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Real-world applications of computing can be extremely time-sensitive. It
would be valuable if we could accelerate such tasks by performing some of the
work ahead of time. Motivated by this, we propose a cost model for quantum
algorithms that allows quantum precomputation; i.e., for a polynomial amount
of “free” computation before the input to an algorithm is fully specified, and
methods for taking advantage of it. We analyze two families of unitaries that
are asymptotically more efficient to implement in this cost model than in the
standard one. The first example of quantum precomputation, based on density
matrix exponentiation, could offer an exponential advantage under certain con-
ditions. The second example uses a variant of gate teleportation to achieve a
quadratic advantage when compared with implementing the unitaries directly.
These examples hint that quantum precomputation may offer a new arena in
which to seek quantum advantage.

1 Introduction
In order to efficiently use limited computational resources, it is natural to quantify and
minimize their use. In quantum computing, we frequently try to minimize some proxy for
the spacetime cost of an algorithm, such as the number of two-qubit gates on an near-
term machine or the number of non-Clifford gates on a fault-tolerant device. Focusing
on spacetime metrics allows one to easily incorporate the fungibility of additional qubits
and time inside error correcting codes [18, 21, 35], as well as elements of algorithmic
parallelism. However, in some cases, one is interested in the raw time to solution, or
“wall-clock time,” given any reasonable resources. As such, in this paper, we explore
a different cost model that allows for what we call “quantum precomputation.” In the
process, we aim to understand the opportunities and challenges inherent in generalizing
classical ideas of precomputation, e.g., caching of results, indexing in databases, or creating
lookup tables. The precomputation cost model allows for a quantum algorithm to start
with access to a specially prepared resource state that depends on the algorithm and some
portion (but not all) of its input. We neglect the cost of preparing this resource state,
but we demand that it can be prepared efficiently, i.e., that the quantum and classical
resources required scale polynomially in the size of the input.

Our precomputation cost model is motivated by real-world problems where the crucial
limited resource is the computational power available after the problem is fully specified.
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For some of these problems, the value of finding a solution as quickly as possible would
justify investing extra effort ahead of time preparing to perform a computation. In fields
ranging from optimization, to finance, to data analysis, there are tasks that naturally fit
into this framework. If we can build useful quantum primitives that accelerate such tasks in
the precomputation cost model, it could have a substantial impact even in cases where the
overall quantum advantage is modest or non-existent. We study quantum precomputation
because of these potential practical applications, and also because it offers the chance to
investigate the nature of quantum computation from another angle. Notably, the no-
cloning theorem imposes limitations on our ability to reuse the results of earlier quantum
computations, which implies that precomputation may occupy a different role in quantum
computing than it does classically.

In order for the precomputation cost model to make sense, there must be some com-
ponents of the computational task that are naturally specified before others. For example,
we could be given a classical description of a Hamiltonian now with the understanding that
we will want to estimate some properties of its ground state that will be determined at a
later time. In such a situation, we could prepare for when these properties are specified by
generating and storing a sufficient number of copies of the ground state. In other cases,
we might have a classical description of some unitary U available now that we will later
wish to apply to a (currently unknown) state |ψ⟩. In this paper, we ask if we can find
interesting or useful families of tasks that can be implemented using asymptotically fewer
quantum resources in a cost model that allows for free precomputation.

We formalize our definition of the precomputation cost model in Section 2. In Section 3,
we discuss some of the connections that quantum precomputation has with prior work
on quantum and classical computation. We go on to explore how existing algorithmic
primitives can interpreted as tools for quantum precomputation in Section 4. Specifically,
we make use of density matrix exponentiation and gate teleportation to accelerate the
application of certain unitaries in the precomputation cost model [23, 36], finding the
possibility of speedups that range from quadratic to exponential (when comparing the cost
in the precomputation model with the usual quantum gate complexity). In Section 5, we
present a less straightforward protocol for quantum precomputation that uses a technique
known as selective teleportation [18] to yield a quadratic improvement in complexity for a
family of diagonal unitaries. We conclude with a discussion of open questions and potential
applications in Section 6.

2 The Precomputation Cost Model
2.1 Formalizing the cost model
Analyzing the resources required to execute an algorithm requires a cost model. A good
cost model encodes useful assumptions that simplify the analysis, abstracting away irrel-
evant details while keeping the essential information required to answer the questions at
hand. There are a number of different choices one could make in formalizing the intuition
behind quantum precomputation into a cost model; i.e., specifying what it means to “al-
low a reasonable amount of work to be performed for free.” In this section, we propose a
concrete definition flexible enough to encompass several interesting examples rather than
a maximally general abstract definition.

There are many kinds of computational tasks that we might wish to analyze in the
precomputation cost model. We will loosely formalize a computational task as an algo-
rithm, which we treat as a map that takes an input from some set of valid inputs and
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returns a correct output (or a sample from a correct distribution over outputs). Different
algorithms may define different notions of valid inputs and correct outputs. For now, we
leave these details unspecified, although they may be crucial to determining the complex-
ity of implementing an algorithm. For example, there are some tomographic tasks that
are efficient for pure state inputs but prohibitively expensive for general mixed state in-
puts [22]. In other cases, the computational complexity of a problem may vary depending
on the definition of the “correct” output, e.g., what kind of approximation is allowed [19].

To be sufficiently general, we need a notion of a quantum algorithm that can accept
both quantum and classical input and can output both quantum and classical data.1 We
also need to allow for the possibility that the input is partitioned into two components
that are provided at different times. For simplicity, we assume that the earlier input (that
might be used in the precomputation step) is classical, and that the later input may be
a combination of classical and quantum data. Let x denote the (classical) input provided
at the earlier time and let ρ and y denote the quantum and classical components of the
input provided at a later time. For the quantum and classical outputs we use the symbols
σ and z respectively.

In the usual situation, where we do not take advantage of the fact that some portion
of the input may be available ahead of time, a quantum algorithm A implements a map

A : x, y, ρ → z, σ. (1)

In general, we can understand A as performing some classical computation that takes x
and y as an input, determining a quantum circuit that is subsequently applied to ρ. The
portions of the resulting quantum state that are not measured or discarded constitute
σ. The classical component of the output, z, is classically computed from x, y, and the
measurement outcomes. In a standard cost model, we are concerned with the cost of
executing the algorithm A given access to x, y, and ρ.

In a model that allows for free precomputation, we aim to produce the same (distri-
bution over) outputs by implementing the map

P : x̄(A, x), |Γ(A, x)⟩ , y, ρ → z, σ, (2)

where x̄(A, x) and |Γ(A, x)⟩ represent the classical and quantum outputs of some precom-
putation step. We allow for x̄(A, x) and |Γ(A, x)⟩ to be generated using a “reasonable”
amount of classical and quantum computation performed ahead of time, i.e., with knowl-
edge of A and x but not ρ or y. In a precomputation cost model, the only cost that
we consider directly is the cost of performing the map P : x̄(A, x), |Γ(A, x)⟩ , y, ρ → z, σ.
In order to fully define a precomputation cost model and compare it to a standard cost
model, we therefore have to specify answers to two questions: i) How will we quantify the
costs of implementing A and P? ii) What do we mean when we say that we allow for a
“reasonable” amount of classical and quantum computation to be used in the preparation
of |Γ(A, x)⟩ and x̄(A, x)?

In this paper, we focus on quantifying the quantum resources used to implement P
(and A itself) in terms of the quantum circuit complexity (a term that we use interchange-
ably with “gate complexity”), the number of gates from some elementary set of discrete
operations required to implement the algorithm. We consider a discrete set of gates that
consists of one- and two-qubit Clifford gates, single-qubit computational basis measure-
ment operations, and T gates. We also choose to count single-qubit identity operations

1We could consider all of the inputs and outputs to be quantum states, but treating them separately
will help us take a more nuanced approach that differentiates the quantum and classical resources.
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as gates in order to include the cost of storage (which is comparable in most architectures
to the cost of active workspace). This choice implies that our notion of circuit complexity
grows asymptotically as fast as the product of the number of qubits and the circuit depth
(the number of layers of gates, executed in parallel).

