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Rapid and accurate muscle segmentation is essential for the diagnosis and
monitoring of many musculoskeletal diseases. As gold standard, manual
annotation suffers from intensive labor and high inter-operator reproducibility
errors. In this study, deep learning (DL) based automatic muscle segmentation
from MR scans is investigated for post-menopausal women, who normally
experience a decline in muscle volume. The performance of four Deep
Learning (DL) models was evaluated: U-Net and UNet++ and two modified
U-Net networks, which combined feature fusion and attention mechanisms
(Feature-Fusion-UNet, FFU, and Attention-Feature-Fusion-UNet, AFFU). The
models were tested for automatic segmentation of 16-lower limb muscles
from MRI scans of two cohorts of post-menopausal women (11 subjects in
PMW-1, 8 subjects in PMW-2; from two different studies so considered
independent datasets) and 10 obese post-menopausal women (PMW-OB).
Furthermore, a novel data augmentation approach is proposed to enlarge the
training dataset. The results were assessed and compared by using the Dice
similarity coefficient (DSC), relative volume error (RVE), and Hausdorff distance
(HD). The best performance among all four DL models was achieved by AFFU
(PMW-1: DSC 0.828 ± 0.079, 1-RVE 0.859 ± 0.122, HD 29.9 mm ± 26.5 mm;
PMW-2: DSC 0.833 ± 0.065, 1-RVE 0.873 ± 0.105, HD 25.9 mm ± 27.9 mm;
PMW-OB: DSC 0.862 ± 0.048, 1-RVE 0.919 ± 0.076, HD 34.8 mm ± 46.8 mm).
Furthermore, the augmentation of data significantly improved the DSC scores of
U-Net and AFFU for all 16 testedmuscles (between 0.23% and 2.17% (DSC), 1.6%–
1.93% (1-RVE), and 9.6%–19.8% (HD) improvement). These findings highlight the
feasibility of utilizing DL models for automatic segmentation of muscles in post-
menopausal women and indicate that the proposed augmentation method can
enhance the performance of models trained on small datasets.
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1 Introduction

Human muscles, particularly the skeletal muscles of the lower
limbs, play an indispensable role in generating strength and
facilitating movement in daily life (Pandy and Andriacchi, 2010).
Some diseases or chronic conditions, such as age-related loss of
muscle mass and strength (e.g., sarcopenia), can result in impaired
mobility (Cruz-Jentoft et al., 2010). Stroke patients (Nishioka et al.,
2021) often experience sarcopenia due to denervation, local
inflammation, and inadequate nutrient intake, leading to loss of
skeletal muscle mass. Neurological disorders, such as cerebral palsy
(D’Souza et al., 2019), caused by non-progressive brain injury at
birth can also result in musculoskeletal deformities in children. The
assessment of changes of muscle properties over time can enable a
better understanding of the effect of musculoskeletal diseases and
provide more effective diagnosis approaches and interventions
(Krzysztofik et al., 2019). Nevertheless, there are still challenges
in effective assessment of muscle properties from the clinical
biomedical images (Computed Tomography, CT, or Magnetic
Resonance Imaging, MRI).

CT and MRI have been widely used to measure muscle volume
or shape, with MRI being more popular as it does not induce
ionizing radiation to the patient (Montefiori et al., 2020; Verdú-
Díaz et al., 2020). Muscle segmentation is one of the fundamental
techniques used to measure the geometrical properties of skeletal
muscles that can be associated with the structural functional
properties of muscles (Lareau-Trudel et al., 2015; Montefiori
et al., 2020; Zhu et al., 2021). Currently, the common method for
measuring relevant muscle characteristics is manual segmentation of
relevant areas of interest on MRI slices (Montefiori et al., 2020;
Davico et al., 2022). However, manual segmentation takes
approximately 10 hours for an experienced operator to process
thirty-five lower limb muscles and is associated with low inter-
operator reproducibility for some of the muscles, with variation
above 10% (Montefiori et al., 2020). Over the past decades, many
image segmentation methods have been proposed, which are
generally based on digital image processing coupled with
optimization algorithms. These traditional segmentation methods
(Otsu, 1979; Adams and Bischof, 1994; Helen et al., 2011) normally
extract low-level semantics of images, such as color, texture, or shape
information, without considering high-level semantic information,
and could lead to imprecise labeling results. With the emergence of
Deep Learning (DL), Artificial Neural Networks (ANNs), and
Convolutional Neural Networks (CNNs) (Simonyan and
Zisserman, 2015; Krizhevsky et al., 2017), traditional
segmentation methods are gradually being replaced since
semantic segmentation algorithms based on DL and CNNs can
extract mid-to-high-level semantic information from images,
improving the segmentation results (Tao et al., 2018).

In recent years, some DL based muscle segmentation methods
have been proposed and demonstrated promising prospects for
replacing manual segmentation. Zhu et al. (Zhu et al., 2021)
presented a hybrid model based on basic U-Net (Ronneberger,
Fischer, and Brox, 2015) that achieved an average DSC of 0.88 in
11 lower limb muscles of 20 healthy children and children with
cerebral palsy (Ni et al., 2019). proposed a 3D CNN that showed
similar performance to manual segmentation in all lower limb
individual muscles of young athletes (n = 64), achieving a Dice

similarity coefficient (DSC) of approximately 0.9. However, muscle
automatic segmentation is currently limited with respect to subject
range and there are no results about post-menopausal or obese
women in the literature. In particular, compared to children and
youngmen, post-menopausal women experience a decline in muscle
content with aging, resulting in less distinct boundaries between
individual muscles and an increase in fat content, which poses a
greater challenge for automatic individual muscle segmentation.
Moreover, the segmentation of skeletal muscles in post-menopausal
obese women is potentially more challenging due to the thick layer
of fat around the muscles. While automatic image segmentation
approaches based on CNN algorithms are usually calibrated and
tested on similar cohorts of subjects, in order to improve the
applicability of the models it would be beneficial to assess the
model’s accuracy for different testing datasets.

