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Abstract: As one type of the important higher-order neural networks developed in the last decade,
the Sigma-Pi-Sigma neural network has more powerful nonlinear mapping capabilities compared
with other popular neural networks. This paper is concerned with a new Sigma-Pi-Sigma neural
network based on a L1 and L2 regularization batch gradient method, and the numerical experiments
for classification and regression problems prove that the proposed algorithm is effective and has better
properties comparing with other classical penalization methods. The proposed model combines the
sparse solution tendency of L1 norm and the high benefits in efficiency of the L2 norm, which can
regulate the complexity of a network and prevent overfitting. Also, the numerical oscillation, induced
by the non-differentiability of L1 plus L2 regularization at the origin, can be eliminated by a smoothing
technique to approximate the objective function.
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1. Introduction

The Sigma-Pi-Sigma neural network (SPSNN) is a feed-forward neural network composed of
Sigma-Pi units, which can be used to achieve a static mapping of multi-layer neural networks [1–3].
In [4], a new model which can be regarded as a subclass of networks on Sigma-Pi units was considered,
and the authors showed the origin of the Kronecker product representation from the classical Sigma-
Pi units. In [5], a Sigma-Pi network and a new arithmetic were proposed, by which the output
representation self-organizes to form a topographic map, whose main contribution was to solve the
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frame of reference transformation issues through unsupervised learning. Furthermore, in [6–8],
the approximation, convergence performance, and generalization ability of sparse Sigma-Pi network
functions were studied, and it was shown that the new algorithms were more efficient than those in the
existing literatures.

It is widely recognized that neural network optimization has emerged as a highly significant research
topic in recent times. Study on neural network optimization consists of two main topics: One is weight
optimization, that is, for a given network structure, select the appropriate learning method to seek
the optimal weight such that the training error and the generalization error are small enough [9, 10].
The second is structural optimization, namely the selection of appropriate activation function, network
layer number, connection mode, and so on [11–13]. But, the research on neural network structure
optimization is far less rich than that on weight optimization. On the other hand, there is no literature
showing that more hidden layer neurons yield better generalization ability.

When it comes to neural networks, the number of neurons is a crucial factor. There are two common
methods for determining the size of networks. The first method is the growing method, where the
network starts with a smaller size and new hidden neurons are added during the training process [14].
Another method is the pruning method [15–19], which begins with a larger network and eventually
removes redundant nodes.

These kind of algorithms separates weight learning and weight training, which is inefficient. There
are also many slightly more complex algorithms, which further introduce various mechanisms like
particle swarm optimization [20], genetic algorithms [21], eigenvalue analysis [22], statistical analysis,
and synthetic minority over-sampling techniques [23,24], so as to enhance the sparsification efficiency.
The disadvantage of these algorithms is that the program is complex and the calculation is large.

An appropriately sized network structure is instrumental in enhancing efficiency. Overfitting
poses a significant challenge during network training and is particularly problematic for deep neural
network learning [25]. Consequently, researchers have extensively explored various forms of sparse
regularization techniques, highlighting their indispensability.

Recent years, Lp regularization is diffusely used to solve variable selection and parameter estimation
problems in machine learning. This regularization method takes the form

E(W) = Ê(W) + τ∥W∥pp,

where Ê is the normal error function, ∥W∥p = (
∑

i |Wi|
p)1/p denotes the p-norm, τ is the penalty

coefficient, and ∥ · ∥ represents the euclidean norm. This regularization term is also named the penalty
term.

In general, there are several common forms of regularization: weight elimination, weight decay,
and approximate smoothing [26–32]. Among them, weight elimination is widely used as the penalty
term in pruning feedforward neural networks, mainly to reduce unnecessary connections or optimize
the network weights [33]. A little more detailed introduction for different penalty terms are as follows.