We could define other related models that allow for free precomputation but account
for “cost” differently. Depending on the context, it might be useful to work in an oracle
model, or to count only the number of non-Clifford gates, or even to quantify the space-
time volume used in a particular error-correcting code. It might also be useful to discuss
the number of gates required for the best known implementation of an algorithm, rather
than the absolute minimum required. For the examples we consider, this distinction will
not be important. We find that discussing the gate complexity is convenient because it
allows us to use the same model to consider several different examples, but we will make
some comments along the way regarding other notions of cost. As we consider these
examples, it will sometimes make sense to allow for A or P to be implemented with some
error. In the context of this work, when we need to allow for some notion of error, it
will be sufficient to focus on the case where the output is a quantum state and we can
quantify the error using a single parameter ϵ that bounds the trace distance between the
ideal output and the actual output.

By focusing on quantifying the cost in the precomputation model in terms of the
number of quantum operations, we are implicitly treating quantum operations as a funda-
mentally different and more limited resource than classical ones. This decision is motivated
by the practical observation that quantum operations on a fault-tolerant computer are ex-
pected to be vastly slower and more expensive than classical operations [4]. Nevertheless,
we would like a definition of the precomputation cost model that is useful in practice,
so we demand that the classical time and space complexity of implementing P scales as
O(poly(ϵ−1, |x|, |y|, |ρ|)). Here the notation | ∗ | indicates the size of ∗ in terms of classical
or quantum bits.

Besides specifying how we quantify the cost of implementing A or P, we also need to
formalize the notion that the amount of work performed ahead of time is required to be
“reasonable.” We should bound the quantum gate complexity of the precomputation step,
as well the classical time and space complexities. For all of these resources, we allow their
usage during the precomputation step to scale as O(poly(ϵ−1, |x|)). Although we define
our model with this coarse-grained notion of what is allowed during the precomputation
step, we will discuss the actual scaling of the various resources in more detail for the
particular examples we consider in this paper.

3 Prior work
While the authors are not aware of prior work that has focused on a cost model that allows
for free precomputation in the sense that we consider, there are a number of closely re-
lated ideas that we draw inspiration from. The paper that first described gate teleportation
speculated that it might be used to mass manufacture resource states for later consump-
tion [23]. For example, one could imagine using magic state distillation to distill a large
number of magic states, storing them for use in a later computation [8]. Going beyond
the prototypical use of magic state distillation to implement a T gate, state distillation
schemes have been proposed for a variety of other few-qubit operations [10, 13, 21, 28, 35].
In Ref. 13, Jones et al. proposed a method that implements an arbitrary single-qubit Z
rotation with success probability 1 − δ by precomputing and storing a resource state on
O(− log(δ)) qubits. More abstractly, measurement based quantum computing has some
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similarity to quantum precomputation, but it aims to prepare generically useful resource
states rather than ones that are tailored to accelerating particular algorithms [40, 43].

The idea of precomputing and storing a reservoir of resource states for single or few-
qubit operations is appealing, but it faces serious challenges. In particular, the number of
such resource states required for interesting and classically intractable applications appears
large [6, 20, 44], while quantum memory has a comparable cost with active workspace in
most proposed architectures [49]. For example, Ref. 20 estimates that thousands of logical
qubits and billions of Toffoli and T gates would be required to factor a 2048 bit RSA
integer using Shor’s algorithm. A fault-tolerant quantum computer that large enough to
perform this computation, but not too much larger, would be unable to precompute and
store more than a tiny fraction of the necessary resource states ahead of time.

Even so, one might ask if precomputing resource states for T or Toffoli gates offers
a simple example of asymptotic advantage when the cost of the precomputation itself is
neglected. In our definition of the precomputation cost model, the answer is no. This is
because, even with access to the appropriate resource state, applying either of these gates
still requires a (nonzero) constant number of operations and our model allows T gates to
be performed at unit cost. If we instead consider the task of implementing arbitrary single-
qubit rotations to within some precision ϵ, Ref. 13 provides an example where allowing for
free precomputation does indeed change the asymptotic cost. Specifically, precomputation
can be used to remove the dependence on ϵ from the cost (not including the cost of the
precomputation step) at the expense of incurring some logarithmic dependence on the
allowed failure probability δ.

The idea of supplementing a quantum computer with a specially-prepared resource
state has also been considered from a complexity-theoretic perspective. The complexity
class BQP/qpoly formalizes the power of a polynomial-time quantum computer augmented
with an arbitrary resource state, referred to as “quantum advice,” that is allowed to depend
on the length of the input. Comparing this complexity class to our model of quantum
precomputation requires some care, so we provide a longer discussion in Appendix A and
merely summarize the conclusions here. First of all, the model formalized in BQP/qpoly
places no restrictions on the computational power used to prepare the resource state,
whereas we require that it be preparable in polynomial time. Secondly, the quantum
advice states of BQP/qpoly can only depend on the length of the input. We allow for the
resource states to depend on a subset of the parameters, denoted by x. Thirdly, the only
problems that fit into the framework of BQP/qpoly are decision problems, which have a
classical input and a (single bit of) classical output. This is a more limited setting than
the one that we consider.2

Despite these differences between BQP/qpoly and our notion of quantum precompu-
tation, we can make a useful comparison if we restrict ourselves to considering the power
of both models to solve decision problems. One might suspect that our model of quantum
precomputation gets some additional power from the fact that we allow the resource state
to depend on the input in richer ways than allowed by the complexity class BQP/qpoly.
However, any decision problem that is solvable in polynomial time in the precomputation
model we have defined is not only a member of BQP/qpoly, but also BQP itself. This is
because we only allow a polynomial amount of “free” precomputation, which can’t add
any power to a machine that is already allowed to run arbitrary polynomial-time quantum
computations. Ultimately, our model of quantum precomputation is trying to capture a

2One could imagine analogues of BQP/qpoly that use a similar notion of advice but consider problems
beyond the setting of decision problems. The main benefit of focusing exclusively on decision problems is
that they are simple to formalize precisely.
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finer-grained notion of speedup than these particular complexity classes are designed to
address. Imprecisely, we could say that we are interested in the power of the “advice that
a polynomial time quantum computer can give itself.”

In the context of classical computing, the term “precomputation” has been used ex-
tensively to describe variations on the idea of performing useful work ahead of time and
caching the result. For example, branch-prediction is an essential component of modern
computer architecture design [47]. Precomputation is used to optimize certain tasks in
computer graphics [46] and computer vision [24]. The precomputation of expensive op-
erations involved in breaking cryptographic schemes is both a practical and theoretical
concern [5], which is closely related to the study of advice in classical computational com-
plexity theory [30]. For the most part, these examples seem slightly different than the
quantum algorithmic primitives that we will discuss. Classically, some applications of pre-
computation derive their usefulness from the ability to reuse the precomputed information
rather than the time-sensitive nature of the computation. In contrast with the classical
case, the resource states that we consider are generally consumed when used, precluding
their reuse. It would be interesting if other techniques, perhaps based on gentle measure-
ments [3], can be used to design quantum precomputation protocols that allow for some
amount of information reuse.

4 Examples of Precomputation
In this section, we discuss several examples of quantum precomputation. These examples
show how existing quantum primitives can be leveraged to obtain an advantage in a cost
model that allows for free precomputation. In particular, we study the application of
density matrix exponentiation (introduced in Ref. 36, reviewed in Appendix B.1) and gate
teleportation (introduced in Ref. 23, reviewed in Appendix B.2) as tools for quantum
precomputation.

Before turning towards these examples, it is worth briefly discussing two particularly
simple forms of quantum precomputation. One natural example is the case where precom-
putation is equivalent to performing the first steps of some algorithm and then waiting
until the problem is fully specified to perform the rest. For example, many quantum
algorithms consist of applying a known unitary to the all zero state and performing a
measurement. If we knew the unitary ahead of time but the measurement wasn’t yet
specified, we could perform the state preparation in advance. More speculatively, there
may be settings where it is natural to prepare for the future execution of some quantum
machine learning task by encoding data into a quantum state “on the fly” as it streams in.
This latter idea is related to rigorous work on quantum algorithms in streaming settings,
which is itself connected to the study of quantum communication complexity [29, 32].