Currently, one of the most popular DL networks used for
medical image segmentation is U-Net (Zhu et al., 2021) and has
been shown to be powerful in medical image segmentation, e.g., cell
segmentation (Ronneberger et al., 2015), liver and tumor
segmentation (Kushnure and Talbar, 2021). Despite the success
of existing U-Net type networks, they suffer from some limitations
including the hard coding of the receptive field size, as well as that
they do not account for inherent noise in the data. Several improved
U-Net networks have been proposed, where UNet++ (Zhou et al.,
2018), an improved version of U-Net, employs multiple short
connections to enhance the integration of different receptive
fields at each layer, compromising increasing computational cost.
In (Ibtehaz and Sohel Rahman, 2020), the MultiResUNet was
proposed to enhance the semantic integration between the
encoder and decoder; however, it only focuses the integration
within the same layer. In the expansion path of the U-Net
architecture, deep features are gradually combined with shallow
features from bottom to top. This process allows the fusion of
semantic elements from adjacent layers, but as moving towards the
upper layers, there remains a semantic gap between non-adjacent
layers, resulting in information loss. To address this and improve the
integration of semantic features from different layers, in this study
modified U-Net networks have been developed, by adopting feature
fusion and attention mechanisms (Oktay et al., 2018; Woo
et al., 2018).

One issue usually associated with supervised learning for image
segmentation is the limited size of the training image dataset, which
can have a significant impact on the performance of automatic
segmentation methods (Hesamian et al., 2019). Data augmentation
methods including random scaling, cropping, rotation, flipping, and
adding noise as well as spatial and grayscale transformations are
normally used to overcome the limitation of data size (Krizhevsky
et al., 2017; Jackson et al., 2019). Compared with natural object
standard image augmentation, it is more challenging for the
augmentation of medical images because of the stricter
requirements of the medical and/or anatomical significance.
There has been little research on MRI image augmentation
methods. Thyreau et al., 2018 segmented the hippocampus by
modifying the image border’s contrast, while Ronneberger et al.,
2015; Dong et al., 2017 used deformable registration to segment
brain tumors and cells, respectively. Shin et al., 2018 synthesized
abnormal brain tumor MRI images using GAN (Generative
Adversarial Networks) networks for data augmentation and
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optimized model performance. However, these methods have
limitations associated with the segmentation of individual
muscles. In fact, deformable image registration may excessively
deform the muscles’ shape in new subjects, leading to a loss of
anatomical consistency (i.e., the spatial location, size, and shape of
the muscles) (Henson et al., 2023a).

Therefore, the aim of this study was to develop new DL methods
for the automatic segmentation of most individual skeletal muscles
in the lower limb fromMR imaging data of postmenopausal women
and propose a novel data augmentation approach based on SSM
(Statistical Shape Model) for increasing the size of the MRI datasets
(Hesamian et al., 2019; Henson et al., 2023b).

2 Materials and methods

2.1 Participants

The data from three different cohorts of post-menopausal
women (PMW) were utilized in this study. The first cohort
consisted of T1-weighted magnetic resonance images (MR
images) of 11 PMW (PMW-1, age 69.0 ± 6.7 years old; weight
66.9 ± 7.7 kg; height 159 ± 3 cm; BMI: 26.5 ± 3.4) with no muscle
disease who were recruited by the Metabolic Bone Centre (Sheffield,
UK) as part of larger studies (approved by the East of
England–Cambridgeshire and Hertfordshire Research Ethics
Committee and the Health Research Authority, Reference 16/EE/
0049) (Montefiori et al., 2020). Two other cohorts recruited from a
previous observational (approved by the LeedsWest Research Ethics
Committee, Reference 20/YH/0274) study were included in this
work: 8 PMWwith no muscle diseases (PMW-2, age 65.8 ± 3.9 years
old; weight 57.1 ± 5.8 kg; height 161 ± 3 cm; BMI: 22.0 ± 2.1) and
10 obese PMW (PMW-OB, age 64.7 ± 4.5 years old; weight 84.1 ±
15.6 kg; height 159 ± 9 cm; BMI: 33.0 ± 3.2) (Lisa, 2023). Although
the two cohorts were imaged in two different studies, the scans were
performed in the same hospital by using two different 1.5T MRI
scanners, with the same scanning protocol as described below.

