterol ester storage disorder (CESD).
Individuals affected with this disorder have only a partial loss of
LAL activity. Clinically CESD patients are diagnosed with
hepatomegaly in early childhood and often go on to develop liver
cirrhosis and eventual liver failure. In addition, individuals with
CESD are also at increased risk for developing premature
atherosclerosis, due to hypercholesterolemia, and increased
atheroma foam cell formation. LCAT inhibition prevents the
formation of cholesterol esters and would likely extend the life of
patients suffering from LAL deficiency. While inhibiting LCAT may
lead to the problems associated with FLD, due to age of onset with
the symptoms of FLD not manifesting until middle age, LCAT
inhibition may be a reasonable course of treatment management for
LAL deficiency patients (Wolska and Remaley, 2021;
Feingold, 2022).

LCAT modulators in drug discovery

Since LCAT activators are useful for treating atherosclerosis, FLD,
and FED, the focus of drug development is on the LCAT activators.
Recombinant human LCAT (rhLCAT), which raises HDL-C and
increases cholesterol efflux, was shown to be safe in phase I study
(Shamburek et al., 2016a; Shamburek et al., 2016b), followed by phase
II trials for CHD (clinicaltrials.gov, NCT02601560, NCT03578809,
NCT03773172; Reyes-Soffer. et al. , 2023). The rhLCAT has also been
tested in enzyme replacement therapy for several patients with FLD
with encouraging results (Shamburek et al., 2016a; Reyes-Soffer et al.,
2023). Further studies show (Reyes-Soffer et al., 2023) that an acute
increase in LCAT activity can lead to a greater flux of cholesteryl esters
(CE), resulting in alteration in production and clearance of the
principal HDL proteins but exclusive of affecting
APOB100-lipoprotein metabolism. Long-term elevations of LCAT
might, therefore, have beneficial effects on total body cholesterol
balance and atherogenesis (Reyes-Soffer et al., 2023). However, small
molecule activators would be less expensive, and easier to administer

than proteins (e.g., rhLCAT). Towards this end, several small
molecules that stimulate the activity of LCAT have been identified.

Compound A (1) (3-(5-(ethylthio) pyrazine-2-carbonitrile;
Amgen); Figure 4) binds covalently and irreversibly to LCAT by
alkylating Cys31 near the active site of LCAT. It increased LCAT
activity in three of nine LCATmutation subsets to levels comparable
to FLD heterozygotes (Freeman et al., 2017). Compound A can
activate plasma LCAT in the EC50 range of 1–10 μmol/L, for the
4 species tested (C57Bl/6 mouse, hamster, rhesus monkey, and
human) (Chen et al., 2012; Kayser et al., 2013; Saleheen et al.,
2015; Freeman et al., 2017).

Other sulfhydryl-reactive compounds based on monocyclic β-
lactams have also been shown to activate LCAT (Freeman et al.,
2017). Although highlighting the promise of these type of LCAT-
activating molecules, they most likely would also have off-target
effects. Daiichi Sankyo (DS) has reported a new class of reversible
small molecule activators (Figure 4) that have the ability to activate
LCAT isolated from human plasma (Kobayashi et al., 2015a;
Kobayashi et al., 2015b; Onoda et al., 2015; Kobayashi et al.,
2016). Furthermore, these activators increased HDL-C up to
1000-fold when tested in a primate model (cynomolgus
monkeys) using orally administration (Onoda et al., 2015).

Additional investigation into the activity of the DS LCAT
activators, more specifically DS-8190a (2, Figure 4),
demonstrated its ability to prevent the progression of plaque
accumulation in atherosclerosis models, and the selectivity of its
binding to LCAT (Sasaki et al., 2021). It is interesting to note that the
enantiomer of compoundDS-8190a (3, Figure 4) is inactive, with no
effect on the quantity of LCAT (Sasaki et al., 2021). The DS type of
activators bind in a pocket formed exclusively by the membrane-
binding domain (MBD) of LCAT but does not influence affinity of
LCAT for HDL (Manthei et al., 2018). Estimation of the binding
mode of biotinylated active DS-8190a (3, Figure 4) found that a
binding site experimentally identified by photoaffinity labeling is
consistent with the in silico simulated model (Sasaki et al., 2021) and
its analogues to the binding site for these compounds determined
earlier (Manthei et al., 2018).

Piperidinylpyrazolopyridine-based DS activators (e.g., 2, 4–6,
Figure 4) and related activators (Figure 4) stimulate and stabilize
LCAT. The piperidinylpyrazolopyridine activators bind exclusively
to the membrane-binding domain (MBD). Functional studies
indicate that these compounds do not modulate the affinity of
LCAT for HDL, but instead stabilize residues in the MBD and
facilitate channeling of substrates into the active site. The increased
activity of an FLD variant by the DS activators demonstrates that
compounds targeting the MBD have therapeutic potential (Manthei
et al., 2018; Sasaki et al., 2021). Three DS compounds, compounds 5,
6 and 7 (Figure 4) have been chosen for determining DS
compounds’ mechanism of action (Manthei et al., 2018). The
pyrazole ring forms hydrogen bonds with the backbone carbonyl
of Met49 and amide of Tyr51 in the binding pocket of the LCAT lid
(Manthei et al., 2018). It is interesting to note that while the
exchange of pyrazole (compound 6, Figure 4) to imidazole
(compound 7, Figure 4) eliminates the hydrogen bond with
Met49, only a minimal change in EC50 (280 and 320 nM for 6
and 7, respectively) and no change in the maximum response were
observed. These piperidinylpyrazolopyridine-containing
compounds (such as 5, 6 and 7 Figure 4) also recover
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acyltransferase activity when used in variants of Arg244 within the
lid, highlighting the promise of compounds that target the MBD for
many missense FLD variants (Manthei et al., 2018).