For different values of p, the L2 norm to the standard error function makes it more optimized [34–
37]. This practice is called L2 regularization, and the form is shown as follows:

E(W) = Ê(W) + τ∥W∥22,

where ∥W∥22 denotes the penalty term, and the L2 norm solution is popular because of its special
relationship with the normal distributions. It can serve as brute force to avoid excessive weights.
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But, unfortunately, it is not sparse. This means that, during the training process, the L2 regularization
can not drive unnecessary weights to zero.

The L0 regularization term is the ordinary method for feature extraction and variable selection.
Constrained by the number of coefficients, the L0 regularizer produces the most sparse solutions, which
are difficult to calculate, and it is a combinatory optimization problem [38, 39].

As an alternative to the L0 regularization term, the increasingly important L1 regularization term
(Lasso) has become popular since it just needs to resolve a quadratic programming problem [40].
In [41], the L1-norm was combined with the capped L1-norm to indicate the amount of information
collected by the filter and the control regularization. The L1 regularization penalty function is generally
denoted as follows:

E(W) = Ê(W) + τ∥W∥1.

It was shown in [42, 43] that, although these algorithms can generate an alternate neural network
structure, they do not offer a unified neural network framework to solve a class of problems.

In order to explore more appropriate neural network structures to get over the obstacles posed by
suboptimal models, we propose a new SPSNN algorithm based on the L1 penalty and the L2 penalty to
deal with complex and varied tasks within a unified framework to improve the robustness and generality
of the model. Based on the L1 norm, an L2 norm is presented in SPSNNs to promote the population
sparsity effect to select the relevant hidden node population. Therefore, our proposed variant algorithm
benefits from ridge regression and the tendency towards sparse solutions of the L1 penalty, which
generates a more suitable neural network structure than using one of the regular terms alone, and the
elastic net algorithm can also be used to solve for these hybrid penalties [44].

In this paper, the penalty method is considered in the case of selecting the weights, which not only
overcomes the shortcomings of the L1 and L2 norms, (both L1 and L2 penalties are used in the same
minimization problem), but also has good generalization ability and sparsity. Thus, the mathematical
expression for this hybrid penalty as an error function can be expressed as follows:

E(W) = Ê(W) + τ1∥W∥1 + τ2∥W∥22,

where the tuning constants τ1 and τ2 are fixed and non-negative. The role of τ1 provides a choice of
variables through a sparse vector, and τ2 ensures a unique solution and leads to a grouping effect. A
penalty term is added that is a convex combination of the L1 norm ∥W∥1 and the L2 norm ∥W∥22 of the
parameter W.

During the training progress, the usual mixed regularization terms are not differentiable at the
origin, which usually give rise to oscillation phenomenon. Therefore, we propose a new smoothing
algorithm to get over these difficulties. That is, we can use the smoothing technique of the weight in
the neighborhood of the origin of the error function instead of the absolute value of the weight. The
main contribution and novelty of this article are as follows:

(1) In this article, in order to obtain the optimal architecture with good generalization performance,
we will eliminate the weights in the hidden layer by using the idea of elastic net regularization. It means
that, by incorporating the L1 and L2 regularization terms, this novel algorithm not only eliminates
unnecessary weights but also performs pruning of the network structure in the hidden layers. This
pruning reduces the size of the network, leading to an effective optimization of the network structure.
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(2) We propose an SPSNN based on elastic net regularized batch gradient methods to obtain an
optimal architecture with good generalization performance. By means of smoothing technology, we
effectively get over the oscillation phenomenon in the process of network learning.

(3) To test the accuracy and robustness, we apply the proposed method to a large number of
regression and classification tasks and compare it with other algorithms that have good sparsity and
generalization capabilities.

The rest of the article is arranged as follows: In Section 2 the SPSNN is presented, the batch gradient
algorithm for this model is depicted in Section 3, and the novel pruning algorithm based on L1 plus L2

penalty term is depicted for more details. Some numerical experiments are provided in Section 4, and
finally some conclusions are made.

