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Highlights
• We imputed stem frequency distributions using harvester reference data and predictor vari-

ables computed from airborne laser scanner data. 
• Stand-level distributions of stem diameter, tree height, volume, and sawn wood volume.
• (Enhanced) area-based and semi-individual tree crown approaches outperformed the indi-

vidual tree crown method.

Abstract
Stem frequency distributions provide useful information for pre-harvest planning. We compared 
four inventory approaches for imputing stem frequency distributions using harvester data as refer-
ence data and predictor variables computed from airborne laser scanner (ALS) data. We imputed 
distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume 
using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual 
tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the 
accuracies of imputed distributions using a variant of the Reynold’s error index, obtaining the 
best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, 
volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and 
EABA inventory approaches were significantly better than accuracies obtained using the ITC 
approach. The forest attribute, inventory approach, stand size and the laser pulse density had 
significant effects on the accuracies of imputed frequency distributions, however the ALS delay 
and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS 
data for imputing stem frequency distributions in pre-harvest inventories.
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1 Introduction

Accurate and high-resolution information on forest attributes is essential for optimizing forest 
management and wood procurement (Duvemo and Lämås 2006). In the Nordic countries, forest 
stands are the primary unit in forest planning. Decision support systems used in forest planning 
rely on information on forest resources, commonly in the form of stand averages and totals, such 
as basal area, tree height and numbers of stems (Eid and Hobbelstad 2000). Besides averages and 
totals, stem frequency distributions, such as diameter distributions, have been a key source of 
information both in long-term forest planning (Saad et al. 2015) and tactical, pre-harvest planning 
(Peuhkurinen et al. 2007). Distributions provide information on potential timber assortments, the 
forest structure, and the silvicultural state of a stand (Uuttera and Maltamo 1995; Kuuluvainen et 
al. 1996). In addition, information on individual trees can be derived from the distributions, which 
allow for simulating future stand development (Wikström et al. 2011).

Airborne laser scanning (ALS) has been a main data source for forest inventory over the past 
decades (Maltamo et al. 2014). ALS data provide spatially continuous and detailed information 
on forest structure as well as terrain height and allow for estimating a range of forest attributes. 
Two main inventory approaches are commonly used in estimating forest attributes from ALS data. 
The area-based approach (ABA; Næsset 2002) is used most frequently, by which ALS metrics 
are calculated for sample plots and linked to the plots’ forest attributes in statistical models. The 
models are then used to predict the corresponding attributes over a grid tessellating the inventory 
area. Alternatively, the individual tree crown (ITC) approach has been proposed to provide tree-
level information for tree crown segments delineated from ALS data (Brandtberg 1999; Hyyppä 
1999). In the ITC approach, tree crowns of individual trees are segmented from ALS data and tree 
attributes are then predicted from the ALS data for each segment (Dalponte et al. 2018).

The ABA approach is practical in terms of field work, as co-location between field plot data 
and ALS data is conveniently done using coordinates of sample plot centers. However, the ABA can 
in some cases be susceptible to edge effects along borders of sample plots and grid cells, potentially 
leading to systematic errors (Næsset et al. 2013; Packalén et al. 2015). The ITC approach, on the 
other hand, relies on the capabilities of algorithms to derive the positions and heights of detected 
trees from the ALS data (Pascual 2019). Resultingly, only 30–70% of trees can be expected to be 
delineated (Kaartinen et al. 2012; Vauhkonen et al. 2012), whereby larger trees are more likely to 
be detected (Solberg et al. 2006). Further, tree crown segments are assumed to contain only a single 
tree, which can result in additional systematic errors in estimates of forest attributes (Persson et 
al. 2002; Peuhkurinen et al. 2011).

Variations on the ABA and ITC approaches have emerged to mitigate the mentioned sources 
of error. Packalén et al. (2015) proposed the enhanced ABA (EABA), in which edge effects due 
to tree crowns overlapping boundaries of sample plots and grid cells are accounted for. In the 
approach, boundaries of plots and cells are adjusted for tree crowns segmented from the ALS data, 
whereby crown segments of “in” trees are merged with the cell, and crown segments of “out” trees 
are discarded from the cell. This has been shown to resolve edge effects as well as co-registration 
between reference data and ALS data (Pascual 2019). Breidenbach et al. (2010) proposed the 
semi-ITC approach to account for systematic errors resulting from trees missing in the ITC data. 
In the semi-ITC approach, tree crown segments can contain single, multiple or no trees, which can 
reduce systematic errors substantially as shown by Kandare et al. (2017).