The potency and efficacy of the DS LCAT activators appear to be
highly dependent on the presence and chirality of the hydroxyl at the
C4 position, as well as the presence of a pyrazine ring system which
most likely is responsible for interactions with hydrophobic substrates
(Manthei et al., 2018). The “lid” which contains positions mutated in
FLD, undergoes a large conformational change from that observed in
inactive LCAT structures. Arg244, which interacts with backbone
carbonyls of Leu223 and Leu285 in DNDC-IDFP-1, and with the
side chain of Asp335 in the lid closed state, is frequently mutated, thus
affecting lid closure Plasma screening studies further showed R244G
R244H R244C and R244L mutations in LCAT (Vrabec et al., 1988;
McLean, 1992; Pisciotta et al., 2005; Charlton-Menys et al., 2007; Strøm
et al., 2011; Sampaio et al., 2017; Castro-Ferreira et al., 2018). Of the
human variants tested, LCAT-R244G, isolated from an individual
having two identical alleles, was shown to form unique interactions
with LCAT (active and inactive) and its side chains, with a loss of ~85%
LCAT-WT activity. In contrast, R244G and R244H heterozygotes
exhibited a loss of ~20% and ~50% LCAT-WT activity, respectively
(Vrabec et al., 1988; Pisciotta et al., 2005). These findings together
support the hypothesis that Arg244 is a residue important for
LCAT activity.

A high-throughput Daichii-Sankyo screening campaign
identified a noncovalent LCAT activator as a hit compound and
its derivatization led to novel potent LCAT activators, includingDS-
8190a (compound 2) shown here. DS-8190a is an orally active

representative of non-covalent DS LCAT activators, that dose
dependently increased LCAT activity (2.0-fold in 3 mg/kg group
on day 7) in cynomolgus monkeys, resulting in HDL cholesterol
elevation without drastic changes of non-HDL cholesterol (Sasaki
et al., 2021).DS-8190a binds to the same lid region of LCAT (Sasaki
et al., 2021), as identified earlier byManthei et al. (2018). Compound
A is a reference compound forming a co-crystal with human LCAT
(Sasaki et al., 2021) that together with compound 6 and 7 is used in
the determination of DS-compounds’ mechanism (Manthei
et al., 2018).

Active site Ser181 as part of the catalytic triad of LCAT (Ser181,
Asp345, His377), acts as the nucleophile in formation of CE (Ahsan
et al., 2014). Compound A, a Michael acceptor, binds covalently
(and irreversibly) to Cys31 (Freeman et al., 2017) (Figure 5). Critical
for LCAT activity are the six cysteines, four in disulfide bonds
(Cys50-Cys74 and Cys313-Cys356) (Glukhova et al., 2015). The
remaining two free cysteines (Cys31 and Cys184) are located close to
the active site, with Cys31’s backbone amide forming a portion of the
oxyanion hole (Holleboom et al., 2011; Glukhova et al., 2015). DS
compounds interact noncovalently with the LCAT’s membrane-
binding domain, causing conformational changes, as confirmed by
X-ray crystallography, leading to opening of the lid (Manthei et al.,
2018; Sasaki et al., 2021) (Figure 5).

Defects in LPL are a cause of familial chylomicronemia
syndrome (or type I hyperlipoproteinemia) and of a form of
deficiency characterized by hypertriacylglycerolemia (Burnett
et al., 1999). Familial chylomicronemia (FCS) is a recessive
disorder usually manifesting in childhood (Evans and Kastelein,

FIGURE 4
Scaffolds of the small molecules currently identified as LCAT activators.
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2003). It is a rare autosomal recessive disorder with an incidence of
~1:1,000,000 caused by mutations in lipoprotein lipase, resulting in
accumulation of chylomicrons in plasma and
hypertriacylglycerolemia (Rahalkar et al., 2009). Elevated
triacylglycerols cause several complications in patients, the most
serious being episodes of acute pancreatitis (Rahalkar et al., 2009).
Less often, a neonatal onset of LPL-deficiency is diagnosed based on
routine blood testing (Akesson et al., 2016). Even a small amount of
dietary fat can make someone with FCS symptomatic. In addition to
familial chylomicronemia syndrome, more than 200 mutations were
reported in patients with LPL deficiency (Ranganathan et al., 2012;
Wang et al., 2013; Kolarova et al., 2014; Wu et al., 2021). To date, the
pharmacologic treatment for affected patients is Evinacumab, a
human monoclonal antibody approved by the U.S. Food and
Drug Administration (FDA) in 2021 as an add-on treatment for
patients with homozygous familial hypercholesterolemia (Witztum
et al., 2019). The management options for the latter primarily
include adoption of an extremely restricted, very-low-fat diet,
along with avoidance of certain medications and alcohol.
Volanesorsen, an antisense oligonucleotide, has been recently
approved by the European Medicines Agency as an adjunct to
diet in adult FCS patients with an inadequate response to TG-
lowering therapy (Kolovou et al., 2022).

LPL is an interesting target for drug discovery because of its
central role in TG metabolism (Geldenhuys et al., 2017). Increased
LPL activity may compensate for deleterious alleles that increase
CVD risk due to hypertriacylglycerolemia and adverse central
nervous system events, the latter of which is slowly being
unraveled. Immunostaining for LPL has been detected in the
neurons, astrocytes, microglia, and oligodendroglia throughout
the central nervous system (Wang et al., 2011). LPL can mediate
the uptake of TGs and their subsequent incorporation into cellular
lipids in cultured brain cells. LPL plays a role in the differentiation of
neurons in vivo, and regeneration of neuronal processes. LPL has
been shown to regulate energy balance and bodyweight in mice
because a neuron-specific deletion of LPL exhibits obese phenotype
in mice fed standard chow (Gong et al., 2013). Further, mouse
studies indicate that LPL functions in Alzheimer’s disease (AD)
pathology. LPL is found in AD amyloid plaques, along with at least
six other LRP-binding proteins (Rebeck et al., 1995). LPL in AD is
consistent with the proposed protective functions of LPL in brain
injury models, acting tomodify the synaptic loss/remodeling process
and adult neurogenesis (Blain and Poirier, 2004). Most recently, LPL
has also been shown to bind to amyloid beta protein (Aβ), the
peptide which comprises AD amyloid plaques, and promote cell-
surface association and uptake of Aβ in mouse primary astrocytes,
providing an alternative mechanism of how LPL might play a role in
AD (Geldenhuys et al., 2017).