It is easy to understand how one might be able to usefully perform precomputation by
executing the steps at the beginning of some algorithm ahead of time. We could try to
imagine situations where this naturally occurs, but it is unclear if our formal definition of
the notion of quantum precomputation adds anything to the understanding of such cases.
For this reason, in the other examples that we consider in this paper, we focus instead on
the goal of using precomputation to accelerate steps that lie in the middle of an algorithm,
rather than at the beginning.

Turning towards a second example, recall that we briefly discussed the idea of precom-
puting magic states to use as resources for implementing non-Clifford gates in an error
correcting code in Section 3. We explained how there is no advantage to this idea in the
primary cost model we use throughout this paper because we do not distinguish between
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Clifford and non-Clifford gates. This is true, but it is instructive to consider this example
in a slightly different model of quantum precomputation, where we instead quantify the
amount of spacetime volume required to implement a circuit in a quantum error correcting
code. For simplicity, let us work in units where a depth d circuit acting on n qubits has a
volume of dn and let us assume that the spacetime volume required to prepare a suitably
distilled T state is λ ≫ 1. Furthermore, we will neglect the spacetime cost of qubits that
have not yet been initialized and qubits that have already been measured (since they could
presumably be used for other purposes).

Under this more nuanced cost model, we can compare the cost of implementing an
algorithm with and without the precomputed T states. Let us consider a depth d circuit
on n qubits that consumes one magic state per time step. Implementing this algorithm
without precomputation would require a spacetime volume of nd+λd in order to account
for the cost of the circuit itself and the cost of the magic state distillation. In the precom-
putation model, we allow ourselves to start with all d magic states already prepared, but
we must account for the cost of storing them while the algorithm executes. We are using
d − s qubits to store the magic states at each step s from 0 to d − 1, so the spacetime
volume required is nd+ d(d+1)

2 .
In this cost model, precomputing the magic states removes the dependence on λ but it

increases the dependence on d from linear to quadratic. Realistic values of λ are expected
to be significantly less than 100, which suggests that only relatively short-depth circuits of
this type would benefit from free access to precomputed magic states [34]. This example
highlights the fact that our model implicitly penalizes precomputation protocols for the
space used to store their precomputed resource states. Because of this penalization, it is
not trivially true that a precomputation protocol is at least as efficient as a straightforward
approach to executing an algorithm.

4.1 Precomputation with density matrix exponentiation
In this subsection, we consider applications where reflections about an expensive to prepare
state, |b⟩, are a dominant contribution to the complexity of an algorithm. As we explain
below, an algorithm that requires q calls to the reflection operator R = I − 2 |b⟩⟨b| can be
implemented by consuming O(q2) copies of |b⟩ (at nearly unit time per consumption) in
lieu of making any calls to R directly. A cost model that allows for free precomputation
can therefore entirely remove the component of such an algorithm’s cost that depends on
|b⟩. In the most extreme cases, this could lead to a cost in the precomputation model
that is exponentially smaller than the cost in a standard model. For example, preparing
or reflecting about the state |b⟩ might require using poly(|x|) gates to implement a brute-
force encoding of some classical input x into n = polylog(|x|) qubits, while the other
components of the algorithm could scale polynomially in n. We consider the quantum
algorithm for linear systems as a specific example of an algorithm where such a speedup
might prove useful [12, 26].

This type of quantum precomputation makes use of a technique called density matrix
exponentiation. Introduced in Ref. 36, density matrix exponentiation allows us to consume
copies of some density matrix ρ in order to approximately apply the unitary e−itρ for some
time t. We provide a brief review of density matrix exponentiation in Appendix B.1, but
for now we just recall the fact that using density matrix exponentiation to implement e−itρ

to within an error ϵ (in the diamond norm) requires

m = O(t2/ϵ) (3)

copies of ρ [31].
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Before explaining how we can make good use of density matrix exponentiation for
quantum precomputation, let us examine why it does not lead to efficient protocols for
implementing general unitaries in the precomputation cost model. Imagine that we want
to implement a unitary U that corresponds to evolution under a Hamiltonian H for a
time t, where ||H|| (the spectral norm of H) and t are both O(1). We can shift H by
some multiple c of the identity to obtain a positive semidefinite operator H + cI with
||H + cI|| = O(1). Applying U using density matrix exponentiation entails evolving under
the Hamiltonian corresponding to the normalized state

ρ = H + cI
tr [H + cI] (4)

for a time
t̃ = t tr [H + cI] . (5)

The cost of implementing U using density matrix exponentiation scales quadratically with
t̃, which can scale exponentially with the number of qubits in the worst case. This occurs
easily even for simple unitaries, for example, when H is a non-trivial Pauli operator.

In order for density matrix exponentiation to be a useful tool for precomputation,
we need to focus on cases where the normalization factor is small. One natural example
of a unitary that is efficiently implementable using density matrix exponentiation is the
reflection about a state |b⟩,

R = I − 2 |b⟩⟨b| = e−iπ|b⟩⟨b|. (6)

In order to implement R up to an accuracy ϵ̃ using density matrix exponentiation, it suffices
to consume O(ϵ̃−1) copies of the state |b⟩⟨b|. If an algorithm involves q calls to R, we can
guarantee a constant overall error ϵ by setting ϵ̃ ∝ ϵq−1. We can therefore implement all q
calls to R to within the desired accuracy by consuming a total of O(ϵ−1q2) copies of |b⟩⟨b|.

As an example of a context where this kind of precomputation might be useful, consider
the quantum linear systems problem [12, 14, 26, 33, 37, 48]. Given a matrix A and a
vector b⃗, the linear systems problem is to find a vector x⃗ such that Ax⃗ = b⃗. The quantum
formulation of this problem encodes the vector b⃗ into the amplitudes of a state |b⟩ and asks
that we prepare a state |x⟩ ∝ A−1 |b⟩. Without loss of generality we can assume that A is
Hermitian.3 The access models for A and |b⟩ can vary, but it is usually assumed that one
has access to an oracle that prepares |b⟩ and either i) the ability to perform time evolution
by A, ii) oracle access to the non-zero entries of (a sparse) A, or iii) a block encoding of
A. Regardless of the access model for A, the most efficient algorithms for this problem
query the state preparation oracle for |b⟩ a number of times that scales as Õ(κ), where κ
denotes the condition number of A and the Õ(·) notation hides logarithmic factors in κ
and the precision. These queries are used to prepare |b⟩ and to implement the reflection
R about |b⟩.

In a context where a classical description of |b⟩ is available beforeA, preparing Õ(ϵ−1κ2)
copies of |b⟩ during the precomputation step would allow us to apply one of the standard
quantum algorithms for the linear systems problem at a cost that is independent of the
cost of preparing |b⟩. As we argued above, it is easy to imagine situations where preparing
or reflecting about |b⟩ is exponentially more expensive than any other component of the
algorithm. For example, we could take |b⟩ to be a brute force encoding of some classical

3One can always solve a linear systems problem on a larger space with the Hermitian Ã :=
[

0 A

A† 0

]
instead of the original A.
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data |x| into n = polylog(|x|) qubits, such that preparing or reflecting about |b⟩ has a
complexity that scales polynomially in |x|. We could also make the (sometimes reasonable)
assumption that the condition number of A and the gate complexity of implementing A
(under whatever notion of access is appropriate) scale polynomially in n. Given these two
conditions, the complexity of applying any of the standard quantum algorithms for the
linear systems problem would be exponentially better in the precomputation cost model
than in the standard one (assuming that the target precision is a constant).