All the full lower-limb MRI scans were performed on the
1.5T Siemens Magnetom Avanto or 1.5T Siemens Magnetom
Aera (Siemens AG, Erlangen, Germany). Four sequences were
taken to capture the hip, thigh, knee, and shank (Henson et al.,
2023a). To minimize scanning time without losing detailed joint
geometries the joints were scanned with a higher resolution (pixel
size of 1.05 mm × 1.05 mm and slice thickness of 3.00 mm) than the
central portions of the long bones (pixel size of 1.15 mm × 1.15 mm
and slice thickness of 5.00 mm). The sequences were then combined
in MATLAB (R2006a) to create a continuous 3D image from the hip
to the ankle (Henson et al., 2023b). This was done by standardizing
the resolution of each imaging sequence from the different sections
through tri-linear interpolation (interp3, MATLAB R2006a) to be
1.00 mm × 1.00 mm × 1.00 mm. In this study, a total of 25 lower
limb muscles spanning from the knee to the hip were manually
segmented by three operators (PhD students or Postdoctoral
researchers who have been trained on at least 15 datasets) for
each subject, which is considered the gold standard for muscle
segmentation.

The inter- and intra-operator reproducibility of the manual
segmentation was found to differ from muscles to muscles (range

CoV: 4.2%–22.8%) (Montefiori et al., 2020). and only some of them
were reproducible enough to be used for calibrating the DL models.
Ultimately, during the model evaluation phase, 16 muscles were
selected as the objective muscles for analysis: rectus femoris (RF),
vastus intermedius (VI), vastus lateralis (VL), vastus medialis (VM),
sartorius (SAT), semimembranosus (SMB), semitendinosus (SMT),
gracilis (GRA), biceps femoris caput brevis (BCB), biceps femoris
caput longum (BCL), adductor magnus (AM), adductor brevis (AB),
adductor longus (AL), gluteus maximus (GM), iliacus (IL), and
tensor fasciae latae (TFL).

The setting of the computer used to train themodel is configured
as: GPU: NVIDIA GeForce RTX 3060 Ti; RAM: 16.0 GB.

2.2 Modified U-Net: Feature-Fusion-UNet/
Attention-Feature-Fusion-UNet

In this study, we used U-Net (Ronneberger et al., 2015) and
UNet++ as benchmarks for our segmentation task (Ronneberger
et al., 2015; Dong et al., 2017). U-Net (Ronneberger et al., 2015; Zhu
et al., 2021) is a 2D multi-layer Encoder-Decoder U-shaped neural
network. The Encoder consists of convolutions and down sampling
operations, enabling it to learn the features of input images and
transmit them to the lower layers, generating a feature map, which is
referred to as feature extraction. In the down sampling process, the
receptive field gradually expands, resembling a compressed image,
allowing for a larger perceived area per unit. Additionally, down
sampling captures more low-frequency information from the image.
The Decoder utilizes features to restore the original resolution of the
feature map and perform pixel-level prediction. After each up-
sampling operation, the output of the encoder at the
corresponding layer is merged using skip connections. In U-Net,
feature fusion is achieved by concatenating and merging features
along the channel dimensions. UNet++ (Zhou et al., 2018) is a
nested version of the U-Net architecture used for semantic
segmentation, particularly in medical image analysis. It improves
upon the U-Net by enhancing feature extraction and has shown
superior performance in medical image segmentation tasks. It
incorporates convolution layers on skip pathways to bridge the
semantic gap and employs dense skip connections to enhance
gradient flow, distinguishing it from the original U-Net.

Two modified U-Net networks were developed in this study. A
Feature-Fusion-UNet (FFU) incorporated a fusion part into the
basic U-Net model to improve the integration of semantic features
from different layers. In FFU, the fourth, third, and second decoder
layers’ feature mappings were using up-sampling operations to
zoom in features of 8/4/2 times to maintain consistent sizes and
then extracted by using the Atrous Spatial Pyramid Pooling (ASPP)
(Chen et al., 2018) blocks to fuse the semantic information, which
was subsequently concatenated with the output. Furthermore, to
address potential issues such as gradient loss, a connection structure
resembling the residual network was integrated into the top layer,
facilitating improved gradient transfer.

Furthermore, the Attention-Feature-Fusion-UNet (AFFU) was
proposed based on FFU to explore the employment of multiple
attention mechanisms to achieve the desired segmentation accuracy.
The AFFU incorporated attention gates into each individual layer
(Oktay et al., 2018) and used CBAM block (Woo et al., 2018) to help
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compensate for any deficiencies in a single attention gate, and
mitigated losses during resizing, enhancing the neural network’s
receptive field using a pyramid pooling technique. The structure of
FFU and AFFU is shown in Figure 1.

2.3 Data augmentation

The proposed data augmentation method was based on
Statistical Shape Model (SSM) (Cates et al., 2007; Cates et al.,
2017; Ravikumar et al., 2018; Clouthier et al., 2019).

Assuming that there are N samples with m correspondences on
each contour, which can be seen as a 3 × 1 vector in shape space, xk
represents a set of particles from k th shape, xk ∈ R3m, xk �
x1
k, x

2
k, x

3
k, . . . , x

3m
k ,{ }, k � 1, 2, . . . , N{ } and let

Z � x1, x2, . . . , xN{ }, Z is a random variable of a shape in the
shape space after aligning all shapes to the same coordinate
system. Then the method consists in minimizing the energy
function where H is an estimation of differential entropy.

Q � H Z( ) −∑
N

H xk( ), (1)

where the first term inQminimization in (Eq. 1) targets a compact
distribution of each individual’s sample in the shape space and
the second term aims to increase the entropy of the
correspondence distribution by achieving a more uniform
distribution of points on each shape. The algorithm balances
individual shape variation and overall shape similarity by
minimizing both terms, allowing it to accurately model shape
variations in the dataset.