Although LPL has been studied intensively for >60 years, its
structure had not been determined until recently, likely stemming
from the susceptibility of LPL’s hydrolase domain to unfolding. The
discovery that the protein GPIHBP1 stabilizes LPL structure and
activity allowed for the crystal structure of an
LPL–GPIHBP1 complex to be determined. GPIHBP1 is the
endothelial cell partner protein of LPL, and is a small, cysteine-
rich protein binding to LPL through hydrophobic interactions.
GPIHBP1 is not involved in lipid binding; rather, its functions
are to chaperone LPL across endothelial cells and stabilize LPL
structure (Birrane et al., 2019). LPL is organized into two structurally
distinct domains. The bigger N-terminal domain contains a binding
site for heparin and the binding site of apolipoprotein C-II (APOC2)
(Birrane et al., 2019). Also housed in the N terminus is the catalytic
site of the enzyme comprising the triad: Ser132, Asp156 and His241
(Birrane et al., 2019). The smaller C-terminal domain has been
shown to be important for binding lipoproteins. The active site of
the LPL is covered by a “lid”; as seen in other homologs such as
hepatic lipase (HL) and pancreatic lipase (PL) (Mysling et al., 2016).
The lid is postulated to have an impact on the substrate specificity of
the lipase gene family and is essential for interaction with the lipid
substrate (Young and Zechner, 2013; Birrane et al., 2019). Open and
closed “lid” conformations can assist downstream in the functional
activation of hydrolysis. Lipases achieve an open state by undergoing
interfacial activation, which occurs when the lipase associates with a
nonpolar-aqueous interface (van Tilbeurgh et al., 1993). The
combination of the lid peptide and hydrophobic pocket is
thought to provide mammalian lipases with substrate selectivity.
Certain fungal lipases, specifically that from Candida rugosa, are
exceptions to the functionality described above (Grochulski et al.,
1994) since it uses a channel rather than a pocket for substrate
binding. Subsequent studies show that when mutations are made in
the channel the substrate specificity is changed (Kingsley and Lill,

FIGURE 5
Cartoon of LCAT domains and the various areas of binding of
Compound A (1, Figure 4), and DS compounds, e.g., 6, (Figure 4), with
Cys31 near the active site and Met49/Tyr51 of the lid, respectively. The
active sites of many lipases are contained in the N-terminal
domain and controlled by a so-called lid. The catalytic triad, Ser-Asp-
His, is at the bottomof lid’s crevice (Berton et al., 2007). The lid domain
covers the active site to control both enzyme activation and substrate
specificity.
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2015). Furthermore, it has been recently reported that adjacent to
the active site mammalian LPL has in its dimeric form a
hydrophobic pore spanning the N-terminal domain. This
indicates that this pore may play a role in acyl chain hydrolysis
(Gunn et al., 2020; Gunn and Neher, 2023). This ground-breaking
finding changes the currently prevailing theory that a displaced lid
peptide, which subsequently exposes the hydrophobic pocket that
surrounds the active site, is required for an open lipase
conformation. Mechanistically, post-lid opening the substrate
enters the lipase active site, is hydrolyzed and subsequently
released bidirectionally. However, based on the new findings, the
model for lipid hydrolysis that has been proposed is one in which the
free fatty acid product is transported through the active site pore in a
unidirectional “one-way” manner. This provides more substrate
selectivity by the pore. Unfortunately, due to the inherent
difficulty in analyzing lipase structures in the presence of
substrate this has yet to be proven although there is the
evolutionary suggestion that there is a high degree of
conservation of LPL structure across other human lipases this
has yet to be proven (Gunn and Neher, 2023).

LPL modulators in drug discovery

Glybera (alipogene tiparvovec), a gene therapy product that
replaces the LPL gene is available in Europe from uniQure (www.
uniqure.com) for the treatment of patients diagno244sed with a
genetic deficiency in familial lipoprotein lipase disease (LPLD). A
bihelical amphipathic peptide (C-II-a) that contains an
amphipathic helix (18A) based on apoC-II, which promotes
cholesterol efflux and lipolysis, has been prepared and is being
tested in vivo by A.T. Remaley and co-workers (Amar et al., 2015;
Wolska et al., 2020). C-II-a is expected to be useful for the
treatment of apoC-II deficiency, as well as other forms of
hypertriacylglycerolemia.

A large gap in the LPL field is the lack of clinically used small
molecule drugs tomodulate LPL activity. The structures of several small
molecules identified as LPL activators are given below (Figure 6).
Previous attempts to modulate LPL activity using small molecules
produced highly significant effects in several animal models of
hyperlipidemia. NO-1886 (generic name: Ibrolipim, Otsuka
Pharmaceutical Factory; Figure 6) was shown to significantly
stimulate LPL activity, lower plasma triacylglycerols, as well as
elevate the levels of HDL-C (Tsutsumi et al., 1993). Mechanistically
NO-1886 increases LPL mRNA, rather than directly affecting the
enzyme, thereby increasing post-heparin LPL mass (Tsutsumi et al.,
1993). In streptozotocin (STZ) treated diabetic rats,NO-1886 increased
LPL activity 59% over the control. Long termNO-1886 administration
to rats and rabbits, with high-cholesterol feed-induced atherosclerosis,
significantly inhibited development of atherosclerotic lesions in
coronary arteries (Tsutsumi et al., 1993). However, the compound
had adverse species-specific side-effect on adrenal cortex
steroidogenesis leading to hypertrophy of adrenal glands in rats and
dogs, although this effect was not observed in monkeys. Therefore, due
to potential side effects further development of NO-1886 for use in
humans was halted. Additional efforts to enhance LPL activity, by
inhibiting ANGPTL3/8 complex with monoclonal Ab, showed dose
dependent reduction in TG, LDL-C, non-HDL-C in phase 1 trials
(Gaudet et al., 2022).