2. Sigma-Pi-Sigma neural networks

Next, we mainly depict the fabric of SPSNNs, which are composed of an input layer, a hidden layer
of summing nodes(

∑
1), a hidden layer of product nodes(

∏
), and output layer(

∑
2). P, N, Q, and 1

represent the number of the nodes of the input layer,
∑

1 layer,
∏

layer, and
∑

2 layer, respectively (see
Fig. 1)

We can use W0 = (w01,w02, · · ·w0Q)T ∈ RQ to express the weight vector which connects
∑

2 layer and
the
∏

layer. Let the weight vector connecting the
∏

layer and the
∑

1 layer be fixed as 1. Meanwhile,
using Wn = (wn1,wn2, · · ·wnP)T as the weight vector which connects the input layer and the nth node of
the
∑

1 layer, we can set

W = (W0
T ,W1

T , · · ·WN
T )T ∈ RQ+NP.

Let us use X = (x1, x2, · · · xP) ∈ RP to describe the input of the networks. Assume that g : R −→ R is a
given sigmoid activation function for the

∑
1 layer. We denote the output vector ξ ∈ RN of the

∑
1 layer

as

ξ = (g(W1 · X), g(W2 · X), · · · g(WN · X))T ,

where · denotes the inner product between vectors.

Similarly, we take δ = (δ1, δ2, · · · δQ)T to indicate the output vector of the
∏

layer. The nodes of
the network are connected in two different ways. One is fully connected between the

∑
1 layer and the∏

layer, and the other one is sparsely connected. The difference between them lies in the number of
product nodes: the former has 2N product nodes, and the latter is less than 2N . We can clearly see the
structure of the SPSNNs in Figure 1.
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Output

Input layer

Hidden layer

Figure 1. Structure of an SPSNN.

Here, Hq(1 ≤ q ≤ Q) represents the set of nodes in the
∑

1 layer connected with the q-th product
node, while the set of all product nodes connected with the n-th node in the

∑
1 layer is represented by

Fn(1 ≤ n ≤ N). We can suppose an arbitrary muster italicize, and φ(a) is the number of elements in
muster italicize, and we have

Q∑
q=1

φ(Hq) =
N∑

n=1

φ(Fn),

which will be used later.
We can compute the output vector δ ∈ RQ in the

∏
layer by

δq =
∏
i∈Hq

ξi, 1 ≤ q ≤ Q.

To make convention, we denote
∏

i∈Hq ξi = 1 whenHq = Ø. In the SPSNNs, the final output can be
written as

y = g(W0 · δ).

3. Batch gradient algorithm for Sigma-Pi-Sigma neural networks with elastic net regularization

3.1. Batch gradient algorithm for Sigma-Pi-Sigma neural networks

We introduce the batch gradient algorithm for SPSNNs. Let {Xl,Ol}Ll=1 ⊂ R
P × R be the given set

of the training samples, where Xl denotes the lth input sample and the Ol is the lth corresponding ideal
output. Let yl ∈ R be the real output for each input Xl. The conventional square error function can be
given as
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Ê(W) =
1
2

L∑
l=1

(g(W0 · δ
l) − Ol)2

=

L∑
l=1

1
2

(g(W0 · δ
l) − Ol)2

=

L∑
l=1

gl(W0 · δ
l),

where gl(z) = 1
2 (g(z) − Ol)2, z ∈ R, 1 ≤ l ≤ L.

For convenience, we need to provide the following forms:

δl = (δl
1, δ

l
2, · · · δ

l
Q)

= (
∏
i∈H1

ξi,
∏
i∈H2

ξi, · · ·
∏
i∈HQ

ξi)

= (
∏
i∈H1

g(Wi · Xl),
∏
i∈H2

g(Wi · Xl), · · · ,
∏
i∈HQ

g(Wi · Xl)),

(3.1)

and thus, by virtue of

Ê(W) =
L∑

l=1

gl(
Q∑

q=1

w0q ·
∏
i∈HQ

g(Wi · Xl)) (3.2)

and some calculation, we can gain

ÊW0(W) =
L∑

l=1

g′l(W0 · δ
l) · δl.