The method was implemented using the publicly available
software tool ShapeWorks (Cates et al., 2017). n different subject
shape models of the same muscle were provided as input. The
software then generated a mean shape model, from which n − 1
modes were extracted using principal component analysis
(PCA). Multiple deformations were produced based on the
average shape model with different modes. Moreover, in
order to generate new MR images associated to the newly
generated muscle labels, a correspondence mapping between

the original and new labels was calculated using the deformable
registration algorithm Sheffield Image Registration Toolkit
(ShIRT) (Barber and Hose, 2005; Henson et al., 2023a). By
setting two parameters, the Nodal Spacing (NS) and the
smoothing coefficient λ, ShIRT performed a non-linear
deformable registration with high dimensional variability
between input images or shapes. The two parameters of the
deformable registration (NS and λ) were chosen from a previous
sensitivity analysis equal to 5 voxels (5 mm) and 50, respectively
(Henson et al., 2023b). The obtained mapping was applied to the
original MR images using the same transformation matrix,
resulting in a new set of segmented subjects without the need
for manual segmentation.

The pipelines of the proposed data-augmentation method are
shown in Figure 2.

Figure 3 reveals that the application of the ± 1 standard deviation
mode to modify the mean shape yields noticeable alterations in
volume and introduces heightened diversity in terms of texture
within the generated new data.

2.4 Data pre-processing and
training procedure

The dataset used in this study consisted of slices obtained
from the right lower limb (knee to hip) of each subject. All
images were cropped to a width of 256 pixels for input. During
the model training process, random clipping was applied to
further crop the input images to a width of 125 pixels to speed
up training time and enhance the model’s robustness
against noise.

To reduce the computational requirements, a batch size of
16 was chosen for the U-Net and UNet++, while a batch size of
10 was used for our models. The initial learning rate was set to
0.01 and decreased by a factor of 0.9 for each epoch. The model was
trained for a total of 100 epochs, and the best weights on the
validation set were retained for making predictions on the test
set. The hyper-parameters were empirically tuned for best
performance.

FIGURE 1
Structure of FFU (left) and AFFU (right).
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2.5 Experimental design

The experiment was split into three parts.
In the first part, four CNNs (U-Net, UNet++, FFU and AFFU)

were trained and tested on PMW-1 data (11 subjects) using the
leave-one-out approach. This approach was used to verify whether
FFU and AFFU could improve the segmentation performance
compared with the benchmark U-Net and UNet++ models.

The second part involved training on 10 subjects from PMW-1
and then utilizing the trained network to test on: the remaining
1 subject from PMW-1, 8 subjects from the PMW-2 dataset, and
10 subjects from the PMW-OB dataset. The objective of this part of
the study was to evaluate the model’s generalization ability across
different datasets.

For the third part, 10 subjects from the PMW-1 dataset used in
the previous part were used as input to the augmentation pipeline,
expanding the dataset to 37 subjects in total, based on the mean
shape of the muscles and including a variability of ±1 standard
deviation associated to the PCA mode that describes best the
variability in the dataset (mode 1). The augmented dataset was
then used to re-train the model weights obtained from the second
part of the study. This part of the study aimed to investigate whether
training with the augmented dataset improved the segmentation

performance of each model on the testing data (1xPMW-1,
8xPMW-2, 10xPMW-OB).

2.6 Evaluation metrics

For each part of the study three metrics were used: Dice
Similarity Coefficient (DSC), Relative Volume Error (RVE), and
Hausdorff distance (HD) (Dong et al., 2017; Zhu et al., 2021; Henson
et al., 2023b). These metrics provide complementary insights into
the performance of the segmentation models and help assess their
accuracy, volume similarity, and the degree of local errors.

The Dice Similarity Coefficient (DSC) was calculated by using
Eq. 2, which shows the similarity between reference shapes (R) and
predicted shapes (P).

DSC � 2 R ∩ P| |
R| | + P| | (2)

where R is the set of voxels in the reference labels frommanual work
and P is from the model’s prediction results. A DSC equal to
1 indicates a perfect match between the segmentation result and
the ground truth, while a value of 0 represents no overlap.

FIGURE 2
Data augmentation combined with Statistical Shape Model (SSM) process, registration, and data-produced pipelines. This figure illustrates the
process for generating new subjects with matched labels without the need for manual image segmentation. The process is accomplished by using SSM
and deformable image registration on ten original subjects’MRI. The SSM pipeline (based on ShapeWorks software) inputs ten shapes of the samemuscle
from different subjects and applies an iterative optimization formula to generate corresponding points (default 1024 points) on all surfaces,
calculates the mean shape, and uses PCA to extract nine principal features. New shapes are generated by adding or subtracting modes at different
magnitudes from the mean shape. The registration pipeline involves obtaining new samples for all 25 muscles using SSM. A new muscle label (target) is
formed by aligning the new samples with the original samples, and an original subject (reference) is selected. The MRI, label, and target’s label (mean
shape) of the reference are inputted into ShIRT, which generates a mapping matrix that aligns the reference with the target labels. Using this map, the MR
image of the original sample is transformed, resulting in an MR image that matches the target. However, due to image noise and the diversity of the target
during registration, the transformed MR image may not perfectly overlap with the annotation generated by SSM (Barber et al., 2007), and therefore,
cannot be directly used for subsequent model training. However, the transformation map generated by this pipeline can be preserved. The data-
produced pipeline applies the mapping matrix generated by SSM to the label and MR image of the reference, resulting in fully matched image and label
data (bottom right).
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Relative Volume Error (RVE) was utilized to assess the
similarity between the segmentation results and the ground
truth in terms of total volume of the individual muscle. RVE
was defined as in Eq. 3

RVE � Vref − Vpred

Vref
× 100% (3)

where Vref and Vpred are the volume of reference and prediction
cohort respectively. For the convenience of display, 1-RVE was used
as measurement of accuracy.