Consequently, three compounds based on phenylimidazole
scaffold (I, II, and III, Figure 6) were developed (Shibutani et al.,
2010; Iwata et al., 2017; Iwata et al., 2018). Compound I (Figure 6)
showed 23% LPL activation at 10 mM in a human skeletal muscle
myoblasts cell assay (Shibutani et al., 2010). Compound II (Figure 6)
demonstrated 2.97% potentiation effect of LPL mRNA (Iwata et al.,
2017). Compound III (Figure 6) is described as an LPL activator and
effective in the prevention and treatment of hyperlipidemia and
obesity (Iwata et al., 2018). One compound, 10d (Figure 6),
exhibited potent LPL activation, twofold that measured for NO-
1886 (Geldenhuys et al., 2014). Compound 10d is presumed to

FIGURE 6
Scaffolds of the small molecules currently identified as LPL activators.
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activate LPL directly, by pushing the active site residues closer in
space, based on molecular modeling studies (Geldenhuys
et al., 2014).

N-phenylphthalimide derivative 50F10 (Figure 6) has recently
been identified in a small molecule screen designed to select
compounds that protect LPL against inhibition by ANGPTL4
(Larsson et al., 2014). Further development based on the original
scaffold led to identification of carboxamides 61A and 61B, (Figure 6),
with increased stability in plasma, as compared to 50F10 that
exhibited potent activity in primary and secondary screens using
different LPL substrates (Larsson et al., 2014). Mechanistic studies
showed that 50F10, 61A and 61B (Figure 6) stabilize the active
homodimer structure of LPL and prevent its conversion to inactive
monomers in the presence of ANGPTL4 (Caraballo et al., 2015).

Modulators of host LCAT activity by
bacteria, viruses and fungi

Reports addressing the changes in plasma lipids by infections
began to appear in the literature approximately six decades ago,
around the same time as LCAT was first described (Glomset, 1962;
Glomset, 1968). These lipid changes have been associated with

bacterial, viral, and protozoal infections, as well as cancer
(Grossberg and O’Leary, 1965; Farshtchi and Lewis, 1968; Fiser
et al., 1972; Sakaguchi and Sakaguchi, 1979; Coombes et al., 1980;
Rouzer and Cerami, 1980; Sakaguchi, 1982; Budd and Ginsberg,
1986; Auerbach and Parks, 1989; Yamamoto and Katoh, 2000).

A typical host response to infection is an elevation in plasma
triacylglycerols concomitant to a decrease in total plasma and HDL
cholesterol concentrations (Sakaguchi, 1982; Budd and Ginsberg,
1986; Yamamoto and Katoh, 2000) (Figure 7). The acquired
hypocholesterolemia that accompanies infections, or malignant
illness, has even been suggested as an indicator of poor
prognostic outcome, e.g., in rat models and clinically in human
liver cancer, where it is often lower than normal tissue (Oster et al.,
1981; Pattanayak, Sunita, andMazumder, 2014; Ouyang et al., 2020).
Conversely, high LCAT expression is associated with an improved
prognosis for liver cancer patients (Long et al., 2019). Additional
common changes that occur in response to infection are increased
Very Low-Density Lipoprotein, made of 60% tris (VLDL), and
decreased HDL cholesterol concentrations (Budd and Ginsberg,
1986). It has been demonstrated that the serum activity of LCAT,
and the concentration of cholesteryl esters, both constituents of the
HDL fraction, are reduced in calves inoculated with Pasteurella
haemolytica and bovine herpes virus-1, the two major pathogens of
bovine pneumonia (Yamamoto and Katoh, 2000).

Another bacterial genus, Leptospira, whose species are the
causative agents of the zoonotic disease leptospirosis, exhibits
lipid modulation in infected individuals (Silva et al., 2020). In
addition to several alterations in both plasma lipids and
erythrocyte membranes, the LCAT fractional activity was
3.6 times lower in individuals with leptospirosis than in the
healthy individuals, which also resulted in an increased free

FIGURE 7
Bacterial molecular targets in the lipid metabolic pathways of the host (Figure 3) and their effects on lipid metabolism.
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plasma cholesterol levels in these patients (Silva et al., 2020).
Mechanistically, elevated bacterial lipopolysaccharide (LPS)
binding LP complexes using a Salmonella model (Salmonella
minnesota R595 125I-labeled LPS) to evaluate initiation of
atherogenic plaque formation showed that LPS-LP fractions in
complex formation as an risk factor for initiating atherosclerosis
in hypercholesterolemia (Schwartz and Dushkin, 2002).
Furthermore, two other major components of dyslipidemia,
namely, hypertriacylglycerolemia and decreased levels of HDL,
which also contributes to increased atherosclerotic risk, have
been observed in individuals with HIV (Mirajkar et al., 2017).
These dyslipidemic changes are attributed to decreased LCAT
activity together with a decline in apo A-I levels leading to a
reduction in the reverse cholesterol transport (Mirajkar et al.,
2017). Similar findings were reported for hepatitis C virus (HCV)
infections (Blaising and Pécheur, 2013) (Figure 7).

HCV is a major human pathogen in which lipids are an essential
part of its pathology. A common feature of chronic hepatitis C is
steatosis, characterized by excessive accumulation of triacylglycerols
and lipid content in the liver. Thus, HCV infection appears to be
closely connected to host cell lipid metabolism, from viral cell entry,
through viral RNA replication to viral particle production and
formation/assembly (Blaising and Pécheur, 2013).