It follows from δl
q =
∏

i∈HQ
g(Wi · Xl) that

∂δl
q

∂Wn
=

(
∏

i∈Hq\n ξi) · g
′(Wn · Xl)Xl, i f q , 1 and n ∈ Hq,

0, i f q ≡ 1 or n < Hq.

Then, from the above equality and (3.2), we get

ÊWn(W) =
L∑

l=1

[g′l(W0 · δ
l)

Q∑
q=1

(w0q ·
∂δl

q

∂Wn
)].
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3.2. Batch gradient algorithm for Sigma-Pi-Sigma neural networks with elastic net regularization

To simplify the network structure, we add the elastic net regularization to optimize the network on
the group level. So, we can get the corresponding form of the error function

E(W) =
L∑

l=1

gl(W0 · δ
l) + τ(α(∥W0∥1 +

N∑
n=1

∥Wn∥1)

+ (1 − α)(∥W0∥
2
2 +

N∑
n=1

∥Wn∥
2
2)),

(3.3)

where τ and α are the tuning parameters that control the performance of the penalty term. With
the gradual increase of α, the L1 regular term dominates, and the error function gets closer to Lasso
regression; with the gradual decrease of α, the L2 regular term dominates, and the error function gets
closer to ridge regression. In particular, the error function is equivalent to that of ridge regression at
α = 0, and the cost function is equivalent to that of Lasso regression at α = 1. Let τ1 = τ · α and
τ2 = 2τ · (1 − α). Then, we have

E(W) =
L∑

l=1

gl(W0 · δ
l) + τ1(∥W0∥1 +

N∑
n=1

∥Wn∥1)

+
τ2

2
(∥W0∥

2
2 +

N∑
n=1

∥Wn∥
2
2).

(3.4)

The gradient of the error function with respect to W0 and Wn are, respectively, given as

EW0(W) =
L∑

l=1

g′l(W0 · δ
l) · δl + τ1

W0

∥W0∥
+ τ2W0 (3.5)

and

EWn(W) =
L∑

l=1

[g′l(W0 · δ
l)
∑
q∈Fn

[w0q(
∏

i∈Hq\n

ξl
i)

× g′(Wn · Xl) · Xl]] + τ1
Wn

∥Wn∥
+ τ2Wn.

(3.6)

We notice that elastic net regularization in (3.4) is combined with L1 norm regularization and
L2 norm regularization. It is clear that (3.4) is not differentiable at the origin, which will yield the
oscillation phenomenon, and we propose a smoothing approximation method to overcome this problem
caused by the non-smoothness. For any limited dimensional vector u and a fixed constant γ > 0, we
can define a smoothing function of ∥u∥ as follows:

h(u, γ) =

∥u∥, i f ∥u∥ > γ,
∥u∥2

2γ +
γ

2 , i f ∥u∥ ≤ γ.
(3.7)
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We use (3.7) to approximate the elastic net regularization in (3.4). Furthermore, the gradient of
h(u, γ) with respect to the vector u is given as follows:

∇uh(u, γ) =

 u
∥u∥ , i f ∥u∥ > γ,
u
γ
, i f ∥u∥ ≤ γ.

Accordingly, the error function (3.4) can be rewritten as

E(W) =
L∑

l=1

gl(W0 · δ
l) + τ1[h(W0, γ) +

N∑
n=1

h(Wn, γ)]

+
τ2

2
(∥W0∥

2
2 +

N∑
n=1

∥Wn∥
2
2).