Besides being a useful data source for prediction of forest attributes at tree- and plot-level, 
ALS data have proven useful for estimating stem frequency distributions, mainly diameter distribu-
tions (Gobakken and Næsset 2004; Maltamo et al. 2006). However, few studies have assessed the 
use of ALS data for prediction of distributions of attributes other than stem diameter. Peuhkurinen 
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et al. (2008) predicted height-diameter distributions at stand level to subsequently predict saw log 
recoveries from a stem bank. Mehtätalo et al. (2015) demonstrated a method for predicting tree height 
distributions from ALS data at plot level. Barth et al. (2015) used individual tree data obtained from 
an ALS inventory to predict top diameter distributions of sawlogs. Tompalski et al. (2015) predicted 
volume distributions by downscaling plot-level volume predictions obtained from ALS. However, 
there is a need to further assess the use of ALS data for predicting distributions of forest attributes 
other than stem diameter at stand level. Such distributions can provide tree-level data useful for pre-
harvest planning, allowing for the assessment of potential assortments and timber values.

Methods for predicting stem frequency distributions from ALS data have mainly been based 
on parameter estimation of theoretical distributions (Gobakken and Næsset 2004; Thomas et al. 
2008). Other methods have been proposed, such as the parameter recovery technique (Mehtätalo 
et al. 2007), or non-parametric methods by which tree data are imputed using nearest neighbor 
techniques (Packalén and Maltamo 2008; Räty et al. 2018). In the latter case, tree lists are imputed 
for target units based on a selected number of reference observations that are most similar, or near-
est, in a space of ALS metrics. For this purpose, the k-nearest neighbor (kNN; Cover and Hart 
1967) technique has been used widely, whereby values are imputed for target units based on the 
k-nearest neighbors in the reference data. However, kNN techniques require large reference data 
sets to ensure that target observations have sufficient neighbors that accurately describe the target 
observation, which can be expensive and time-consuming to obtain.

In recent years, data from cut-to-length harvesters have emerged as a valuable data source 
for forest inventory (Kemmerer and Labelle 2020). With advancements in harvester positioning 
systems, harvested trees can now be georeferenced with sub-meter accuracy (Hauglin et al. 2017; 
Noordermeer et al. 2021), providing a range of opportunities for forest inventory (Lindroos et al. 
2015). Prior research has demonstrated that harvester data, georeferenced with sub-meter accu-
racy, can be used as ground reference data in ALS-based forest inventories (Hauglin et al. 2018; 
Maltamo et al. 2019). Furthermore, Maltamo et al. (2019) reported better accuracies in predicting 
stand-level stem diameter distributions using harvester data than previous studies that relied on 
field plot data. Despite these promising findings, there remains a need to evaluate the suitability of 
harvester and ALS data for imputing stem frequency distributions by forest attributes other than 
stem diameter. Therein, a comparative assessment of inventory approaches is necessary to inform 
operational inventory practices.

The main objective of this study was to compare ALS-based inventory approaches for imput-
ing stand-level stem frequency distributions using harvester data as reference data. In principle, 
distributions of all variables recorded by cut-to-length harvesters can be imputed. In the current 
study, we imputed stand-level distributions of stem diameter, tree height, volume and sawn wood 
volume, and compared four ALS-based forest inventory approaches: (1) individual tree crown 
approach (ITC), semi-ITC, area-based approach (ABA) and enhanced ABA (EABA).

2 Material and methods

2.1 Study overview

Fig. 1 shows an overview of the study design. We used data collected by a cut-to-length harvester 
as reference data for imputing stand-level stem frequency distributions based on ALS data. The 
harvester was equipped with a real-time kinematic Global Navigation Satellite System (GNSS) and 
a system for positioning the crane tip (details are provided in following sections). The positioning 
system allowed locations of harvested trees to be determined with submeter accuracy.
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Fig. 1. Study design to compare four inventory approaches for imputing stand-level distributions of stem diameter, tree 
height, volume and sawn wood volume using harvester and ALS data. We assessed the accuracies of the approaches 
by comparing the imputed distributions with reference distributions recorded by the harvester, as well as stand mean 
values. We further assessed which factors influenced the obtained errors.