During SARS-CoV-2 disease a temporary disturbance of lipid
metabolism occurs that is principally due to impairment of HDL
function (Sorokin et al., 2020; Feingold, 2023). The infection of
pulmonary tissue by SARS-CoV-2 results in activation of alveolar
macrophages and an ensuing cytokine storm, as a result of the
release of inflammatory mediators. The activation of immune system
mediators and uncontrolled inflammation leads to the impairment of
HDL lipoprotein function by reducing the concentration of
apolipoprotein AI (ApoA-I), apolipoprotein E (ApoE) and increasing
the concentration of serum amyloid A (SAA). These lipid changes
reduce the anti-inflammatory, antioxidant, and immunomodulatory
properties of HDL lipoproteins. Oxidized HDL and LDL lipoproteins
(oxLDL and oxHDL) are potent activators of the oxidized LDL scavenge
receptor (LOX-1), causing further inflammation and tissue damage
(Sorokin et al., 2020). The increased percentage of oxidized oxLDL
and oxHDL lipoproteins in turn leads to impairment of cholesterol re-
transport that is characterized by an insufficient interaction of ApoA-I
with the ATP-binding cassette transporter (ABCA1) on macrophages
and decreased esterification of cholesterol by lecithin cholesterol
acyltransferase (LCAT) (Oram and Lawn. 2001).

The pathophysiological effect of this is a reduced return of
cholesterol esters to the liver immediately after interaction with
hepatic SR-B1, or indirectly after transfer to LDL by cholesterol ester
transfer protein (CETP) and uptake by hepatic LDL receptors (LDL-
R). Low concentrations of ApoE and apolipoprotein C-III (ApoC-
III) on HDL reduce the activity of lipoprotein lipase (LPL), which
then leads to the accumulation of very low-density lipoproteins
(VLDL) and triacylglycerols. It is also worth mentioning that
oxidized phospholipids in LDL lipoproteins are recognized as
danger-associated molecular patterns (DAMPs), which cause
inflammasome stimulation, impaired vascular endothelial cell
function and atherosclerotic progression. The effects of the
interaction of oxidized LDL (oxLDL) and LOX-1 (accumulation
of oxLDL inside the cells) also contribute to the accelerated
atherosclerosis progression (Sorokin et al., 2020).

In addition to the aforementioned observations of lipid
modulation caused by pathogens that occur in plasma and
internal organs, such as the liver, the colonization of the brain by
fungal pathogens, mainly C. albicans, and the lipid modification
there has been proposed as a model for Alzheimer’s disease (Parady,
2018). It is well established that HDL slows progression of CVD by
inhibiting cytokine induced expression of adhesion molecules that
enable leukocytes to adhere to the endothelium (Cockerill et al.,
1995). The latter process leads to increasing adhesion of Candida
albicans. The role of lipid dysmetabolism in susceptibility to
candidiasis is evidenced both in vitro and in the ApoE deficient
mouse model. In culture, when Candida is grown with lipids it
increases its expression of virulence factors and rate of replication
(Vonk et al., 2004). In the ApoE deficient mouse model, wherein
there is depleted lipoproteins and increased VLDL, these mice
exhibit increased susceptibility to candidiasis.

Host LCAT and its modulators as defense
against bacterial and viral infection

Evidence for the functional inhibition by serum lipoproteins of
phenol-soluble modulins (PSM), which are peptides produced by
Staphylococcus aureus during infection, has been obtained mainly by
in vitro studies (Surewaard et al., 2012). Among the many virulence
factors and immune evasion molecules described PSMs are key
virulence factors contributing to the pathogenicity of community-
acquired methicillin-resistant S. aureus (CA-MRSA) strains (Wang
et al., 2007; Li et al., 2009). Recently, in vivo studies have
demonstrated that HDL particles can efficiently scavenge PSMs, and
prevent host cellular damage (Hommes et al., 2021). While in vitro
serum from both LCAT and ABCA1 knockout mice strains, which are
characterized by a near absence of HDL, was shown to fail to protect
against PSM-induced neutrophil activation and lysis. Importantly,
PSM-induced peritonitis in LCAT−/− mice resulted in increased lysis
of resident peritoneal macrophages and enhanced neutrophil
recruitment into the peritoneal cavity. Notably, LCAT−/− mice were
more likely to succumb to staphylococcal bacteremia in a PSM-
dependent manner. Plasma from human homozygous carriers of
ABCA1 variants, characterized by very low HDL-cholesterol levels
(HDLc), was found to be less protective against PSM-mediated
biological functions as compared to healthy humans, therefore
lipoproteins present in blood can protect against the key
staphylococcal virulence factor PSM (Hommes et al., 2021).

ApoA-I production, which contributes to HDLc increase, occurs
in HIV-patients receiving Nevirapine (Figure 8), a nonnucleoside
reverse transcriptase inhibitor (NNRTI) (Franssen et al., 2009). The
observed increase of apoA-I contributes to a favorable
cardiovascular profile, suggesting that NNRTI-based regimens
may be helpful in alleviating the changes in HDLc induced by
HIV infection. Another component of the antiretroviral cocktail is a
protease inhibitor, which is often associated with induction of
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proatherogenic lipid changes, predominantly increases in LDLc or
triacylglycerols (Carr et al., 1998; Franssen et al., 2009).

The suppression of cholesterol levels in patients with active
rheumatoid arthritis (RA), like with any inflammation, has also been
recognized (Toms et al., 2011). In patients with active RA a dyslipidemia
relative to LCAT occurs, where individuals with RA exhibit below
normal levels prior to treatment, as compared to healthy controls
(Charles-Schoeman et al., 2015). The studies point to the underlying
increases in cholesterol ester catabolism as the driving force behind the
low cholesterol levels in patients with active RA (Charles-Schoeman
et al., 2015). Post-initiation of tofacitinib treatment, both LCAT activity
and mass increase (Charles-Schoeman et al., 2015).