(3.8)

According to (3.8), we can get a smoothing elastic net Sigma-Pi-Sigma neural network as

EW0(W) =
L∑

l=1

g′l(W0 · δ
l) · δl

q + τ1∇W0h(W0, γ) + τ2W0, (3.9)

EWn(W) =
L∑

l=1

g′l(W0 · δ
l)
∑
q∈Fn

w0q(
∏

i∈Hq\n

ξl
i)

× g′(Wn · Xl) · Xl + τ1∇Wnh(Wn, γ) + τ2Wn,

(3.10)

where l = 1, 2, · · · , L.
Beginning with an arbitrary initial weight vector W0, by the following iterative formula we define

the weight sequence

Wk+1 = Wk + △Wk, (3.11)

△Wk
0 = −ηEW0(W

k), (3.12)

△Wk
n = −ηEWn(W

k), (3.13)

where η represents the learning rate.

4. Simulation results

In this section, the performance of the models with no regularizer, the L2 regularizer, the original
L1/2 regularizer (OL1/2), the smoothing L1/2 regularizer (S L1/2), and the original group lasso regularizer
(OGL) algorithms are compared with the smoothing elastic net regularizer algorithm (S GL) by using
four examples: classification problem, parity problem, function approximation problem, and prediction
problem.
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4.1. Classification problem

In this example, we choose 8 benchmark data sets from the UCI machine learning repository to test
the performance of the new algorithm (S GL), and compare it with the no regularizer, the L2 regularizer,
the OL1/2, the S L1/2, and the OGL algorithms.

Table 1 presents the main characteristics of the relevant data sets, which includes the size of
datasets, attributes, categories, and sizes of the training and testing sets, where the dataset is randomly
partitioned into two subsets: 70% for training and 30% for testing.

Table 1. Detailed description of the classification data sets.

Dataset Dataset Size Training set Testing set Attributes Classes
Ecoli 336 224 112 8 7
Olitos 120 80 40 25 4
Seeds 210 147 63 7 3
Iris 150 105 45 4 3
Wine 178 120 58 13 3
Liver 345 240 105 7 2
Sonar 208 138 70 60 2
Diabetes 768 526 242 8 2

As described at the beginning of this paper, we learn the structure of SPSNNs (see Figure 1). Then,
we select P = 13, N = 4, Q = 16, and 1, representing the number of the nodes of the input, the

∑
1,

the
∏

, and the
∑

2 layers, respectively. For each learning algorithm, the initial weights are randomly
selected in the interval [−0.5, 0.5], the learning rate η is 0.0028, and the regular factor τ is 0.001, and
we conduct 20 trials for every data set to compare the performance of different algorithms.

To assess the performance of the smoothing elastic net regularizer, based on each data set, we
compare the number of remaining hidden neurons after pruning (RNN), the training accuracy testing
accuracy, and training time for each algorithm, and all experimental results are recorded in Table 2.
From the table, it can be observed that the training accuracy has slightly improved, while the testing
accuracy has increased by approximately 1% to 3%. We can find our proposed smoothing elastic
net regularizer is superior to the no regularizer, the L2 regularizer, the original L1/2 regularizer, the
smoothing L1/2 regularizer, and the original group Lasso regularizer algorithms.

In addition, we have also compared our approach with other existing methods. In [45], the authors
considered the group Lasso regularization method on the Sigma-Pi-Sigma neural network. In [46], the
authors applied the group L1/2 regularization term on high-order neural networks. Our proposed elastic
net regularization method is on par with these approaches.

AIMS Mathematics Volume 9, Issue 3, 5995–6012.
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Table 2. Performance comparison for classification problems.
Dataset Algorithm RNN Training accuracy Testing accuracy Training time(s)

Ecoli
NoPenalty 13.30 0.9761 0.9082 17.2756

L2 13.00 0.9747 0.8980 16.7845
OL1/2 12.50 0.9749 0.9191 18.1372
S L1/2 11.80 0.9771 0.9304 16.8050
OGL 12.20 0.9749 0.9191 18.3792
S GL 11.50 0.9780 0.9314 17.3763