We segmented trees from the ALS data and delineated harvested areas from the harvester 
data. We tessellated polygons of harvested areas using a regular grid of 250 m2 and used grid 
cells that were located completely within those polygons as ABA harvester plots. We then used 
polygons of segmented tree crowns that intersected ABA grid cells to adjust cell borders to obtain 
EABA plots. We used the same tree crown segments as observations for the ITC and semi-ITC 
approaches. For the ITC approach, we spatially joined harvested trees of which the coordinates of 
the tree top (x,y,z) in the harvester data were nearest to the coordinates of the tree top detected in 
the ALS data. For the semi-ITC approach, we spatially joined all trees to their nearest tree crown 
segment. We computed ALS metrics for all ABA and EABA plots and tree crown segments.

We used the kNN technique to impute stem frequency distributions of stem diameter, tree 
height, volume and sawn wood volume from ALS data. In the imputation, individual tree data 
from nearest neighbors were used to impute stem frequencies within class values of the studied 
forest attributes. We compared the imputed distributions with observed distributions recorded by 
the harvester. Finally, we performed an error analysis in which we assessed how the forest attrib-
ute, inventory approach, imputation technique, stand size, ALS pulse density, delay between ALS 
data acquisition and harvesting, and percentage of deciduous trees in the stand influenced errors 
in imputed distributions.

2.2 Harvester data

We used harvester data collected from 37 harvesting operations in the municipalities Etnedal, 
Nord-Aurdal, Sør-Aurdal and Nordre Land in southern Norway (Fig. 2). The harvested trees 
comprised mainly Norway spruce (Picea abies (L.) Karst.), however some Scots pines (Pinus 
sylvestris L.) were present as well as deciduous trees, mainly birch (Betula pendula Roth and 
Betula pubescens Ehrh.).
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The harvester data were collected in the period between March 2019 and June 2021 using 
a Komatsu 931XC harvester with a 230H crane and a C144 harvester head. The harvester was 
equipped with a Septentrio AsteRx-U real-time kinematic GNSS comprising two antennas of 
which positions and rotations were logged at a one second rate in the National Marine Electron-
ics Association (NMEA) format. Locations of harvested trees were recorded with a planimetric 
accuracy of approximately 1 m, using positions and rotations obtained from the GNSS and the 
crane extension as measured by sensor hardware (Noordermeer et al. 2021).

Harvester production report (HPR) files were exported after each operation in the StanFord 
2010 format (Arlinger et al. 2012). The HPR files included data on tree species, diameter meas-
urements at 10 cm intervals along the stem, log volumes over bark and crane tip coordinates. For 
each harvested tree, we computed the stem diameter as the diameter (over bark) recorded by the 
harvester at a length of 110 cm along the stem, the volume as the sum of log volumes (over bark) 
recorded by the harvester and sawn log volume as the sum of sawn log volumes. Further, because 
stem profiles only contained data on the processed part of the stem, we predicted the total tree 
height from the stem profile using taper models (Hansen et al. 2023).

We generated polygons of harvested areas as unary unions of buffers around the positions 
of harvested stems (Fig. 1, panel 4). We tessellated polygons of harvested areas into grid cells 
of 250 m2 using a regular grid. The grid size conformed to conventional practices in commercial 
ALS-based forest inventories in Norway, where sample plots and grid cells of 250 m2 are used 
in an area-based inventory approach. We defined stands as clusters of grid cells with a minimum 
total size of 0.2 ha, and that were located completely within the spatial extent of polygons of har-
vested areas (Fig. 1, panel 7). The minimum size of 0.2 ha conformed to the typical minimum size 
of forest stands in commercial Norwegian forest inventories. The resulting dataset comprised 49 

Fig. 2. Locations of harvesting operations in Norway.
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stands containing 102 289 trees of which 89% were spruce, 7% were pine and 4% were deciduous. 
Stand sizes ranged from 0.2 to 5.3 ha with a mean of 1.0 ha. A summary of the harvested trees is 
provided in Table 1.

2.3 Airborne laser scanner data

Four ALS surveys covered the harvested stands, acquired in 2013, 2016, 2017 and 2019 with differ-
ent instruments and acquisi tion parameters (Table 2). The ALS data covered different areas which 
overlapped in some places. The elapsed time between ALS acquisition and harvesting varied from 
zero to eight years with a mean of five years. The contractors Blom Geomatics AS and Terratec AS 
processed the raw ALS data and classified laser echoes as ground or non-ground. For each harvest-
ing operation, we used the most recently acquired ALS data. We used the lidR package (Roussel 
et al. 2020) in R (R Core Team 2022) to construct digital terrain models as triangulated irregular 
networks (TIN) from the laser echoes classified as ground. We then normalized the ALS data by 
computing the height relative to the terrain height of the TIN for all echoes.