The Hausdorff distance (HD) is a metric that measures the
maximum distance between the reference and predicted external
surfaces. It provides information about the extent of local errors in
the model’s prediction. HD was calculated as in Eq. 4

HD R, P( ) � max d R, p( ), d r, P( ){ } (4)
where r is the voxel on surface of R and p is the voxel on surface of P,
d is a function to find the minimum distance between r or p and the
nearest point within the cohort P or R.

2.7 Statistics

When comparing two different models the difference between
same individual muscle metrics were tested for normality using a
Kolmogorov-Smirnov test, concluding that the difference between
the paired values were not normally distributed. Therefore, a
Wilcoxon signed-rank test was utilized. The paired values of
each model’s DSC, 1-RVE and HD metrics were compared
across the four models. A significance level α = 0.05 was
considered.

3 Results

3.1 Performance of themodels on the PMW-
1 cohort

In total, each model predicted 176 labels representing one lower
limb muscle (11 subjects with 16 muscle labels each) through cross-
validation. Supplementary Table S1 presents the accuracy of each
model to predict the three considered metrics, DSC, 1-RVE and HD.
Significant differences between the accuracy of the models and the
accuracy of the U-Net or the UNet++ are reported in Figure 4.

Overall, the AFFUwas found to have the best performance among
all four, producing the best average DSC (0.828), RVE (0.859) andHD
(29.9 mm) across 16 muscles. FFU was the second-best model with
DSC (0.826), RVE (0.853) and HD (32.4 mm). On the test set, both
models outperformed U-Net (and UNet++) with the following
average improvements: 2.2% (2.1%) in DSC, 3.3% (2.6%) in
1-RVE, 40.1% (33.1%) in HD for AFFU; 2.0% (1.8%) in DSC,
2.5% (1.9%) in 1-RVE, 35.1% (27.5%) in HD for FFU. The mean
metrics value of different muscles for each model are shown in the
(Supplementary Table S2). Figure 5 shows the segmentation
visualization results of some muscles, where it could be observed
that the results obtained from AFFU and FFU, exhibit generally
superior segmentation compared to U-Net and UNet++.

3.2 Performance of the models on different
cohorts after training on the PMW-1 cohort

In this section, three datasets (i.e., PMW-1, PMW-2, and PMW-
OB cohorts), were used to evaluate the performance of the models
after having trained the models on the data from the PMW-1 cohort.

FIGURE 3
Augmentation results of one subject. The figure displays the outcomes derived from subjecting an individual to the augmentation process. Column
(A) illustrates three slices of the original MRI (distal to proximal from top to bottom) from the right lower limb of one subject. (B–D) illustrate the results
obtained by mapping the subject to the mean shape and mean shape ± 1 standard deviation mode in PCA, respectively.
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Supplementary Table S3 and Figure 6 provide an overview of the
average performance of each model, pooling together the results
from different subsets (1xPMW-1, 8xPMW-2, 10xPMW-OB).

The AFFU and FFU models were more accurate in segmenting
the muscles compared to the U-Net (0.59% and 0.59% higher DSC,
respectively; 39% and 27% lower HD, respectively) and the UNet++
(1.31% and 1.31% higher DSC, respectively; 1.13% and 1.13% higher
1-RVE, respectively; 42% and 31% lower HD, respectively). The
AFFU also showed a significant improvement compared to FFU on
HD (15.9%, p = 0.010). The full results for individual muscles and
each model are shown in Supplementary Table S4.

The performance of each model for segmenting the muscles of
the 8 subjects from the PMW-2 cohort and the 10 subjects from the
PMW-OB cohort are reported in Supplementary Table S5. In terms
of (1-RVE), there were no significant differences in accuracy of the
models. Each model achieved high (1-RVE) values in the range
0.87–0.92, indicating accurate volume estimation. For DSC, AFFU
demonstrated a gain of approximately 0.6% over U-Net in both
groups (p = 0.008 for PMW-2, p < 0.001 for PMW-OB). FFU showed
a significant improvement compared to U-Net for the PMW-2
(+0.72%, p = 0.006) and PMW-OB (0.47%, p = 0.006) cohorts.
For HD, both AFFU and FFU consistently exhibited smaller local
errors compared to U-Net (22.0%–42.4%, p < 0.001). On average,
they achieved a reduction of approximately 20 mm in local distance,
indicating improved localization accuracy.

All muscle segmentation results are reported in Supplementary
Tables S6, S7.

3.3 Effect of augmentation data

Themuscle volume distribution after the addition of the augmented
data is reported in Figure 7, showing that the augmented data fills some

FIGURE 4
Performance of each model established using cross-validation. Box plots for the DSC (left), 1-RVE (middle) and HD (right, lower scores indicate
better performance) for each model tested on the PMW-1 cohort (16 mean values of each individual muscle calculated from 176 predicted labels) are
shown (* indicates p < 0.05, ** indicates p < 0.01).