Tofacitinib (Figure 8), an FDA approved Janus kinase (JAK)
inhibitor, reduces cholesterol ester catabolism, which in turn increases
cholesterol levels toward those measured in healthy volunteers, with
improved markers in antiatherogenic HDL function (Charles-
Schoeman et al., 2015). Tofacitinib, the first tested JAK inhibitor,
has a high selectivity for JAK1 and JAK3. It is less effective for the
inhibition of JAK2 and has limited action on TYK2 (Chasset et al.,
2021). Tofacitinib proved to be safe in systemic lupus erythematosus
(SLE), while also improving cardiometabolic and immunologic
parameters associated with the premature atherosclerosis in SLE
(Hasni et al., 2021; https://classic.clinicaltrials.gov/ct2/show/
NCT02535689). In addition, Tofacitinib improved HDLc levels as
well as LCAT concentration (Hasni et al., 2021).

Modulators of host LPL activity by
bacteria, viruses and fungi

Bacterial lipopolysaccharide (LPS) addition at low
concentrations has been demonstrated to dramatically reduce
synthesis and secretion of LPL by human macrophages (White
et al., 1988). Polymyxin B in vitro successfully blocked the
decrease in LPL activity, thus confirming that the changes were

due to LPS, or a factor stimulated in response to LPS treatment
(White et al., 1988).

Host LPL and its modulators as defense
against bacterial, viral and fungal infection

Lipoproteins from Gram-negative oral pathogens including
Actinomyces viscosus and Porphyromonas gingivalis induce
inflammatory responses through a Toll-like receptor 2 (TLR2)
response that triggers inflammation in the host as well as
promotes bacterial persistence (Shimada et al., 2012; Jain et al.,
2013).With respect to P. gingivalis cells, when they were treated with
LPL their ability to activate TLR2 was attenuated (Jain et al., 2013).
Similar findings are reported for lipoproteins from the Gram-
positive bacterium, Listeria monocytogenes, wherein their
lipoproteins also exhibit TLR2 agonist activity that has been
shown to be sensitive to LPL-mediated inhibition (Machata
et al., 2008).

The direct protective role against viral invasion of human LPL
has also been studied. Several reports with respect to the protective
role of LPL against hepatitis C virus (HCV) indicate that this
protection is the result of the dependance of this viruses’ lifecycle
on lipoprotein metabolism (Thomssen and Bonk, 2002; Andréo
et al., 2007; Maillard et al., 2011; Blaising and Pécheur, 2013). During
the HCV replicative cycle, the biosynthesis pathway of very low-
density lipoprotein (VLDL) is affected. The consequences of this are
that HCV virions are associated with triacylglycerol-rich
lipoproteins (TRL) in the serum (Thomssen and Bonk, 2002;
Andréo et al., 2007; Maillard et al., 2011). LPL was found to have
a bridging activity, i.e., mediating the hepatic uptake of
chylomicrons and VLDL remnants (Maillard et al., 2011) which
is independent of the LPL hydrolytic activity for TRL within
chylomicrons and VLDL. Interestingly, in vitro the addition of
LPL increases HCV binding to hepatoma cells presumably
through the effect of LPL on maintaining HCV at the cell

FIGURE 8
Structures of drugs affecting the cholesterol levels approved by the FDA for CVD-alternative illnesses; Nevirapine as anti-HIV treatment and
Tofacitinib for treatment of rheumatoid arthritis, that have a favorable effect in increasing ApoA-I and reducing cholesterol ester catabolism, respectively.
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surface, thus inhibiting uptake (Maillard et al., 2011). This effect on
HCV attachment appears to occur via a LPL bridge between the
virus-associated lipoproteins and cell surface heparan sulfate, while
simultaneously decreasing infection levels in a manner that is not
HCV strain-dependent (Andréo et al., 2007). Further studies
showed that lipid droplets may play a role in virion uptake and
internalization into hepatoma cells. LPL also appears to efficiently
inhibit HCV infection by acting on TRL-associated HCV particles
through mechanisms involving both lipolytic and bridging
functions, with the bridging function being the main one.
However, the lipase inhibitor tetrahydrolipstatin (Figure 9)
restored only a minor part of HCV infectivity, suggesting an
important role of the LPL bridging function in the inhibition of
infection (Maillard et al. 2011).

LCAT/LPL-like enzymes produced by
non-mammalian species utilized
against the human host

LCAT-like enzymes (based on their
similarities in 3D structure and reaction
mechanism to LCAT) produced by bacteria
(GCAT) and parasites (Plasmodium
falciparum)

Lipases are typically greatly dissimilar in size and sequence, with
only short homologous sequences around the active site. However,
X-ray crystalography shows a three-dimensional shared core
α/β-hydrolase fold motif, which is also present in a diverse range
of enzymes (Ollis et al., 1992). The first reports for the isolation,

purification and activity of microbial LCAT-like enzyme—GCAT
(glycerophospholipid:cholesterol acyltransferase) from Aeromonas
of the bacterial family Vibrionaceae appeared in the literature in the
early 1980s (Buckley et al., 1982; Buckley, 1982; Buckley, 1983;
Buckley et al., 1984). The action of the bacterial acyltransferase,
GCAT, is similar in overall reaction mechanism to the LCAT.
There are however differences, the principle one being that the
relative proportions of cholesterol and cholesteryl ester in normal
plasma are near the equilibrium ratio for the reaction carried out
by GCAT, which is indicative of the cholesteryl ester formation
being very similar to the rate of its hydrolysis. However, the ratio of
cholesterol to cholesteryl ester in the plasma of LCAT-deficient
patients is substantially reduced in the presence of GCAT (Buckley
et al., 1984). In addition, in Aeromonas salmonicida, GCAT is
complexed with outer membrane lipopolysaccharide forming a
lethal toxin for salmon (Salmo salar L.). Lee and Ellis (1989), Lee
and Ellis (1990).