Of course, this separation is entirely due to the fact that we discount the cost of prepar-
ing the resource state. In fact, in this form of precomputation, the cost of preparing the
resource state would be asymptotically larger than the cost of implementing the reflec-
tions in the standard way since we require Õ(q2) copies of |b⟩ to implement the reflection
R a total of q times with constant error in the overall algorithm. Furthermore, the op-
timal algorithms for the quantum linear systems problem have a logarithmic dependence
on the target precision [12], whereas our approach introduces a polynomial dependence.
Additionally, sufficient storage for the copies of |b⟩ would be required. Nevertheless, in
a situation where b⃗ is specified ahead of time and the solution to the problem is suffi-
ciently valuable and time-sensitive, quantum precomputation could prove useful. Note
that there is no significant classical cost in terms of storage or computation for this form
of precomputation.

It is worth point out that, if one is willing to prepare Õ(κ2) copies of |b⟩ ahead of time,
there is a simpler strategy to solving the linear systems problem that does not require
density matrix exponentiation. However, this simpler strategy is less efficient with respect
to the number of times that A must be queried. Consider the original HHL algorithm
of Ref. 26. This algorithm requires starting with the state |b⟩ and time-evolving under
the Hamiltonian A for a time that scales as Õ(κ) (to perform phase estimation). This
is followed by a postselection step that succeeds with probability Ω(1/κ2). Normally one
uses amplitude amplification to increase the success probability to O(1).

Instead of using amplitude amplification, one could instead repeatedly prepare the
appropriate state and actually perform the postselection based on the output from phase
estimation. This would solve the quantum linear systems problem with high probability
using a number of copies of |b⟩ that scales as Õ(κ2). However, it would also require a total
amount of time evolution under A equal to Õ(κ3). The approach we proposed above uses
a similar number of copies of |b⟩, but the scaling in terms of A (either time evolution under
A or a related notion of access) can be made nearly linear with respect to κ by using the
optimal algorithms of, e.g., Ref. 12.

4.2 Precomputing Clifford unitaries with gate teleportation
In this subsection, we consider accelerating the task of implementing an n-qubit unitary
from the Clifford group using precomputation. We explain how a well-known construction
allows for a quadratic savings in gate complexity (when comparing the cost in the pre-
computation model to the gate complexity in a standard cost model). This construction
is a straightforward application of gate teleportation, a technique introduced in Ref. 23
which we illustrate in Figure 1 and review in more detail in Appendix B.2 (along with
the definition of the Clifford group). Although this example of quantum precomputation
is particularly simple, it provides a good introduction to some of the concerns relevant in
the more technically interesting example that we consider in Section 5.

We recall that an arbitrary unitary from the n-qubit Clifford group can be efficiently
implemented using one- and two-qubit Clifford gates arranged in a circuit with depth
O(n) [9], leading to a gate complexity of O(n2). A counting argument shows that this
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Bell basis measurement

Bell state prep

X

Z

|ψ⟩

|0⟩ H

|0⟩ U UP †U† U |ψ⟩

Figure 1: A quantum circuit diagram for the one-qubit version of gate teleportation [23]. The circuit in
the blue shaded area prepares a bell pair and the circuit in the red shaded area performs a bell basis
measurement (the X/Z in the rounded caps indicate X/Z basis measurements). Based on the outcome
of the measurement, a classically controlled operation UP †U† is performed, where the “byproduct oper-
ator” P ∈ {I, X, Z, ZX} depends on the measurement outcome. When U is a member of the Clifford
group, UP †U† is an element of the Pauli group. Single-qubit gate teleportation generalizes naturally to
a multi-qubit version. Using multi-qubit gate teleportation to apply an n-qubit unitary from the Clifford
group offers a simple example of advantage in the precomputation cost model, reducing the quantum gate
complexity from O(n2) to O(n).

asymptotic scaling must be optimal for most elements of the Clifford group. We will show
that, in the precomputation cost model, the quantum gate complexity of applying the
same unitary is only O(n).

Let U be an arbitrary unitary in C(2) (the Clifford group on n qubits) and |ψ⟩ be an
arbitrary n-qubit quantum state. Using standard multi-qubit gate teleportation, we can
prepare a state |Γ(U)⟩ on 2n qubits that we can consume to apply U to |ψ⟩ (up to a Pauli
correction). This straightforward generalization of the procedure presented in Figure 1
consists of preparing n bell pairs and applying U to a set of n qubits, one taken from
each bell pair. Let us consider the steps involved in applying U to |ψ⟩ once |Γ(U)⟩ is
already prepared. Applying a Clifford unitary using gate teleportation involves making n
simultaneous bell-basis measurements of the 3n-qubit state |ψ⟩ ⊗ |Γ(U)⟩. The resulting
n-qubit state can therefore be obtained in constant depth,

|ϕ⟩ = UP |ψ⟩ , (7)

where P is the “byproduct operator,” a member of the Pauli group that is determined
by the measurement outcomes. By the definition of the Clifford group, the correction
operator UP †U † is also a Pauli operator (up to a possible phase) and can therefore be
applied in constant depth to yield the desired state U |ψ⟩. The overall quantum circuit
complexity (neglecting the cost of preparing |Γ(U)⟩) is therefore O(n), in contrast with
the O(n2) cost of applying U without precomputation.

Although we are primarily concerned with the quantum gate complexity of applying U
given |Γ(U)⟩, we may also wish to consider the classical computational costs of determining
which of the 4n possible correction operators to apply once the measurement outcomes are
known. We need to use 2n bits initially to store the results of the bell basis measurement
that determines the byproduct operator. We could store a classical description of the
O(n2) Clifford gates in U and apply them to the byproduct operator. This would require
O(n2) operations (updating a constant number of the O(n) stored bits each time we
conjugate by a gate in the circuit) which could be performed in O(n) sequential steps by
parallelizing across gates in the same layer of the circuit.

We can reduce the depth of the classical computation (although not the overall number
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of operations) by factorizing the correction operator ahead of time,

UP †U † = U

(
n⊗

i=1
Xxi

i Z
zi
i

)
U † =

(
n∏

i=1
UXxi

i U
†
)(

n∏
i=1

UZzi
i U

†
)
, (8)

where the xi and zi are determined by the measurement outcomes of bell basis measure-
ment. This allows us to classically precompute each of the 2n Pauli operators of the form
UXiU

† or UZiU
† and store the results using O(n2) bits. Once we know the measurement

results, we can multiply the appropriate operators together in logarithmic depth using
a divide and conquer strategy, ultimately computing the final correction operator using
O(n2) operations using O(log(n)) sequential steps (neglecting the classical cost of the
precomputation).

5 Precomputing diagonal unitaries in the Clifford hierarchy with selective
gate teleportation

In this section, we show how a more sophisticated form of gate teleportation introduced
in Ref. 18 can be used to construct a precomputation protocol for a set of diagonal unitaries
in the Clifford hierarchy (reviewed Appendix B.2). We graphically illustrate this selective
gate teleportation in Figure 2 and present a more substantial review in Appendix B.3. In
Section 4.2, we considered a simple example of quantum precomputation that uses stan-
dard gate teleportation to apply some U ∈ C(2) (the Clifford group). We explained how the
O(n2) gate complexity required to implement an arbitrary n-qubit Clifford unitary can be
reduced to O(n) in the precomputation model. The approach is less straightforward, but
the generalization that we present in this section achieves the same quadratic compression
for a subset of unitaries from higher levels of the Clifford hierarchy. In other words, we
show that unitaries from the family Z(k), defined below, that have a gate complexity of
Θ̃(nk) when implemented directly can be implemented with a gate complexity of Õ(knk/2)
in the precomputation cost model (assuming k is even for simplicity). The basic strategy
we use is to apply such a unitary with gate teleportation and then use a series of selective
gate teleportation steps to apply the correction operator up to some simpler correction
that can be implemented directly.

Before we present our actual proposal, let us consider a naive generalization, where
we use gate teleportation to implement some U ∈ C(3) (the third level of the Clifford
hierarchy). By definition, the correction operator required will be some R ∈ C(2). Applying
R directly would result in an overall gate complexity of O(n2), essentially saving a factor of
n compared to the cost of implementing U directly, which is Ω(n3) by a counting argument.
For a general U ∈ C(k), it is unclear if it is possible to obtain an advantage greater than a
factor of n in the precomputation model.