2.4 Tree crown segmentation

We generated canopy height models for the harvested stands as rasterized values of maximum 
ALS height with a spatial resolution of 0.5 m. We located trees in the canopy height models using 
the locate_trees function of the lidR package, which implements a local maximum filter proposed 
by Popescu and Wynne (2004), using a window size of 5 m. We then segmented trees from the 
canopy height model using the dalponte2016 function of the lidR package, using default values. 
The function implements the segmentation algorithm proposed by Dalponte and Coomes (2016). 
We computed the height and coordinates (x,y,z) of the highest laser echo within each crown seg-
ment. The resulting tree crown polygons represented spatial extents of tree crowns and contained 
coordinates of treetops detected in the ALS data.

Table 1. Summary statistics (mean and range) of stem diameters, tree heights predicted with taper models, 
volumes (over bark), and sawnwood volumes (over bark) of harvested trees.

Species n Stem diameter (cm) Height (m) Volume (dm3) Sawnwood volume (dm3)

Spruce 91 237 19.5 (5.1–64.0) 14.9 (2.1–49.9) 301 (5–4906) 92 (0–3559)
Pine 7236 27.0 (5.3–58.4) 18.8 (4.8–50) 603 (14–3602) 310 (0–2354)
Deciduous 3336 16.3 (5.7–63.5) 14.8 (4.7–53) 179 (11–4635) 0 (0–514)

Table 2. Airborne laser scanning acquisition parameters, footprint diameters and mean pulse densities.

Year Instrument Time period Pulse rate 
(kHz)

Scan rate 
(Hz)

Flying altitude 
(m)

Scanning 
angle (±°)

Footprint 
diameter (m)

Pulse density 
(m–2)

2013 TopEye S/N 444 May–July 200 92 1500 20 0.28 16.4
2016 Riegl LMS Q-1560 September 400 100 2900 20 0.25 5.1
2017 Riegl VQ-1560 I July 700 240 2300 20 0.58 9.7
2019 Leica ALS70-HP August 495 69 1150 16 0.73 29.6
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2.5 Polygons of grid cells and tree crown segments

Our analysis required polygons of grid cells, hereafter harvester plots, and tree crown segments 
as reference and target observations. For the ABA inventory approach, we used the regular grid 
cells of 250 m2 (Fig. 1, panel 7) as harvester plots, i.e., the grid cells located completely within the 
spatial extent of polygons of harvested areas. The resulting dataset comprised 2040 harvester plots. 
For the EABA inventory approach, we used polygons of segmented tree crowns that intersected 
the ABA plots to adjust plot borders following the approach proposed by Packalén et al. (2015). 
We merged each tree crown segment with the intersecting ABA plot with which it overlapped most 
(Fig. 1, panel 8). For the ITC approach, we used the same tree crown segments that intersected 
the ABA plots, which we spatially joined with the nearest harvested trees. In case of multiple har-
vested trees being joined with a given tree crown segment, we used the harvested tree of which 
the coordinates of the tree top (x,y,z) were nearest to the coordinates of the tree top detected in 
the ALS data. For the semi-ITC approach, we used the same tree crown segments as those used 
for the ITC approach, and spatially joined them to the nearest harvested tree. However, multiple 
harvested trees were allowed for a given tree crown segment. Resultingly, some semi-ITC segments 
were empty, some contained a single tree, and some contained multiple trees. For each inventory 
approach, we generated tree lists for the harvester plots or tree crown segments.

2.6 Airborne laser scanner metrics

We extracted ALS echoes from within harvester plots and tree crown segments and computed 
ALS metrics from first (and single) laser echoes. We computed the maximum height, mean height, 
standard deviation, skewness and kurtsosis. We further computed the percentage of echoes above 
the mean height and 2 m, and the normalized Shanon diversity index proposed by van Ewijk et 
al. (2011). We computed echo heights at the 10th, 20th, …, 90th percentiles of the height distri-
butions as well as the 95th percentile. Finally, we divided the height range between the lowest 
canopy echo > 2 m and the 95th percentile into 10 fractions of equal height and computed canopy 
density metrics (D0, D1, …, D9) as the proportion of echoes above each fraction divided by the 
total number of echoes.

2.7 Imputation of stem frequency distributions

We imputed stand-level distributions of stem diameter, tree height, volume and sawn wood volume 
from the ALS data using the four inventory approaches: ITC, semi-ITC, ABA, and EABA. We used 
the kNN technique to impute tree lists for each target observation based on the nearest neighbors, 
i.e., observations in the reference data of which a selection of ALS metrics were most similar to the 
corresponding ALS metrics of the target observation. We applied three-fold spatial cross validation, 
whereby we removed one third of the stands at a time as target data and used the remaining stands 
as reference data. We assigned spatially close stands to the same folds using k-means clustering. 
For each fold, we imputed tree lists for target observations using the Euclidean distance metric. We 
then selected ALS metrics as predictor variables and determined the number of nearest neighbors. 
In the following sections, the methods used for the imputation are explained in depth.