Olitos
NoPenalty 13.00 0.9573 0.8914 29.9742

L2 12.33 0.9592 0.9053 29.3393
OL1/2 12.00 0.9604 0.9160 30.6111
S L1/2 11.67 0.9589 0.9245 30.3067
OGL 12.00 0.9617 0.9264 33.0595
S GL 11.00 0.9628 0.9355 30.5098

Seeds
NoPenalty 13.33 0.9737 0.9522 13.4081

L2 12.67 0.9761 0.9554 13.5387
OL1/2 12.33 0.9791 0.9582 13.8205
S L1/2 11.67 0.9797 0.9676 13.2730
OGL 12.33 0.9792 0.9629 14.7718
S GL 11.33 0.9813 0.9749 12.7701

Iris
NoPenalty 13.67 0.9715 0.9296 13.4447

L2 13.00 0.9719 0.9390 13.4420
OL1/2 12.67 0.9723 0.9458 14.3637
S L1/2 12.33 0.9743 0.9554 13.5318
OGL 12.33 0.9748 0.9522 16.1023
S GL 11.00 0.9791 0.9629 14.2630

Wine
NoPenalty 12.67 0.9872 0.9729 20.4322

L2 12.67 0.9892 0.9753 20.4173
OL1/2 12.00 0.9896 0.9770 21.3012
S L1/2 11.50 0.9911 0.9814 20.5545
OGL 11.67 0.9906 0.9798 21.1104
S GL 10.50 0.9915 0.9833 20.1607

Liver
NoPenalty 13.33 0.9937 0.9823 15.5081

L2 12.67 0.9943 0.9838 15.4588
OL1/2 12.33 0.9947 0.9858 16.4440
S L1/2 11.33 0.9951 0.9861 15.9798
OGL 11.00 0.9948 0.9868 17.4374
S GL 10.33 0.9962 0.9902 16.1645

Sonar
NoPenalty 12.67 0.9825 0.9756 12.6535

L2 12.67 0.9831 0.9787 12.1906
OL1/2 12.33 0.9860 0.9830 12.9125
S L1/2 12.00 0.9909 0.9852 12.5690
OGL 12.33 0.9892 0.9849 13.7648
S GL 11.67 0.9918 0.9860 11.7338

Diabetes
NoPenalty 13.00 0.9925 0.9937 17.7933

L2 12.50 0.9936 0.9947 17.1156
OL1/2 11.67 0.9954 0.9950 17.4822
S L1/2 11.33 0.9967 0.9955 17.1170
OGL 11.67 0.9961 0.9953 18.4761
S GL 11.33 0.9978 0.9961 17.3682

4.2. 5-bit parity problem

For the parity problem, there is an input set of 2n samples in n-dimensional space, and every sample
is an n-bit binary vector. We consider a 5-bit parity problem which has an input set with 25 samples in
5-dimensional space; the ideal output equals to 1 if the number of 1 in the samples is odd, otherwise
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it equals to zero. Here, using the above method, we test the performance of our proposed smoothing
elastic net regularizer.

Similarly, we can study the structure of SPSNNs. We select P = 13, N = 4, Q = 16, and 1 for the
number of the nodes of the input,

∑
1,
∏

, and
∑

2 layers, separately. In the interval [−0.5, 0.5], the
initial weights are randomly selected, the learning rate η is 0.0045, and the regular factor τ is 0.001.
For each learning algorithm we carry out 20 experiments, and we train up to 40,000 steps or we stop
once the error is less than 1e − 4. So, as to assess the sparsity and convergence of the smoothing elastic
net regularizer, we compare the average error (AVE) and the number of remaining hidden neurons after
pruning (RNN) with the no regularizer, the L2 regularizer, the original L1/2 regularizer, the smoothing
L1/2 regularizer, the original group Lasso regularizer, and the smoothing elastic net regularizer, which
are listed in Table 3.

Table 3. Emulation results for 5-bit parity problem.