However, if we restrict ourselves to considering a smaller set of unitaries, we can do
better. Rather than allowing for arbitrary elements of the Clifford hierarchy, we limit
ourselves to considering elements of the hierarchy that are also diagonal. To simplify the
presentation, we actually restrict ourselves even further in this section, considering only
those gates in C(k) that are composed of products of ±I, Pauli Z operators, and controlled
Z operators with up to k − 1 controls.4 We denote this set Z(k) and in Appendix C, we

4The only property of Z(k) that we leverage, other than the fact that Z(k) ⊂ C(k), is that it forms an
Abelian group. This is also true of the full set of diagonal unitaries at each level in the Clifford hierarchy,
which suggests that our results may readily generalize to this case.
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A B

Z X

X Z

X Z

Z X

|ψ⟩

|0⟩

|+⟩ UA

|+⟩ UB

|0⟩ P (1)UAP
(2) |ψ⟩

/
P (1)UBP

(2) |ψ⟩

Figure 2: A circuit diagram for the one-qubit version of selective gate teleportation [18]. This protocol
allows for the teleportation of a choice of unitaries, UA or UB , onto an input state. Which unitary is
teleported is controlled by the measurement settings (the four ancilla qubits are each measured in the X
or Z basis according to the proscriptions shown in the blue and red shaded areas of the diagram). The
possible states of the output qubit are color-coded to match the measurement settings that select for them.
In our use of selective teleportation, we take UA = U and UB = I. Byproduct operators P (1) and P (2) from
the set {I, X, Z,XZ} are randomly applied before and after the selected unitary based on the measurement
outcomes.

show that it forms a group. We also note that Z(j) is a proper subgroup of Z(k) for j < k
and prove the following proposition:

Proposition 1. Consider a gate G ∈ Z(k) and a product of single-qubit Pauli X operators
that we denote by Xs (where s ∈ [n] indicates the indices of the qubits where Xs acts
non-trivially). Define G′ in the following way,

G′ := XsGXsG
†. (9)

Then G′ ∈ Z(k−1) if k > 1 and G′ = ±I if k ∈ {0, 1}. As a corollary, we also have that

GXs = XsG
′G. (10)

Diagonal unitaries commute, and the elements of Z(k) are all self-inverse. As a result,
we can specify a U ∈ Z(k) using exactly

k∑
j=0

(
n

j

)
= O(nk) (11)

bits, one to specify the sign and one to specify the presence or absence of each possible
Cj−1Z gate for each j ∈ [1..n]. A Cj−1Z gate can be implemented using O(j) T gates in
depth O(log j) [39]. An arbitrary gate G ∈ Z(k) can therefore be implemented in depth
Õ(nk−1) and gate complexity Õ(nk), even under reasonable assumptions about qubit
connectivity [41]. Furthermore, by counting the number of distinct elements of Z(k), we
can also see that a typical element must have a circuit complexity lower bounded by Ω(nk).

We begin our construction by preparing the usual 2n qubit resource state for applying
the gate U ∈ Z(k) using teleportation. If this state were used directly for gate teleportation,
we would need to perform a correction of the form UP †U † for some n-qubit byproduct
operator P (which we can write as a product of single-qubit X and Z operators). We
will perform this correction using selective teleportation. Note that we can neglect the

Accepted in Quantum 2024-01-01, click title to verify. Published under CC-BY 4.0. 12



Z corrections (as they can be trivially commuted to the end of the circuit up to a sign).
Factorizing the X component of the corrections, we see that we need to apply the unitary

R =
n∏

i=1
UXxi

i U
†, (12)

where the bits xi will be chosen based on the measurement outcomes of first gate telepor-
tation step. It is convenient to rewrite each of the terms in the product as

UXxi
i U

† = Xxi
i

(
Xxi

i UX
xi
i U

†
)
, (13)

i.e., a product of Xxi
i and an operator that is in Z(k−1) by Proposition 1.

We can use selective gate teleportation to apply the diagonal term (Xxi
i UX

xi
i U

†) from
each of the n possible factors of the correction operator. Note that we can do this af-
ter applying U to the n bell pairs and before performing the bell basis measurement that
completes the gate teleportation. We ignore the Xxi

i terms that precede the diagonal com-
ponents of the factors of the correction operator in Equation (13) because we can absorb
them into the byproduct operators that will arise anyway from the selective teleportation.
For each of the correction operators, we need 4n additional qubits to implement the selec-
tive gate teleportation, so the overall overhead is 4n2. When we attempt to use selective
teleportation in this way to implement the correction operator, we will actually end up
implementing the operator

R̃ = P (0)
n∏

i=1

(
Xxi

i UX
xi
i U

†P (i)
)
, (14)

where the P (i) terms represent randomly obtained products of Pauli operators and the
Xxi

i UX
xi
i U

† are elements of Z(k−1). Notice that we can commute the Pauli terms to the
left at the cost of requiring a series of corrections R(i)′ ∈ Z(k−2).

We can proceed recursively. We factored the one byproduct operator to obtain n
possible factors of the correction operator, each of which we applied using selective gate
teleportation. Implementing these corrections required a total of 4n2 additional ancilla
qubits and resulted in the addition of Pauli byproduct operators at n + 1 locations. We
can commute these byproduct operators through to the left, starting at the righthand
side of our expression. Each time we commute an n-qubit operator of the form

∏n
i=1X

xi
i

through a diagonal gate we do so by factorizing it and we pick up n possible correction
terms one level lower in the Z(k) hierarchy. The number of corrections that we must
apply, and the number of additional ancilla qubits that we require, therefore increases by
a factor of n each time we descend the hierarchy by a level. For example, we can use O(n3)
ancilla qubits to implement each of the n2 possible second-order corrections using selective
teleportation, leaving only corrections that are three or more levels down the hierarchy.
More generally, to implement U ∈ Z(k) up to a correction R ∈ Z(k−a) (and some Pauli X
operators), we require a resource state on O(na) qubits.

If we were to descend the hierarchy all the way to the point where the only remaining
corrections were Pauli corrections (a = k−1), we would obtain only a modest compression
in circuit complexity (compared with directly applying U). This is because, although the
circuit depth would be merely O(k), we would require O(nk−1) qubits. However, consider
what happens when we stop at the level a = ⌊k/2⌋. To simplify the presentation we assume
that k is even. We can use a resource state on O(nk/2) qubits to implement U up to a
correction R ∈ Z(k/2) (and some additional Pauli terms) in k/2 rounds of measurement.
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We can implement the remaining correction directly with a gate complexity of Õ(knk/2)
in depth Õ(k) with no additional space overhead using the constant depth fanout and
unfanout circuits of Ref. 42. Therefore, the overall gate complexity of implementing an
arbitrary U ∈ Z(k) in the precomputation model (i.e., neglecting the cost of preparing the
resource state) is Õ(knk/2).

Recall that a fanout operation takes an n-qubit state |ψ⟩ and performs the map

|ψ⟩ =
2n∑
i=1

ci |i⟩ →
2n∑
i=1

ci |i⟩⊗m (15)

for some integer m > 1, where the states in {|i⟩} are the computational basis states.
Unfanout reverses this mapping. Ref. 42 explains how both of these operations can be
implemented using constant depth quantum circuits and classical feedback. We can par-
allelize the implementation of m diagonal unitaries by performing a fanout, applying each
unitary to a separate fanned out copy of |ψ⟩, and then performing an unfanout.

We can take advantage of this capability by partitioning the individual terms that
make up an arbitrary R ∈ Z(k/2) into O(k) sets of gates, where each set contains only
terms that act on disjoint qubits. By setting m = nk/2−1, we can apply the terms from
each of the sets in parallel. We can therefore apply all of the terms with the desired gate
complexity and depth. Because the fanout and unfanout operations are constant depth,
they do not increase the asymptotic scaling of the gate complexity. The remaining Pauli
correction can then be applied to complete the implementation of U .