An LCAT-like enzyme has also been detected in P. falciparum,
a protozoan, and one of the causative agents of malaria
(Ramaprasad et al., 2023). Plasmodium replicates intracellularly
within erythrocyte vacuoles. The infected red blood cell (RBC) is
ruptured upon each round of parasite multiplication in a process
known as egress to release a new generation of parasites. Egress is
required for the disease to progress. The parasite sends out various
molecules to puncture and destroy the membranes of the vacuole,
and consequently the RBC, thus securing its egress. Although the
identity of these molecules is largely unknown, one of the
molecules has been identified by genetic and proteomics
approaches as a parasite secreted LCAT that is localized in the
vacuole. The importance of LCAT in Plasmodium replication is
demonstrated by mutant studies that showed parasites lacking
LCAT clump together and are also unable to escape infected RBCs
resulting in a reduction in the rate of parasitemia (Ramaprasad
et al., 2023).

LPL-like enzymes (based on their similarity in
3D structure and reaction mechanism)
produced by bacteria (Lpls) involved
in virulence

The bacterial molecules that activate the TLR2, discussed above,
have been identified as lipoproteins (Jain et al., 2013; Machata et al.,
2008). There are now LPLs, similar to the LPL by structure and
activity, but have different host targets. In the last decade, it appears
that the focus of the Lpls has been on those produced by S. aureus
affecting several different targets in the host. Lipoproteins represent
a major class of surface proteins particularly in Gram-positive
bacteria. In S. aureus they play a role in both nutritional
acquisition and in pathogenicity (Shahmirzadi et al., 2016). In
staphylococci, lipoproteins (Lpp) are the main TLR2 agonists and

FIGURE 9
Tetrahydrolipstatin (a representative of statin class of drugs), with
the lactone ring as the electrophile responsible for its activity boxed.
Lipstatin, a product of Streptomyces toxytricini mold inhibits
mammalian lipases. Tetrahydrolipstatin (Orlistat), an FDA
approved drug synthesized from lipstatin, binds to lipases in the
gastrointestinal tract, thus blocking the digestion of dietary
triacylglycerols.
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as such they contribute to innate and adaptive immune signaling
and modulating the immune response and inflammation (Nguyen
and Götz, 2016).

One of the targets of bacterial Lpls has been identified as G2/M
phase transition process in host cell division. It has been
demonstrated that S. aureus LPls delay G2/M phase transitions
in HeLa cells (Nguyen et al., 2016). Studies have shown that the lpl
gene cluster encodes for nine homologous lipoproteins involved in
virulence (Nguyen et al., 2015; Nguyen et al., 2015; Shahmirzadi
et al., 2016). One of them when tested (Lpl1) was shown to cause G2/
M phase transition delay (Nguyen et al., 2016). As discussed earlier,
lipid modification of the Lpls is necessary for TLR2-meditated
immune stimulation. However, it had not been demonstrated to
be necessary for the extension of the G2/M transition delay. Thus,
the Lpls’ mediated G2/M transition delay appears to be the
mechanistic basis for the observed increased host cell invasion
(Nguyen et al., 2016), since bacterial host invasion occurs mainly
in the G2 phase (Alekseeva et al., 2013). Since all Lpl proteins share a
highly conserved core sequence, there might be a common function
that is accentuated by their multiplicity in a tandem gene cluster.
Whether there is a correlation of G2/M phase transition delay and
host cell invasion, and whether the one effect evokes the other,
remains to be clarified by further studies. Further studies show that
the Lpl of S. aureus can also induce in HeLa and osteoblast-like MG-
63 cells breaks in DNA, mediated by alpha phenol-soluble modulins
(PSMα1–4), as indicated by histone H2AX phosphorylation. In
contrast, other Lpls encoded on pathogenicity island appear to
depress H2AX phosphorylation to prevent DNA damage
(Deplanche et al., 2019). Staphylococci isolated from the same
patient over the course of disease (acute initial and recurrent
bone and joint infections), were demonstrated to express lower
amounts of Lpls resulting in more DNA-damage and G2/M
transition delay suggesting involvement of these mechanisms in
adaptive processes of bacteria during persistence (Deplanche et al.,
2019). This broadens the understanding of mechanisms of S. aureus-
host interaction and suggests its ability to cause persistent infections
represents a balance between PSMα vs. LPLs expression (Deplanche
et al., 2019). This insight into the mechanism of staphylococcal
chronicity may provide a means of addressing the issue of treatment
failure particularly in MRSA infected individuals.

Additional host cell invasion pathways of S. aureus, with direct
involvement of Lpl1, have been identified using recombinant
Lpl1 protein lacking the lipid moiety (Tribelli et al., 2020). This
rhLpl1 binds directly to the human heat shock proteins HSP90α and
HSP90ß isoforms. In addition, the Lpl1 peptide sequence potentiated
S. aureus invasion ofHaCaT cells two-fold to five-fold fold, while anti-
HSP90 antibodies attenuated S. aureus invasion of HaCaT cells and
primary human keratinocytes. In addition, the invasion of
HaCaT cells was also depressed by inhibition of HSP90 ATPase
functionality, and by siRNA silencing of HSP90α expression. Of the
two isoforms, the inducible HSP90α appears to play a major role in
Lpl1-host interaction, since its induction (increased temperature)
correlated with both HSP90α expression and staphylococcal cell
invasion. The essential host-staphylococcal interaction (Lpl1-
HSP90) results in F-actin formation and resultant endocytosis.