FIGURE 5
Segmentation visualization of muscles of one subject from
prediction of each model and manual reference. The first row
represents the gold standard generated by manual muscle
segmentation by experienced operators. In the second and third
rows, the performance of U-Net and UNet++ is depicted, wherein
some local errors (red arrows) around the contour compared to the
reference are noticeable, along with a fewmis-segmented points. The
fourth and fifth rows present the results obtained from AFFU and FFU,
which exhibit generally superior segmentation compared to U-Net
and UNet++.
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gaps in the original data distribution. If tested on the all subjects pooled
together, small significant improvements in DSC were observed by
using the augmented training dataset (p < 0.001, +0.6% for AFFU; p <
0.001, +1.5% for U-Net, Table 1). However, when considering 1-RVE
andHD, the performance remained almost unchanged (very small 0.9%
improvement in RVE was observed for U-Net with the augmented
dataset). The full results can be found in Supplementary Table S8.

U-Net demonstrated a noticeable increase in the DSC for all
three cohorts (PMW-1: 1.2%, p = 0.006; PMW-2:2.2%, p < 0.001;
PMW-OB:1.1%, p < 0.001, Table 2). On the other hand, AFFU
shows a small significant increase in the DSC only for PMW-2
(1.1%, p < 0.001, Table 2). Significant improvements in RVE, and
HD for the PMW-2 cohort were observed (+1.93% for U-Net and
+1.6% for AFFU in RVE, and +19.8% for U-Net in HD, Table 2). In
contrast, in PMW-OB, only the DSC metric showed significant
improvement, while RVE and HD remained relatively unchanged.
The results obtained for single muscles are reported in
Supplementary Tables S9–11.

Augmenting the training data has enabled U-Net to learn
additional sample features, thereby enhancing its performance
and decreasing the likelihood of segmentation errors, for example
by effectively filling the muscle volume that were previously not well
identified (Figure 8).

3.4 Analysis for individual muscles

The PMW-OB cohort had generally higher mean muscle
volumes for the muscles with volume in the high range (VM,
VL, AM, GM) compared to the other two cohorts.

The muscles were ranked in order of volume for the PMW-1
cohort (mean volume: 189.9 ± 162.5 cm3). Compared with PMW-1
and PMW-2 (197.2 ± 162.8 cm3) cohorts, some muscles such as VL,
AM and GM in the PMW-OB (217.1 ± 185.9 cm3) cohort showed
higher values (Figure 9).

Overall, a trend of increasing DSC for all models was observed as
muscle volume increased (Figure 10). In particular, for the PMW-1 and

PMW-2 cohorts, muscles with volume in the middle range were better
segmented by AFFU and FFU compared to U-Net (improvement of
0.72%–4.71% (PMW-1), 0.17%–3.23% (PMW-2) for AFFU and
0.78%–4.19% (PMW-1),0.18%–2.66% (PMW-2) for FFU, for most
muscles with volume in the middle or middle-high range (arrows in
Figure 10). Similar trends were found for the PMW-OB cohort, with
AFFU that led to better predictions than U-Net for most muscles with
volume in the middle-low range (improvement of 0.33%–1.87%). For
the PMW-1 cohort a not-significant trend of increased accuracy in DSC
for larger muscles was found (Figure 10).

Data augmentation affected similarly the segmentation of the
individual muscles, with main gains for the U-Net and AFFU model
applied to the PMW-2 cohort (Figure 11).

4 Discussion

This study aimed to evaluate the performance of different DL
models to automatically segment individual muscles of the lower
limbs from the MRI images of different cohorts of women. The new
models proposed in this study, that include the fusion part (FFU)
and multi-added attention mechanism (AFFU), were found to be
significantly more accurate than the standard U-Net and UNet++
models. The proposed data augmentation method also enhanced the
segmentation accuracy of the models trained on small datasets.

AFFU achieved average DSC values of 0.83–0.85 depending on
the training dataset, providing a reasonable automatic segmentation
of most muscles even if trained on different cohorts of women. In
this study, models were trained on same dataset and tested on
different cohorts. Higher accuracy was found for previous automatic
segmentation tools trained and tested on young cohorts (DSC of
0.85 and 0.91 in (Ni et al., 2019; Zhu et al., 2021), respectively). The
difference may be due to differences between this study and previous
studies: fewer training datasets were used in this study (11 subjects
versus 20–60 subjects (Ni et al., 2019; Zhu et al., 2021)); more
complex image texture was processed for the tested cohorts
including post-menopausal women and obese post-menopausal

FIGURE 6
Performance of each model on all 19 test subjects. For each model and each metric, 16 mean values calculated from 304 predicted labels (16 labels
for each of the 19 subjects) are shown (* indicates p < 0.05, ** indicates p < 0.01).
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women compared to the younger healthy subjects in those studies;
training was performed on the PMW-1 cohort and then tested on
the other two cohorts, evaluating the possible application of the
models if not trained on the same cohort. While the accuracy of the
current approach may not be enough for applying it directly in
clinical settings, it has a lot of potential for application in a research

environment. For example, it could be used to automatically identify
the individual muscles properties (e.g. muscle volume) used for the
personalized biomechanical assessment of the risk of femoral
fracture (Altai et al., 2021).

AFFU and FFU models showed better performance than U-Net
and UNet++ models when tested on different cohorts. This effect

FIGURE 7
Muscle volume distribution. The figure illustrates the volume distribution of 16 muscles in four sets: 10 PMW-1 training samples (column a), training
samples with added augmentation data (column b), PMW-2 (column c), and PMW-OB (column d) cohorts. In each column b, the red dots represent the
distribution of the additional segmented subjects, while the black dots represent the values from the original scans.