Now let us consider the classical computational cost associated with applying U this
way in the precomputation model. Applying U up to a correction at level Zk−a is trivial
for a = 1. For a = 2, we apply some subset of the n possible corrections that corresponds
directly to the bits we obtained from the first set of measurements. For a = 3, we need
to repeatedly XOR one n bit string into another O(n) times in order to determine the
measurement settings, using O(n2) classical operations. This growth continues, and we
find that we need to perform O(nk/2−1) classical operations to determine which corrections
to perform at the level that leaves us with a final correction in Zk/2. Actually computing
the final correction R ∈ Zk/2 requires determining the O(nk/2) elements of Zk/2 that arise
from commuting the byproduct operators through and then taking their product, which
ultimately takes O(nk) XOR operations. The classical postprocessing involved in the
fanout operation is negligible compared to these costs, so the overall classical complexity
is O(nk).

We can also ask about the quantum and classical complexities of performing the pre-
computation step. Neglecting the operations involved in setting up the teleportation and
selective teleportation gadgets themselves since they contribute negligibly to the overall
complexity, we can just consider the gate complexities of performing one operation from
Z(k), n operations from Z(k−1), and so on, down to nk/2−1 operations at the level Z(k/2+1).
The only clear way to apply these operations is to work serially (since the use of selective
teleportation may prevent us from using fanout and unfanout operations to parallelize).
This means that, although we only require Õ(knk) non-identity gates, our definition of
gate complexity (which attempts to account for storage space by counting the single-qubit
identity operation as a gate) implies that the overall gate complexity of the precomputa-
tion step is Õ(kn3k/2). This may not be a fundamental requirement, and it is also true
that most of the O(nk/2) qubits are not required at all until the very last portions of the
precomputation step, so they could be used for other things in the meantime. The clas-
sical complexity of the precomputation step arises from computing the various correction
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operators and is not substantially larger than would be expected from the need to generate
some kind of classical description of the circuits involved anyway.

In many ways, the techniques of this section are a generalization of the simpler scheme
for applying Clifford operators using gate teleportation that we presented in Section 4.2. In
order to make a comparison easy, we summarize the various scalings of these two examples
of quantum precomputation in Table 1.

Typical U ∈ C(2) (Sec. 4.2) Typical U ∈ Z(k) (Sec. 5)

Gate complexity, standard Θ(n2) Θ̃(nk)
Gate complexity, precomputation O(n) Õ(knk/2)
Resource state size O(n) O(nk/2)
Gate complexity, preparing |Γ(U)⟩ O(n2) Õ(kn3k/2)
Classical operations, consuming |Γ(U)⟩ O(n2) O(nk)

Table 1: A summary of the scalings for applying arbitrary Clifford operators using gate teleportation
(Section 4.2) and arbitrary elements of Zk (products of Z and controlled Z operators with up to k− 1
controls) using selective gate teleportation (Section 5). For simplicity we assume that k is even. For
the gate complexity, we count the number of one- and two-qubit gates from the Clifford + T gate set
(counting single-qubit identity operations as gates). The quoted gate complexity in the precomputation
model includes only those quantum operations required to consume the resource state |Γ(U)⟩. The
(quantum) cost of preparing the resource state is provided separately, as is the number of classical
operations required to consume the resource state to apply U .

6 Discussion
In this paper, we introduced a new cost model for quantum computation that allows
for “quantum precomputation.” This model is motivated by practical scenarios where
it is highly valuable to perform a time-sensitive computation as quickly as possible, and
where some portion of the problem’s input is naturally known ahead of time. In the
precomputation cost model, we allow a reasonable (polynomial in the input size) amount
of effort to be spent “for free” preparing a resource state before the input is fully specified.
The cost of an algorithm in the precomputation cost model is determined solely by the
resources required to implement the algorithm given access to the resource state. We
presented three realizations of quantum precomputation that require asymptotically fewer
resources in the precomputation cost model than in a standard one.

The first realization uses density matrix exponentiation to implement reflections about
a state by consuming copies of that state. We explained how, in some cases, this type
of quantum precomputation can offer an exponential advantage (in the sense that the
complexity required to execute an algorithm by consuming the resource state can be
exponentially smaller than the complexity required to execute an algorithm directly).
As a particular example, we considered the task of accelerating quantum algorithms for
linear systems in cases where it is natural to prepare copies of the state |b⟩ ahead of time.
In the future, we hope to find practical examples where this type of precomputation is
useful, either for solving particular linear systems of equations, or for executing some
other quantum algorithm whose cost might be dominated by the cost of implementing
low-rank reflections. In practice, the advantage need not be exponential to be useful. It
would be especially interesting if we could find situations where the ability to accelerate
an algorithm using precomputation was the deciding factor that made it worth solving a
particular problem using quantum rather than classical computation.
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As a second example, we pointed out that standard techniques for implementing Clif-
ford unitaries using gate teleportation constitute a simple illustration of an asymptotic
advantage in the precomputation cost model. These techniques allow for unitaries with a
gate complexity of Θ(n2) to be implemented in O(1) (quantum gate) depth by consuming
a state on 2n qubits. This example highlights the importance of choosing an appropriate
notion of cost when defining a model of quantum precomputation. Under a definition
of cost that treated Clifford operations as free, there could be no value in using pre-
computation to apply a Clifford unitary more efficiently. However, as schemes for magic
state distillation continue to improve, it is becoming less clear if quantifying the cost of a
fault-tolerant quantum algorithm solely in terms of the number of non-Clifford gates is an
accurate approximation [34]. This motivated our particular definition of a precomputation
cost model (that counts gate complexity, including Clifford gates), but it is possible that
a metric of cost even closer to the hardware might be more appropriate. For instance, one
could imagine squeezing some additional benefit out of a scheme for quantum precompu-
tation by preparing the resource states using shorter distance error correcting codes (and
therefore, fewer physical qubits and less actual time) in conjunction with error detection
and postselection.

Even within the particular cost model we have defined, there are many degrees of
freedom to explore in defining precomputation protocols. For example, the technique we
used to implement an arbitrary Clifford unitary could be modified to apply an n-qubit
circuit U that interleaved Clifford operations with a small number (t) of T gates. Such a
modified scheme could use a combination of gate teleportation and selective teleportation
to apply the Clifford gates as normal, while selectively implement the possible corrections
after each T gate. This would require an O(n + t) qubit resource state that would be
consumed in O(t) rounds of measurement to apply U up to a final Pauli correction.

The most novel example of precomputation that we proposed in this paper uses selec-
tive teleportation to achieve a quadratic reduction in the complexity of implementing a
family of diagonal unitaries from the Clifford hierarchy (when comparing the cost in the
precomputation model with the standard cost). Our scheme is likely generalizable to all
diagonal unitaries that are members of the Clifford hierarchy, but this is still a relatively
restricted class of unitaries. This naturally raises the question, are there ways to compile
existing algorithms such that they would make heavy use of the kinds of diagonal unitaries
that we have shown can be accelerated by precomputation? Diagonal unitaries appear in
a variety of places, oftentimes as a natural way of encoding the output of a classical func-
tion into a phase. For example, the Forrelation problem [2], IQP circuits [45], QAOA [17],
and Grover’s algorithm itself [25], can all be formulated to involve heavy use of diagonal
unitaries. In the future, we hope that extensions of our precomputation protocols can be
used to accelerate some such algorithms for interesting and time-sensitive applications.

More broadly, does quantum precomputation have anything to teach us about the na-
ture or power of quantum computation? The power of advice (computation supplemented
by a resource state) has been studied both in classical and quantum contexts [1, 30], but,
as we discuss in Section 2, the precomputation model we introduced differs from these
prior works in that we require that the extra resource state be efficient to prepare. In this
finer-grained setting, what can we say about the difference between quantum and classi-
cal computation? Are there classical analogues of the kinds of quantum precomputation
that we have proposed, or are there some types of precomputation are uniquely quantum
mechanical? Conversely, classical precomputation is widely applicable in situations where
the precomputed information is used multiple times. One could interpret recent shadow
tomography proposals as examples of quantum precomputation that allow for information
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reuse [3, 11], and it would be interesting to see if techniques from that domain can be
adapted to enable such reuse in the context of other types of quantum precomputation.