Staphylococcal Lpls are also involved in the resistance of MRSA
against almost all β-lactam antibiotics (Shang et al., 2019).
Subinhibitory concentrations of β-lactam antibiotics induce

upregulation of the cluster of lipoprotein-like genes, lpl, in
MRSA. The increased expression of lpl by clinically used β-
lactams is directly controlled by the global regulator sarA, a
pleiotropic global regulator that modulates the expression of
approximately 120 genes in S. aureus via agr-dependent or
-independent pathways (Cheung et al., 2008). Of increased
importance is that the β-lactam antibiotics induced elevated
levels of S. aureus LPls and increased MRSA pathogenicity
(Shang et al., 2019), a factor which may also contribute to
reported treatment failure.

Conclusion

The top leading cause of death worldwide in the last decades has
remained heart disease, followed by cancer and COVID-19 (https://
www.cdc.gov/nchs/fastats/leading-causes-of-death.htm; https://www.
who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death).
Therefore, any effort for prevention and treatment of CVD and SARS-
CoV-2 are important areas of research. HDL-Cholesterol (HDL-C)
levels in plasma are inversely related to CVD risk, but most therapeutic
approaches for increasing HDL-C in clinical trials have not shown
benefit (Rader and Hovingh, 2014). It is postulated that it may be the
function, rather than the cholesterol content of high-density lipoprotein
(HDL) that accounts for its atheroprotection (Karathanasis et al., 2017).

HDLs are a complex mixture of particles with many different
proteins and lipid components. Protective functions ascribed to
HDL include reverse cholesterol transport from aortic foam cells to
the liver, as well as anti-inflammatory, antioxidative, and
antiprotease effects (Rye and Barter, 2014; Rosenson et al., 2016;
Gordon and Remaley, 2017). Many of these functions of HDLs are
performed by larger, spherical particles, so maturation of HDLs
from small discoidal particles to large spherical particles may also be
important for CVD protection (Asztalos et al., 2000; Asztalos et al.,
2011; Karathanasis et al., 2017).

LCAT is an enzyme critical for HDL particle maturation (Ahsan
et al., 2014). Currently, the therapeutic approaches/agents that have
been or undergoing clinical trials are gene therapy, recombinant
human LCAT (rhLCAT), and small molecules activators of LCAT
(LCAT-targeted therapies (Yang et al., 2022). From the latter, the
Daiichi-Sankyo compounds’mechanism of activation of LCAT and
their therapeutic activity with improvement of HDL functionality
are, to date, the best characterized (Sasaki et al., 2021).

High levels of triacyclglycerols (TG) and triacylglycerol-rich
lipoproteins (TGRLs) confer a residual risk of cardiovascular
disease after optimal LDL-C–lowering therapy. Consensus is that
LDL-C is a non-arguable primary target for lipid lowering
treatment, but the optimization of TGRL for reducing the
remnant risk of cardiovascular diseases is also an important
aspect of CVD therapy. Potential targets for novel lipid lowering
therapeutics have been identified, including the LDL receptor,
PCSK9, the angiopoietin-like (ANGPTL) family, apolipoproteins
(APOs) and LPL. These proteins have been the focus to develop
novel therapeutics to treat hypertriacylglycerolemia in patients who
do not reach the target goal of TG after using the currently available
drugs, based on genetic studies of altered lipid phenotypes in the
proteins regulating LPL activity, (Moon et al., 2022). A monoclonal
antibody, Evinacumab, inhibiting ANGPTL3, is approved for use in
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the United States in patients with homozygous familial
hypercholesterolemia. Volanesorsen inhibits APOC3 and was
approved in Europe for the treatment of familial
chylomicronemia syndrome, (Endocrinologic & Metabolic Drugs
Advisory Committee, 2018. FDA Briefing Document:

EMDAC Meeting for Volanesorsen (Waylivra). Silver Spring:
Food and Drug Administration; 2018. https://pink.pharmaintelligence.
informa.com/-/media/supporting- documents/pink-sheet/2018/
05/waylivrafda_back grounder.pdf?rev =b873388a6381495c9df
19ee1e1895d3c&hash=E57C40 AEF44E4C8839C9542AA533EE5B;
Gaudet et al., 2022). Other attempts to enhance LPL activity, by
inhibiting ANGPTL3/8 complex with targeted monoclonal antibody
therapy, showed dose dependent reduction in TG, LDL-C, non-HDL-C
in phase 1 clinical trials (Gaudet et al., 2022). Beyond the
abovementioned drugs, therapeutics have been attempted to lower
LDL-C with different targets (Moon et al., 2022). Still, most of the
studies appear to be focused on statin therapies which have a very
narrow target population, e.g., those with homozygous familial
hypercholesterolemia (Kim et al., 2022).

While all the attempts to develop agents directed to lowering the
leading cause of human death in the world are necessary, it is essential
to examine potential secondary effects activators of lipid enzymes
associated with CVD, LCAT and LPL, have on host-pathogen
interactions. There are many bacteria, fungi and protozoa that
either highjack mammalian enzymes or produce LCAT- and LPL-
like enzymes for survival and proliferation in the host, a factor which
can complicate management of patients with co-morbidities.
Monitoring patients in clinical settings, and patient education
when any of the abovementioned therapies is prescribed, may be a
crucial step in avoiding complications, e.g., chronic infection. In the
last decade or so, drug repurposing saw an unprecedented utilization
of drugs for off-targeted purposes. However, the development/use
especially of covalent irreversible (human) enzyme modulators, must
be taken with caution in situations where patients develop
communicable diseases. The otherwise non-toxic to humans β-
lactam antibiotics trigger the production of microbial lipase, LPL
in MRSA. This in turn acts to promote increased virulence in S.
aureus. The implication being that in situations where antibiotic
resistance is reported, incidental use of lipid modulators for
treatment of co-morbidities could potentially increase microbial

virulence and therefore should be used with caution. Clearly more
work needs to be performed in this area to better inform drug dosing
and potential drug-lipid interactions.
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