2.7.1 Nearest neighbor imputation

When nearest neighbor techniques are used for imputation, predictor variables should be selected 
to determine the similarity between pairs of observations (McRoberts et al. 2015). We used the 
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leaps package (Lumley 2004) for the selection of ALS metrics as predictor variables for each of 
the four studied forest attributes separately. We used the regsubsets function to find optimal subsets 
of predictor variables for linear regression models with stem diameter, tree height, volume and 
sawn wood volume as response variables. We used exhaustive search and set a maximum of five 
predictor variables in each subset. We used the caret package (Kuhn 2008) to select the number of 
neighbors, k, for the four forest attributes separately. We used potential values of k = 5, 7, …, 15, 
and selected the value of k that minimized the root mean square error. We then used the yaImpute 
package (Crookston and Finley 2008) in R to identify the k-nearest neighbors in the reference data, 
based on the selected ALS metrics and k.

2.7.2 Removal of potentially erroneous reference data

A preliminary analysis revealed possible co-location errors between harvester and ALS data, i.e., 
harvester plots and tree crown segments of which ALS heights differed substantially from the 
heights of harvested trees (Fig. 3). Such large deviations in height may have been caused by errors 
in the harvester data or temporal decorrelation caused by the delay between ALS acquisition and 
harvesting. We identified and excluded such observations in the reference data prior to the impu-
tation, similar to methods used by Breidenbach et al. (2010). We fitted a simple linear regression 
model with the maximum tree height obtained from the harvester data as the response variable and 
the 95th percentile of ALS height as the predictor variable. We then labeled those observations in 
the reference data that had a Cooks distance > 0.5 of the mean Cooks distance as erroneous. We 
removed erroneous observations only from the reference data, i.e., not from the target data, prior 
to the nearest neighbor imputation in each fold.

2.7.3 Imputation of tree lists

We imputed sets of trees for target observations following the methods described by Packalén and 
Maltamo (2008):

T t t tuj u j u j n u ju k� � �1 21 2 1, , ... , ( )

where Tuj is a set of trees imputed for the target observation j based on k reference observations 
denoted u, each containing 1, 2, …, n trees. For example, t u j1 1  is the first tree of the first reference 
observation used for imputation for target observation j. We computed the similarities between 
each target observation and the selected k-nearest neighbors in the reference data, as the inverse 
of the distance matrices. We then used the similarities as weights in imputing the resultant tree 
lists for target observations:

T W T W T W Tj j j j j kj kj� � �1 1 2 2 2, ,..., ( )

where Tj is the imputed tree list for target observation j and Wkj is the similarity between reference 
observation u and target observation j. Thus, each stem frequency in each class of a reference 
observation was weighted with the similarity between the target and reference observation. For 
each target observation, we obtained an imputed stem frequency for each class within the distribu-
tions of the studied forest attributes. The classes covered the range of the observed tree attributes 
in the harvester data, divided into 20 intervals of equal size for all the studied attributes. Finally, 
from the stand-wise imputed tree lists, we estimated the mean stem diameter, tree height, volume, 
sawn wood volume and number of stems for each stand, which in the latter three cases we scaled 
to a per ha unit.
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2.8 Accuracy assessment

We compared the imputed distributions with observed distributions obtained from the harvester 
data at stand level. Because the harvested trees included in ABA and EABA plots differed slightly 
in some cases due to differences in cell borders (Fig. 1), the observed distributions were computed 
for the two approaches separately. The observed distributions obtained for the EABA approach 
also served as observed distributions for the ITC and semi-ITC approaches because the spatial 
extent of tree crown segments corresponded, and the trees included in the reference data were thus 
identical. We assessed the accuracies of imputed distributions for each stand using an error index 
(EI) proposed by Packalén and Maltamo (2008):

where c is the number of classes in the frequency distribution, fi is the reference stem frequency 
within class i, îf is the corresponding imputed stem frequency, N is the reference number of stems 
within all classes and N̂  is the imputed number of stems within all classes. The EI ranges from 0 
to 1 and is inversely proportional to accuracy, i.e., a lower value implies better accuracy.