Learning AVE RNN
Methods
NoPenalty 0.004433 17.00
L2 0.003967 17.00
OL1/2 0.003929 17.14
S L1/2 0.004033 17.33
OGL 0.003925 17.00
S GL 0.003471 16.71

The results show that the proposed smooth elastic net regularizer outperforms the no regularizer,
the L2 regularizer, the original L1/2 regularizer, the smoothing L1/2 regularizer, and the original group
Lasso regularizer.

Figure 2(a) shows the error performance of the original group Lasso regularizer and smoothing
elastic net regularizer via the 5-bit parity problem. Figure 2(b) shows that the norm of the gradient
curve of the error function, based on the 5-bit parity problem, approaches a small positive constant.
This indicates that the smoothing elastic net regularizer removes the oscillation of occurring in the
original group Lasso regularizer in the learning process.

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration 104

10-3

10-2

10-1

100

E
rr

o
r

SGL
OGL

(a) The curve of error function
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n
o
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f 
g
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d
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n
t

SGL
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(b) The curve of norm of gradient

Figure 2. The performance results based on 5-bit parity problem with OGL and S GL.
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4.3. Function approximation problem

In this example, we study the multi-dimensional Gabor function to compare the approximation
performance of the above algorithms.

k(x, y) =
1

2π(0.5)2 exp(−
x2 + y2

2(0.5)2 )cos(2π(x + y)).

As described at the beginning of this paper, we learn the structure of the SPSNNs. Then, we select
P = 13, N = 4, Q = 16, and 1 for the number of the nodes of the input layer,

∑
1 ,
∏

, and
∑

2 layers,
separately.

In this experiment, we select 169 training samples from an evenly spaced 6 × 6 grid on the
square −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5. In the interval [−0.5, 0.5], the initial weights are randomly
selected, the learning rate η is 0.0028, and the regular factor τ is 0.001. For each learning algorithm
we carry out 20 experiments, and we train up to 40,000 times or until the error is less than 1e − 4 stop
iterations.

To assess the sparsity and convergence of the smoothing elastic net regularizer, we compare the
average error (AVE) and the number of remaining hidden neurons after pruning (RNN) with the no
regularizer, the L2 regularizer, the original L1/2 regularizer, the smoothing L1/2 regularizer, the original
group Lasso regularizer, and the smoothing elastic net regularizer, which are shown in Table 4. We can
see our proposed smoothing elastic net regularizer is superior to the no regularizer, the L2 regularizer,
the original L1/2 regularizer, the smoothing L1/2 regularizer, and the original group Lasso regularizer.

Table 4. Emulation results for identifying the Gabor function.

Learning AVE RNN
Methods
NoPenalty 0.003940 18.00
L2 0.003560 18.00
OL1/2 0.003783 17.67
S L1/2 0.004486 17.37
OGL 0.003523 16.87
S GL 0.003286 16.14

For each learning algorithm, we show the error function and the norm of gradient of one of the
20 experiments after 40,000 epochs in Figures 3–5. Figure 3(a) shows the oscillation phenomenon of
no regularizer, the L2 regularizer,the original L1/2 regularizer and the original group lasso regularizer.
Figure 3(b) shows the error curve of the smoothing L1/2 regularizer and the smoothing elastic net
regularizer. Figure 4(a) shows the norm of gradient curve of the no regularizer, the L2 regularizer,
the original L1/2 regularizer, and the original group Lasso regularizer. Figure 4(b) shows the norm
of the gradient curve of the smoothing L1/2 regularizer, and the smoothing elastic net regularizer.
Obviously, it approaches to a small positive constant. Figure 5 shows a typical performance for
one of 20 experiments, and we can see that it has a good approximation effect compared with other
algorithms. In each learning algorithm for the same parameters, we get the corresponding results.
We can see the learning method with the smoothing elastic net regularizer converges faster than
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other learning methods, and the smoothing elastic net regularizer method overcomes the numerical
oscillation phenomenon. It also shows that during the iterative process the error function curves are
monotonically decreasing and converge to zero, which also validates our theoretical results.
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Figure 3. The performance results of the error function for the above algorithms.
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Figure 4. The performance results of the gradient norm for the above algorithms.
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Figure 5. The approximation result of the smoothing elastic net regularizer.
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4.4. Prediction problem