Finally, are there other, perhaps more general, classes of quantum computation that we
can accelerate in the precomputation cost model? Many proposed applications of quantum
machine learning techniques to classical data rely on quantum random access memory
(QRAM) to obtain a computational advantage [7]. Are there real-world applications where
it would be natural to circumvent the need for QRAM by encoding some classical data
into quantum states ahead of time?
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A Precomputation and quantum advice
The purpose of this appendix is to relate our proposed model of quantum precomputation
to the notion of quantum advice and the complexity class BQP/qpoly. We do not aim to
provide a self-contained introduction to quantum complexity theory, but we will briefly
mention some basic definitions that will aid in making the comparison. The most well-
studied computational problems in complexity theory are decision problems, questions
that have a yes or no answer. We can formalize a decision problem as a language, a set of
bitstrings that encode the inputs to the problem for which the answer is yes. Informally,
a decision problem is in the complexity class BQP if it can be solved in polynomial time
on a quantum computer. Formally, we have the following definition:

Definition A.1. Let {0, 1}∗ denote the set of all binary strings. A language L ⊆ {0, 1}∗

is in BQP if these exists a uniform family of polynomial-size quantum circuits, {Cn}, such
that the following conditions hold for all x ∈ {0, 1}n:

1. If x ∈ L, then the probability that the first qubit is measured to be |1⟩ after Cn is
applied to the input |x⟩ ⊗ |0 · · · 0⟩ is at least 2/3.

2. If x /∈ L, then the probability that the first qubit is measured to be |1⟩ after Cn is
applied to the input |x⟩ ⊗ |0 · · · 0⟩ is at most 1/3.
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Note that the circuit Cn depends only on n, the size of the input. The condition
that the family of circuits is uniform essentially requires that a polynomial time classical
computer can generate the description of the circuit that the quantum computer will
execute.

Like our model of quantum precomputation, the complexity class BQP/qpoly is in-
tended to capture the power of a polynomial-time quantum machine augmented with an
additional resource state. Formally, the class can be defined as follows:

Definition A.2. A language L ⊆ {0, 1}∗ is in BQP/qpoly if there exists a uniform family
of polynomial-size quantum circuits, {Cn}, and a family of polynomial-size quantum states,
{|ψn⟩}, such that the following conditions hold for all x ∈ {0, 1}n:

1. If x ∈ L, then the probability that the first qubit is measured to be |1⟩ after Cn is
applied to the input |x⟩ ⊗ |0 · · · 0⟩ ⊗ |ψn⟩ is at least 2/3.

2. If x /∈ L, then the probability that the first qubit is measured to be |1⟩ after Cn is
applied to the input |x⟩ ⊗ |0 · · · 0⟩ ⊗ |ψn⟩ is at most 1/3.

It is important to note that the additional quantum resources afforded to the poly-
nomially powerful quantum machine can be arbitrarily complex states on poly(n) qubits.
However, these states are only allowed to depend on the size of the input.

There are therefore three key differences between the model of computation considered
in BQP/qpoly and the model we consider when we allow for “free” polynomial-time quan-
tum precomputation. First of all, we have defined quantum precomputation to allow inputs
and outputs that are combinations of classical and quantum information. BQP/qpoly is
concerned with machines that take a classical bitstring as an input and return (with some
probability of failure) a single classical bit as output. Secondly, in the precomputation
cost model, we require that the quantum resources states are preparable in polynomial
time, whereas the quantum advice states allowed in BQP/qpoly can be arbitrary quantum
states. Finally, in the precomputation model, we partition the input into two subsets and
allow for the resource state to depend on one subset, but not the other. The complexity
class BQP/qpoly only allows for the resource states to depend on the size of the input,
but none of its other features.

B Algorithmic Primitives
B.1 Density matrix exponentiation
Density matrix exponentiation is a technique that allows one to consume copies of a mixed
quantum state ρ in order to approximately implement the unitary e−itρ [36]. In Ref. 36,
Lloyd et al. gave a protocol for implementing e−itρ to within an error ϵ (in the diamond
norm) by consuming

m = O(t2/ϵ) (16)

copies of ρ. This scaling is optimal with respect to ϵ, and optimal with respect to t for
general ρ (but not necessarily for pure states) [31]. Furthermore, the protocol is relatively
simple to implement. In order to act on an input state σ, one repeatedly consumes a single
copy of ρ to apply an approximation to eitρ/m. This is done by performing a partial swap
operator (with a small angle) on the joint system ρ ⊗ σ and discarding the first register.
The entire evolution can be performed using O(nt2/ϵ) one- and two-qubit gates [31].

Density matrix exponentiation is a basic algorithmic primitive that has been applied in
a variety of ways [22, 36, 38]. In the original paper, Ref. 36, it was used as a building block
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in the quantum principle component analysis algorithm. Quantum principle component
analysis allows one to (approximately) sample the eigenvectors of ρ corresponding to large
eigenvalues exponentially more quickly than any classical algorithm that has access only to
single copies of ρ [15, 27]. In Ref. 38, density matrix exponentiation was used to efficiently
emulate the action of a unitary U on a small subspace by consuming samples of the form
|b⟩ ⊗ U |b⟩, where the input states |b⟩ span the subspace. This type of application closely
resembles a sort of quantum lookup table, and shares some features with our proposed
use of density matrix exponentiation for precomputation, although the aim of that work
is different.

B.2 Gate teleportation and the Clifford hierarchy
Our work makes heavy use of the concept of gate teleportation [23]. We illustrated the
single-qubit version of gate teleportation in Figure 1 in the main text, but we present a
more detailed review here. Given a unitary U , gate teleportation allows us to prepare
a resource state Γ(U) that we can later consume to apply UP to an arbitrary state |ψ⟩,
where the “byproduct operator” P is an element of the Pauli group randomly determined
by the measurement outcomes of the teleportation protocol. The state obtained when

using gate teleportation to apply U (actually UP ) to |ψ⟩ can be written as
(
UPU †

)
U |ψ⟩.

Multiplying by UP †U † yields U |ψ⟩.
Gate teleportation can be especially useful when UP †U † is simpler to apply than U

itself. This is the case in the canonical application of gate teleportation, implementing T
gates in a quantum error correcting code that supports fault-tolerant Clifford gates [8].
The problem of applying T gates without error is reduced to the problem of preparing
high-fidelity “magic states,” because, for all possible byproduct operators P , TPT † is a
Clifford gate despite the fact that T is not.5 Just as state teleportation trivially generalizes
to multiple qubits, gate teleportation can likewise be straightforwardly applied to multiple
qubits. In the n-qubit case, the byproduct operator is an n-qubit Pauli operator (up to a
phase) that depends on the 2n-bit measurement outcome obtained from n simultaneous
bell basis measurements.

The notion that gate teleportation is most useful when UP †U † is easier to implement
than U itself led Gottesman and Chuang to define an infinite hierarchy of unitaries now
known as the Clifford hierarchy [23]. The first level of the Clifford hierarchy, which we
denote by C(1), is defined to be the Pauli group. The kth level of the Clifford hierarchy is
defined inductively,

C(k) :=
{
U |UPU † ∈ C(k−1) ∀P ∈ C(1)

}
. (17)

The second level of the hierarchy is therefore the usual Clifford group. The higher levels
of the Clifford hierarchy are harder to characterize in familiar terms, but we can give
some examples. For instance, T gates, Toffoli gates, and CCZ gates belong to C(3). More
generally, multi-controlled Ck−1NOT and Ck−1Z gates are in C(k), as are the single-qubit
rotations Zk,

Zk :=
[
1 0
0 eiπ2−k+1

]
. (18)

It is an open problem to fully characterize the higher levels of the hierarchy, although the
diagonal elements are well-understood algebraically in terms of polynomials and roots of
unity [16].