We further assessed the accuracies of stand mean estimates using the root mean square error 
relative to the mean:

where n is the number of stands, Xi is the observed stand-level forest attribute in stand i, ˆ iX is the 
corresponding estimated forest attribute, and X  is the mean value of the studied forest attribute 
for all stands. We further computed the mean difference between observed and estimated values, 
relative to the mean:

2.9 Error analysis

We assessed whether the errors obtained for the imputed distributions could be explained by the 
forest attribute, inventory approach, imputation technique, stand size, pulse density, number of 
years between ALS and harvester data acquisition (ALS delay), or the percentage of deciduous trees 
(%Deciduous). We fitted a linear model with the stand-wise EI obtained for all forest attributes, 
inventory approaches, and imputation techniques as the response, and the forest attribute, inven-
tory approach, stand size, pulse density, ALS delay, and percentage of deciduous trees as predictor 
variables. The data used for the modelling were characterized by a hierarchical structure whereby 
error indices were repeated measurements for stands. We accounted for this dependency by fitting 
a mixed model with a random intercept for the stand. We fitted the model using the lme4 package 
(Bates et al. 2015) in R. We selected the following model form based on model diagnostics and 
analysis of variance comparisons:

1

ˆ
EI 0.5 (3)ˆ

i ic
i

f f
N N 

 21
1 ˆRMSE% 100 (4)n

i ii X X X
n   

 1
1 ˆMD% 100 (5)n

i ii X X X
n   
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� �
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�
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tan� � � � � �
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where Si is the random intercept for stand i, β0,1, ... ,10 are parameters to be estimated, Attri buteHeight, 
Attri buteVolume, and Attri buteSawnVolume are indicator variables representing the forest attributes 
tree height, volume and sawn wood volume, respectively, where stem diameter is the baseline, 
ApproachITC, Approachsemi-ITC , and ApproachEABA are indicator variables representing the inventory 
approaches ITC, semi-ITC and EABA, respectively, where ABA is the baseline, StandSize is the 
stand size in ha, PulseDensity is the mean number of laser pulses per m2 in the stand, ALSdelay is 
the number of years between ALS and harvester data acquisition, %Deciduous is the percentage 
of deciduous trees in the stand and ε is the model error. We tested whether the predictor variables 
significantly influenced the error indices by constructing 95% confidence intervals of parameter 
estimates from the likelihood profile. Further, we assessed how the predictor variables affected the 
stand-level error indices based on estimates obtained for β7–β10.

3 Results

3.1 Imputation of stem frequency distributions

Fig. 3 shows an example of observations used as reference data in the imputation and observations 
labeled as erroneous and therefore not used for nearest neighbor imputation. The percentage of 
trees labeled as erroneous ranged from 20% to 32% for the four inventory approaches and three 

Fig. 3. Heights of harvested trees plotted against the 95 percentile of laser echo 
heights for observations in the reference data used for an example fold and 
the individual tree crown approach. Observations used as reference data in the 
imputation are shown as transparent blue circles and observations labeled as 
erroneous are shown as red dots.
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folds. The number of nearest neighbors selected for the four inventory approaches and in the three 
folds ranged from 11 to 15 with a mean of 13.

Error indices obtained for the stand-wise imputed distributions for the four inventory 
approaches are shown in Fig. 4. We obtained smallest error indices for imputation of volume dis-
tributions using the semi-ITC, ABA, and EABA inventory approaches. Error indices were similar 
across forest attributes. We obtained best accuracies, i.e., smallest values of EI, of 0.13, 0.13, 0.10 
and 0.10, for distributions of stem diameter, tree height, volume, and sawn wood volume.

Fig. 5 shows reference and imputed distributions of the four attributes for a representative 
example stand. Distributions imputed following the ITC approach showed systematic errors, with 
underpredicted stem frequencies in smaller classes. Imputed stem frequencies obtained for the 
remaining inventory approaches tended to be similar.

3.2 Estimation of stand-level forest attributes

The results of the stand-level estimation of mean values are shown in Table 3. Values of RMSE% 
obtained for the ITC approach were substantially better than those obtained for the remaining 
approaches. Apart from the ITC approach, values of MD%, i.e., systematic errors, were < 10% for 
stand mean estimates of all forest attributes. Overall, the semi-ITC approach gave the best mean 
accuracies.