To verify the effectiveness of the algorithm further, this part takes an interval shield tunneling project
of Metro Line 9 in Zhengzhou City, China, as an example. In order to monitor the impact of the
subway shield tunneling process on the surface buildings and structures, 10-meter intervals are used to
set up settlement observation points in advance in each shield tunneling section, and the surrounding
structures and buildings are monitored. JGC1, the closest settlement observation point of the signal
tower to the right line of the shield structure, is selected as the objective of study, and the Leica DNA03
level is used to collect data 10 days before the shield structure is excavated to the closest point of JGC1,
for a total of 40 days, and the frequency of observation is once a day. In this experiment, we use the
data of the first 30 days as the training data set and the data of the last 10 days as the test data set (see
Table 5).

Table 5. Measured settlement of metro shield at point JGC1.

Time JGC1 (mm) Time JGC1 (mm)
2015.3.18 +0.21000 2015.3.31 0.003286
2015.3.19 -0.13000 2015.4.2 +0.10000
2015.3.20 +0.11000 2015.4.3 -0.02000
2015.3.21 -0.06000 2015.4.4 +0.08000
2015.3.22 -0.23000 2015.4.5 -0.16000
2015.3.23 -0.23000 2015.4.6 +0.06000
2015.3.24 -0.15000 2015.4.7 -0.18000
2015.3.25 -0.03000 2015.4.8 +0.28000
2015.3.26 0.003286 2015.4.9 -0.07000
2015.3.27 0.003286 2015.4.10 +0.07000
Time JGC1 (mm) Time JGC1 (mm)
2015.4.11 +0.01000 2015.4.22 +0.01000
2015.4.12 -0.01000 2015.4.23 0.00000
2015.4.13 -0.15000 2015.4.24 +0.19000
2015.4.14 +0.08000 2015.4.25 -0.21000
2015.4.15 -0.09000 2015.4.26 +0.10000
2015.4.16 +0.14000 2015.4.27 -0.12000
2015.4.17 -0.02000 2015.4.28 +0.05000
2015.4.18 -0.26000 2015.4.29 +0.15000
2015.4.19 +0.42000 2015.4.30 -0.17000
2015.4.20 -0.22000 2015.5.1 -0.07000

In this experiment, we learn the structure of the SPSNNs. Then, we select P = 5, N = 4, Q = 16,
and 1 for the number of the nodes of the input layer,

∑
1,
∑

2, and the output layer, respectively. We
use the sigmod activation function at the

∑
1 and output layers, respectively, and our stopping criteria

in this experiment is an error of less than 1 × 10−5 or 5000 iterations.
Figure 6 is the error curve of the training set with 5000 iterations, in which red is the error curve

without the regularization term and blue is the error curve with the smoothing elastic net regularization,
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it can be obtained that the error of the network with the smoothing elastic net regularization decreases
faster, and after 500 iterations, the error is smaller than that without the regularization term, which
precisely verifies the theoretical results of this paper and the effectiveness of the proposed algorithm.
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Figure 6. The curve of the error function for no penalty and for the smoothing elastic net.

5. Conclusions

In this paper, a new batch gradient algorithm for SPSNNs with an L1 plus L2 regularization
algorithm is proposed as an effective weight pruning technique. It can handle multi-output regression
and multi-class classification problems within a unified framework. This algorithm obtains good
performance in both Lasso and ridge regression, penalizing the weights by reducing the weight vectors
to zero, which is more efficient than other various pruning strategies. Moreover, the theoretical results
and the advantages of this algorithm are also illustrated by numerical experiments.
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