TABLE 1 Model comparison under three metrics with/without augmentation data on all test subjects pooled together.

Without aug. With aug. p Difference [%]

DSC Mean ± SD [%] U-Net 0.843 ± 0.062 0.856 ± 0.054 <0.001 1.54

AFFU 0.848 ± 0.058 0.853 ± 0.055 <0.001 0.59

RVE Mean ± SD [%] U-Net 0.893 ± 0.097 0.901 ± 0.091 <0.001 0.90

AFFU 0.894 ± 0.096 0.897 ± 0.094 0.286 NS

HD Mean ± SD [mm] U-Net 49.1 ± 52.8 43.5 ± 51.3 <0.001 11.40

AFFU 30.2 ± 38.7 31.3 ± 43.4 0.002 −3.64

That the bold values indicates the p-value is significant.
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TABLE 2 Comparison ofmodels across threemetrics for different cohorts trainedwith augmentation data. The significant p_value should be shown in bold.

PMW-1

Without aug. With aug. p Difference [%]

DSC (Mean ± SD [%]) U-Net 0.824 ± 0.051 0.834 ± 0.047 0.006 1.21

AFFU 0.833 ± 0.056 0.836 ± 0.050 0.796 NS

RVE (Mean ± SD [%]) U-Net 0.786 ± 0.145 0.780 ± 0.156 0.918 NS

AFFU 0.801 ± 0.104 0.806 ± 0.125 0.717 NS

HD Mean ± SD [mm] U-Net 27.2 ± 12.1 22.4 ± 9.0 0.020 17.65

AFFU 19.7 ± 7.5 17.8 ± 7.0 0.011 9.64

PMW-2

DSC (Mean ± SD [%]) U-Net 0.828 ± 0.073 0.846 ± 0.061 <0.001 2.17

AFFU 0.833 ± 0.065 0.842 ± 0.060 <0.001 1.08

RVE (Mean ± SD [%]) U-Net 0.880 ± 0.105 0.897 ± 0.094 <0.001 1.93

AFFU 0.873 ± 0.105 0.887 ± 0.100 <0.001 1.60

HD Mean ± SD [mm] U-Net 45.0 ± 47.6 36.1 ± 39.9 <0.001 19.8

AFFU 25.9 ± 27.9 27.0 ± 30.1 0.065 NS

PMW-OB

DSC (Mean ± SD [%]) U-Net 0.857 ± 0.049 0.866 ± 0.046 <0.001 1.05

AFFU 0.862 ± 0.048 0.864 ± 0.049 0.097 NS

RVE (Mean ± SD [%]) U-Net 0.914 ± 0.072 0.916 ± 0.069 0.472 NS

AFFU 0.919 ± 0.076 0.913 ± 0.079 0.067 NS

HD Mean ± SD [mm] U-Net 54.5 ± 58.4 51.6 ± 59.9 0.380 NS

AFFU 34.8 ± 46.8 36.2 ± 52.9 0.071 NS

FIGURE 8
Segmentation performance visualization of U-Net trained without/with augmentation data. The figure exhibits the segmentation performance of
U-Net on a subject chosen from each of the three cohorts (PMW-1/2/OB). (a) displays the gold standard manual segmentation, while (b) and (c) present
the results for the U-Net model trained without or with augmented data, respectively.

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Lin et al. 10.3389/fbioe.2024.1355735

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1355735


indicates that feature fusion part and attention mechanisms could
learn more features than U-Net in a small sample size (n~10) and
the fusion of features from layers 2/3/4 into U-Net could enhance its
learning capability. Moreover, the addition of attention mechanisms
led to more robust performance across different samples. This
improvement may be due to the fact that the attention

mechanism allows the model to notice more general features,
rather than information that is specific to post-menopausal
women. The results also indicate that the proposed models are
more resistant to noise interference compared to the standard
models. Although the differences in DSC may not be significant
for some results, the HD, that is associated with local errors, showed

FIGURE 9
Individual muscle volume comparison among PMW-1/2/OB cohorts.

FIGURE 10
Relationship between muscle volume and DSC index in women cohorts. Muscle volume and DSC for the three different cohorts of subjects. The
muscles were arranged in ascending order according to the mean muscle volume of each specific cohort, and each point in the figure represents the
average DSC value of the muscle across the subjects.
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a significant improvement of approximately 15–25 mm compared to
the benchmark. As the muscle MR scans approaches the hip and its
image texture becomes more complex, there is a discernible rise in
the occurrence of mis-segmentation areas within the U-Net
predictions. These areas can be attributed to noise interference,
underlining the need for further investigation into the factors
influencing the segmentation accuracy. As can be observed in
Figures 8, 9, there were a few fat infiltrations in the muscles of
the PMW-OB cohort, which were generally larger than those of the
other two cohorts for the larger muscles. Assuming that the neural
network has the same ability to identify the target region during
segmentation, the impact of noise on parameters such as DSC and
RVE is less obvious in numerical values when working on larger
muscles. This shows that on some fat or edge treatments, the model
still does not learn relevant features from the PMW-1 cohort to the
PMW-OB cohort. Even so, the results of the model on PMW-OB
(U-Net: DSC = 0.857 ± 0.049; AFFU: DSC = 0.862 ± 0.048) cohort
are comparable compared to segmentation results on younger
subjects in the literature (Ni et al., 2019; Zhu et al., 2021). U-Net
and AFFU exhibited generally superior performance for the same
muscles in the PMW-OB cohort. This indicates that a higher
proportion of fat might have a larger impact on noise in

segmentation, leading to larger local errors (higher HD).
However, this should be confirmed with further analysis to
determine if the segmentation accuracy is influenced by the
training with data from different cohorts.