3.3 Error analysis

The results of the fitted model used in the error analysis (Eq. 6) are shown in Fig. 6. The forest 
attribute, inventory approach, stand size and the laser pulse density significantly influenced the 
stand-level EI (p < 0.05). On average, values of EI increased by 20.4 when the ITC approach was 
used, in comparison to the baseline which was the ABA approach. Values of EI obtained for the 
semi-ITC and EABA approaches did not differ significantly from the ABA approach. Increased 
ALS delay and the percentage of deciduous trees in the stand did not cause larger errors in imputed 
frequency distributions.

Fig. 4. Box plot of error indices obtained for stand-level imputed distributions of the studied attributes, obtained for the 
four inventory approaches: individual tree crown (ITC), semi-ITC, area-based approach (ABA) and enhanced ABA.
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Fig. 5. Imputed stem frequency distributions obtained for a representative example stand, i.e., with an error index 
nearest to the mean error index obtained for all stands, recorded by the harvester and imputed using the four inventory 
approaches: individual tree crown (ITC), semi-ITC, area-based approach (ABA) and enhanced ABA (EABA).
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4 Discussion

Stem frequency distributions can provide detailed information useful for pre-harvest forest plan-
ning. We compared four inventory approaches for imputation of stem frequency distributions by 
four forest attributes. We further assessed which factors influenced the accuracy of the imputed 
distributions.

Most previous studies on predicting distributions from ALS data have focused on stem 
diameter distributions and used conventional field plot measurements as reference data. For 
example, Packalén and Maltamo (2008) predicted species-specific stem diameter distributions and 
compared nearest neighbor imputation with parameter estimation of a theoretical (Weibull) distri-
bution. The nearest neighbor technique outperformed the parametric technique, and they obtained 

Table 3. Errors obtained for estimates of stand-level forest attributes, as root mean square errors and mean differences 
relative to the observed mean values (RMSE%, MD%), for the four inventory approaches: individual tree crown (ITC), 
semi-ITC, area-based approach (ABA) and enhanced ABA (EABA).

ITC Semi-ITC ABA EABA
RMSE% MD% RMSE% MD% RMSE% MD% RMSE% MD%

Stem diameter (cm) 30.1 –24.4 14.6 5.7 14.6 4.7 15.2 4.9
Height (m) 22.2 –18.0 9.1 3.6 8.9 1.8 8.7 1.2
Volume (m3 ha–1) 66.9 52.5 13.6 3.1 19.0 1.7 16.6 2.8
Sawn wood volume (m3 ha–1) 65.0 42.9 19.7 2.5 21.2 3.1 21.3 2.0
Number of stems (ha–1) 75.3 70.6 17.4 –2.7 22.1 –3.9 21.7 –5.1

Fig. 6. Parameter estimates (bars) and 95% confidence intervals (whiskers) obtained for the fitted mod-
el used in the error analysis. Variables that significantly influenced the obtained error indices (p < 0.05) 
are labeled with an asterisk.
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values of EI of 0.33 and 0.21 in predicting Norway spruce stem diameter distributions, for the two 
approaches, respectively. We obtained better accuracies for imputed stem diameter distributions 
in this study, i.e., a mean EI of 0.13 obtained for the semi-ITC, ABA and EABA approaches. This 
may have been due to the relatively large numbers of reference observations used in this study, 
i.e., 2040 harvester plots and 11 975 tree crown segments, in comparison to <500 field plots used 
in the mentioned study. In addition, the mentioned study used data comprising various stand devel-
opment classes and a mixture of species, as opposed to mature spruce stands ready for harvest. 
Furthermore, the mentioned study used data collected from an average of seven plots per stand, 
while we used harvester data which comprised entire stands. In another study, Söderberg et al. 
(2021) used harvester data from clear-felled stands and ALS data to impute diameter distributions 
at stand level. Indeed, that study reported values of EI of 0.13–0.14, i.e., equivalent to the level 
of accuracy obtained here.

Maltamo et al. (2019) imputed stand-level stem diameter distributions using harvester 
reference data and the kNN technique. The study reported better accuracies than previous studies 
using field plot data; values of EI ranged from 0.15 to 0.19, depending on the size of the ABA 
harvester plots used in the reference data, however 0.15 when a plot size of 200 m2 was used and 
comparable to our plot size of 250 m2. In this study, we obtained a similar level of accuracy, i.e., 
mean EI of 0.13 obtained for the ABA, EABA and semi-ITC inventory approaches, confirming 
the accuracy reported in the mentioned study.