5In practice, T gates can actually be implemented using a simpler and more specialized form of gate
teleportation known as one-bit teleportation [50], but for our purposes we can ignore this detail.
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Figure 3: Circuit diagrams for the one-qubit versions of selective destination and source teleportation [18].
Both protocols allow for a choice that is made by selecting between two measurement settings (indicated
by the blue and red shaded areas of the diagrams). Selective destination teleportation teleports the state
of one qubit to a choice of two different qubits. Selective source teleportation allows one to choose which
of two qubits will have its state teleported to a fixed target. The possible states of the output qubit(s) are
color-coded to match the measurement settings that select for them. In both cases, a byproduct operator
P drawn from the set {I, X, Z,XZ} is randomly applied based on the measurement outcomes.

B.3 Review of selective teleportation
When gate teleportation is used to implement a unitary U that is not in the Clifford
group, the resulting correction operator UP †U † is not, in general, a Pauli operator. For
example, consider the use of gate teleportation to implement a T gate. With probability 1

2 ,
correcting for the byproduct operator requires the subsequent implementation of a phase
gate (S ∈ C(2)). Naively, this means that after applying a T gate using gate teleportation
it is necessary to determine and apply the correction before performing additional Clifford
gates. However, in Ref. 18, Fowler showed how a generalization of quantum teleportation
can be used to selectively implement this phase gate correction using a small number of
ancilla qubits measured in a classically controlled choice of the X or Z basis.

Fowler’s selective teleportation relies on two related constructions, selective source
teleportation and selective destination teleportation. Selective destination teleportation
allows one to teleport a single qubit’s state to either one of two destination qubits. Se-
lective source teleportation allows for teleportation from a choice of two different source
qubits to a fixed destination qubit. Both types of selective teleportation are controlled by
making an appropriate choice of measurement basis and both introduce a Pauli byproduct
operator P ∈ {I, X, Z,XZ} that can be inferred from the (uniformly random) measure-
ment outcomes. We give circuit diagrams for the single-qubit versions of these primitives
in Figure 3. The multi-qubit versions are straightforward generalizations.

Together, selective source and destination teleportation can be used to implement
a primitive that we refer to as selective gate teleportation. We illustrated the single-
qubit version of this selective gate teleportation in Figure 2 in the main text. Selective
gate teleportation allows us to apply our choice of unitaries U1 or U2 to an unknown n-
qubit state |ψ⟩ by choosing how to measure some set of 4n ancilla qubits. As a special
case, we can use selective gate teleportation to defer the choice of whether or not to
apply a unitary U by taking U1 = U and U2 = I. Selective gate teleportation randomly
introduces the byproduct operators P (1) and P (2) (both n-qubit Pauli operators) before
and after the location at which the choice of unitaries is to be applied. For example,
let s ∈ {0, 1} denote the classical bit that determines whether or not to perform the
teleportation that applies U . Rather than obtaining the desired U s |ψ⟩, we instead obtain
the state |ϕ⟩ = P (1)U sP (2) |ψ⟩. To obtain U s |ψ⟩, we would need to subsequently apply

the correction operator U sP (2)†
U s†P (1)†

.
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In the case that Fowler originally consider in Ref. 18, one first uses gate teleportation
to implement a T gate (up to a possible S gate correction) and then selectively applies

the S gate. Because S is a Clifford gate, SsP (2)†
Ss†P (1)†

is a Pauli operator regardless of
the choice of s or the measurement outcomes. As a consequence, the measurements for
both teleportation steps can be deferred or performed while applying additional Clifford
gates and the necessary Pauli correction can be propagated through the resulting circuit
afterwards. This type of optimization has been used to create efficient surface code layouts
for a variety of algorithmic primitives [18, 21, 35].

C The Z(k) hierarchy
In Section 5, we defined Z(k) to be the set of n-qubit unitaries generated by arbitrary
products of controlled Z gates with up to k − 1 control qubits (including the case with 0
controls, Z gates themselves) and ±I. For convenience, we define Z(0) := {±I}. Let D(k)

denote the elements of the k-th level of the Clifford hierarchy that are also diagonal. As
sets, we have that Z(k) ⊆ D(k) ⊂ C(k). While C(k) does not form a group for k > 2, Ref. 16
showed that D(k) is a group for all k.

The set Z(k) can also be shown to form a group under composition. By definition,
Z(k) is closed under composition (which is associative) and includes the identity element.
Because diagonal unitaries commute and CkZ gates are self-inverse for all k, we can see
that each element of Z(k) is its own inverse. Therefore, Z(k) is a group.

The following proposition will be useful:

Proposition 1. Consider a gate G ∈ Z(k) and a product of single-qubit Pauli X operators
that we denote by Xs (where s ∈ [n] indicates the indices of the qubits where Xs acts
non-trivially). Define G′ in the following way,

G′ := XsGXsG
†. (9)

Then G′ ∈ Z(k−1) if k > 1 and G′ = ±I if k ∈ {0, 1}. As a corollary, we also have that

GXs = XsG
′G. (10)

Proof. We will prove this proposition by induction. The k = 0 case is clear by inspection
and the k = 1 case follows from the fact that Pauli operators either commute or anti-
commute. Now let us assume that the proposition is true for all j < k and prove that it
must also hold for j = k. Consider an arbitrary G ∈ Z(k) and s ∈ [n].

First of all, we can simplify the proof by considering a single Pauli X operator acting
on arbitrary qubit i rather than the product Xs. This is because we can expand XsGXsG

†

as XsXs1 Xs1GXs1G
† Xs2 Xs2GXs2G

† · · ·G† through repeated resolutions of the identity.
If we can show that XiGXiG

† ∈ Z(k−1) for all i, then it would follow that

XsGXsG
† = XsXs1G

′
1Xs2G

′
2 · · · (19)

for some set of {G′
1, G

′
2, · · · } ⊆ Z(k−1). We could then use the inductive hypothesis to

commute the various X operators through to the left, incurring additional terms from
the Z(j) hierarchy with j < k. These are all elements of Z(k−1), which is a group, and
therefore their product is also in Z(k−1). The X terms would cancel, completing the proof.

With that simplification established, the task that remains is to show that

XiGXiG
† ∈ Z(k−1) (20)
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for an arbitrary qubit i. We can further simplify by expanding G as a product of m
unitaries that are either ±I, single-qubit Z gates, or CjZ gates (for j < k),

G =
m∏

ℓ=1
Gℓ. (21)

We will proceed by showing that GℓXi = XiG
′
ℓGℓ for some G′

ℓ ∈ Z(k−1). If this statement
holds, then we can commute Xi to the left through the each of the Gℓ terms that make
up G in Equation (20) and cancel it, picking up a collection of additional G′

ℓ terms from
Z(k−1). Because diagonal unitaries commute, we could also commute these additional
terms to the left through the Gℓ terms, allowing G and G† to cancel and leaving us with
a product of G′

ℓ terms. Because Z(k−1) is a group, this product of G′
ℓ terms would be in

Z(k−1) and we would therefore be done.
Now all that remains is to show that

GℓXi = XiG
′
ℓGℓ (22)

for some G′
ℓ ∈ Z(k−1). First consider the case where Gℓ and Xi have support on disjoint

qubits. Then we trivially have GℓXi = XiGℓ, which shows that the equality in Equa-
tion (22) holds if we take G′

ℓ = I. Now we address the case where Xi acts on one of the
qubits that Gℓ also acts non-trivially on. Let x denote the indices of the qubits where Gℓ

acts non-trivially.
Consider the action of the operator XiGℓXiGℓ on an arbitrary state |ψ⟩. Applying Gℓ

flips the sign of those computational basis states where the qubits index by x are all in
the 1 state. Applying Xi flips the state of the ith qubit. Applying Gℓ once again flips the
sign of those basis states where the qubits index by x are all in the 1 state. Applying Xi

unflips the state of the ith qubit. The cumulative result of these operations is to flip the
sign of those states index by the qubits in the set x\i. In other words, XiGℓXiGℓ acts as a
controlled Z operator with one fewer controls than Gℓ (the control on qubit i is removed).
Letting G′

ℓ denote this new operator, we have that G′
ℓ ∈ Z(k−1) by the definition of Z(k−1).

We can multiply the expression G′
ℓ = XiGℓXiGℓ by Xi on the left and Gℓ on the right to

obtain the desired result,
XiG

′
ℓGℓ = GℓXi. (23)

This completes the proof.
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