When training data augmentation based on the PMW-1 cohort
was used, improvements were found mainly for U-Net tested on the
PMW-1 cohort, as expected. The improvement of the AFFU and
FFUmodels was not particularly evident when tested on the PMW-2
and PMW-OB cohorts. This effect could be due to the simpler
structure of U-Net, which lacks attention mechanisms or other
complex structures, leading to its higher sensitivity to the quantity of
training data. In contrast, the model with attention mechanisms can
learn more features and information with relatively fewer subjects.
Deep learning is a supervised learning approach, with the amount of
data often determining the depth of the model’s learning. The U-Net
and AFFUmodels achieved a similar level of accuracy in segmenting
the muscles after training with augmentation data, indicating that
the models learned as much relevant information as possible from
the dataset. Moreover, considering that the training dataset was
based only on the data from the PMW-1 cohort, the improvement in
accuracy for the PMW-2 and PMW-OB cohorts is probably due to
the inclusion in the enlarged dataset of muscle features also

FIGURE 11
Per-muscle evaluation trained with/without augmentation of U-Net (A,B) and AFFU (C,D). The plots display the DSCs before and after data
augmentation.
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beneficial for the other cohorts. Nevertheless, it remains to be
investigated what would happen if the augmentation would be
based also on the PMW-2 and PMW-OB cohorts, which will be
tested in future work.

The DSC performance was positively correlated with muscle
volume for most models and muscles (except AB and VI). This
trend shows that the automatic segmentation performance of the
model is generally better for larger muscles. However, more
variability was found for the testing cohorts PMW-2 and PMW-
OB. This result is important, especially if the segmentation of the
models is used to assess the function of large muscles due to
musculoskeletal diseases (Galbusera et al., 2020), or for creating
biomechanical applications of personalized multi-body dynamics
models (Graffy et al., 2019), applications for which it is more
important to assess the properties of large muscles. Nevertheless,
for improving the applicability of the models, they should be better
optimized for automatically segmenting smaller muscles, such as
TFL and GRA, where there is more room for improvement. This
trend is not reflected in the literature (Ni et al., 2019), due to the fact
that there is less difference between the muscles of the young athlete
sample compared to the older women sample, and with higher
image definition. Nevertheless, the variability is also found
generally higher in small volume muscles like quadratus femoris
(DSC = 0.81 ± 0.057) or muscles with irregular shapes in
(Ni et al., 2019).

The technique developed in this study lies in the feature fusion
and attention fusion, which has been demonstrated to be highly
beneficial for muscle segmentation of post-menopausal women
compared to the classical U-Net (Ronneberger et al., 2015).
Moreover, it is noteworthy that the proposed models are generic
and modular as such it can be easily applied to natural/medical
image segmentation, classification, as well as regression problems.

AFFU/FFU spent around 10 h in the training period, but less
than 0.5 s per MR image on the test period. When using a well-
trained model to make a new subject prediction, it takes less to
segment a subject compared to the manual segmentation
(Montefiori et al., 2020; Henson et al., 2023a). In this study it
was decided to train and test the models by using a standard research
workstation, in order to increase the applicability of the model and
do not require to run it by using high performance computing
(HPC) cluster. Nevertheless, the training and running time can be
reduced by using an HPC cluster in the future.

This study is affected by some limitations. Firstly, it is evident
that despite using data augmentation techniques, the limited
quantity of data from real subjects still significantly affects model
training. Although no overfitting was observed during the training
phase by monitoring the loss function’s decline, training with a
larger number of independent real subjects should be further
considered in future studies. Moreover, considering the potential
bias between different cohorts, more training data from different
cohorts of subjects could be added to enrich the features that can be
learned by the model and improve therefore its accuracy.
Furthermore, a post-processing step (Lafferty et al., 2001) has the
potential of further improving the accuracy of the models. Different
post-processing approaches will be tested in a future study. A second
limitation relates to the proposed novel data augmentation
approach, which uses only the feature with the highest variation
from the PCA analysis. In future studies, incorporating more

features and extending the variability of those may lead to the
creation of realistic subjects across a wide range of volumes and
shapes, with the potential of improving the segmentation accuracy
of the models also for different cohorts of subjects. Lastly, after
visualizing themodel’s segmentation results, it became apparent that
some muscles exhibited noticeable segmentation errors when
observed in 3D. These segmentation errors could potentially be
mitigated through post-processing approaches. Since muscles
generally exhibit specific geometric shapes, leveraging geometric
models in post-processing might alleviate some limitations inherent
in the model itself.

5 Conclusion

This study has shown that using multi attention mechanisms and
fusion structure improved the automatic segmentation of muscles from
MR images from different cohorts of post-menopausal women,
compared to standard U-Net models. Moreover, it has been shown
that these models are less affected by the number of used training
datasets, compared to the U-Net model, which benefited from the
augmentation of the training dataset.

In order to optimizing this approach for clinical research,
further analyses should focus on improving the models for
automatically segmenting smaller muscles and testing the
applicability of the models when trained with larger number of
subjects from different cohorts.
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