Accuracies of imputed distributions of tree height, volume and sawn wood volume were 
similar to, or better than, accuracies obtained for imputed distributions of stem diameter (Fig. 4). 
This result highlights the utility of harvester and ALS data for imputing distributions of forest 
attributes other than stem diameter. In a previous study on predicting stand-level top diameter 
distributions of sawlogs using harvester and ALS data, Barth et al. (2015) obtained values of EI of 
0.34 and 0.15 for all diameter classes and diameter classes ≥15 cm, respectively. The mentioned 
study demonstrated the utility of harvester data as reference data in predicting product recovery 
in logging operations. In another study, however, Mehtätalo et al. (2015) used ALS data to predict 
plot-wise distributions of tree height using a parametric approach. The study reported unsatisfac-
tory results based on comparisons of the predicted distributions with empirical data and therefore 
advised against practical use of the method.

We obtained significantly poorer accuracies for the ITC approach compared to other inven-
tory approaches. This result confirms findings of previous studies in that the ITC approach can 
lead to systematic errors due to trees not being detected in the ALS data and thus missing in the 
reference data (Breidenbach et al. 2010; Maltamo et al. 2004). Smaller trees are less likely to be 
detected and delineated from the ALS data, and resultingly, smaller trees are typically missing 
in the imputed distributions (Bergseng et al. 2015). In previous studies assessing tree detection 
from ALS data, detection rates have varied considerably and typically ranged between 25% and 
80% (Kaartinen et al. 2012). The detection rate has been found to be strongly affected by forest 
structure (Falkowski et al. 2008; Vauhkonen et al. 2012). In this study, a total of 43 371 trees were 
segmented from the ALS data within the harvested stands, while the harvester data comprised 
102 289 trees within the corresponding areas, i.e., a detection rate of 42%. Thus, these trees not 
detected in the reference data are likely the main cause of the relatively poor results obtained for 
the ITC approach.

Error indices obtained for distributions imputed using the semi-ITC and ABA inventory 
approaches were similar for most forest attributes, as well as errors in stand-level estimates 
of those attributes. This result was in accordance with findings from Rahlf et al. (2015) who 
compared the two approaches in predicting forest attributes from image-based point cloud data, 
and obtained similar accuracies for the two approaches. By accounting for edge effects along 
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harvester plot borders, we assessed whether the EABA would result in better accuracies than the 
ABA. The error analysis revealed that this was not the case. This finding contrasted with earlier 
studies that showed that by resolving edge effects and co-location errors between reference data 
and ALS data, better accuracies can be obtained using an EABA (Packalén et al. 2015; Pascual 
2019).

In previous studies, the integration of ITC and ABA approaches has yielded promising 
results for ALS-based imputation of tree-level data (Breidenbach et al. 2012; Lindberg et al. 
2010). In a study on predicting stem diameter distributions from ALS data, Xu et al. (2014) 
found that combining the ITC and ABA approaches can improve the accuracy of predicted dis-
tributions. The study compared two methods, namely (1) replacement, whereby large diameter 
classes in ABA-derived distributions were replaced by ITC-derived trees, and (2) by matching 
histograms obtained with ABA and ITC. The best accuracy was obtained by the second approach, 
whereby the accuracy of predicted distributions only increased slightly due to the ITC-derived 
information.

Our findings demonstrate that harvester data can be linked to ALS data to impute stem fre-
quency distributions of forest attributes other than stem diameter with satisfactory accuracy. This 
suggests the potential applicability of the proposed methods in ALS-based inventories. However, 
harvester data primarily comprise mature forest stands ready for harvest. This can introduce sam-
pling biases, and, consequently, lead to systematic errors in forest inventory based on harvester 
data, as demonstrated by Räty et al. (2022). Their study revealed that harvester data proved more 
useful in productive forests than unproductive forests, although they reported systematic errors in 
both cases. The study also showed that such systematic errors could be mitigated when a probability 
sample of field measurements obtained from sample plots is available within the inventory area. 
Thus, while the methods proposed here show promise in pre-harvest inventory of mature forest 
stands, operational application of the methods in other forest types may require supplementary 
sample plot data for unbiased results. Therefore, further research is needed to assess whether the 
methods are applicable to more variable forest types, potentially supported by samples of field 
plots typically used in conventional ALS-based inventories.

5 Conclusions

This study highlights the utility of harvester and ALS data for imputing stem frequency distribu-
tions in mature spruce-dominated stands. The choice of inventory approach had great impact on the 
accuracies of the imputed distributions. We obtained significantly better accuracies for the semi-
ITC, ABA and EABA inventory approaches than the ITC approach. The forest attribute, inventory 
approach, stand size and the laser pulse density had significant effects on the accuracies of imputed 
frequency distributions, however the ALS delay and percentage of deciduous trees did not.
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