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The avian immune system responds to Salmonella infection by expressing
cytokines and chemokines. We hypothesized that the immune status of
Salmonella Typhimurium (ST) challenged neonatal broilers would differ from
the uninfected treatment. The objective of this experiment was to evaluate
12 cytokines. Day of hatch male chicks were randomly allocated into a
control or ST challenged group. At day three of age, sterile diluent or 5.0 ×
108 CFU of ST was given orally to each chick. Blood was obtained 24 h post
challenge and serum separated for later analysis (n = 30 chicks/treatment).
Significant (p ≤ 0.05) increases in pro-inflammatory cytokines-interleukin-6
(IL-6), IL-16, and IL-21; anti-inflammatory cytokines- IL-10; chemokines-
regulated on activation, normal T cell expressed and secreted (RANTES),
macrophage inflammatory protein-1β (MIP-1β), and MIP-3α; colony
stimulating factors-macrophage colony-stimulating factor (M-CSF); and
growth factors-vascular endothelial growth factor (VEGF) were observed in
the serum of the challenged chicks when compared to the control. No
significant differences were observed in IL-2, interferon gamma (IFNγ), and
IFNα. These data indicate the detection of mucosal immune responses in
broiler chickens following ST infection. The heightened levels of pro-
inflammatory cytokines, chemokines, and colony stimulating factors align with
known inflammatory mechanisms, like the influx of immune cells. However, the
elevation of IL-10 was unexpected, due to its immunoregulatory properties.
Notably, the rise in VEGF levels is compelling, as it suggests the possibility of
tissue repair and angiogenesis in ST infected birds.
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1 Introduction

Salmonellosis is a zoonotic disease caused by Salmonella enterica serovars resulting in
an estimated 1.4 million cases of foodborne illness and 400 deaths in the United States
annually (CDC, 2022). There are more than 2,600 Salmonella enterica serovars, but less
than 100 of these serovars are known to cause human salmonellosis (USDA-FSIS, 2021).
Salmonella Typhimurium (ST), S. Enteritidis (SE), and S. Kentucky (SK) are the three most
common isolates found in contaminated poultry products (Van Immerseel et al., 2005;
Kumar et al., 2019; Pineda et al., 2021). Poultry infected with paratyphoid Salmonella are
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typically asymptomatic but can continually shed into the
environment causing cross-contamination of carcasses and
morbidity in humans (USDA-FSIS, 2021).

Salmonella are facultative anaerobes that can survive in low
oxygen, warm, and humid environments (Parkin et al., 2012; Kurtz
et al., 2017). Many Salmonella infections occur after ingestion of
food or water contaminated with the pathogen (Griffin and
McSorely, 2011; Pham and McSorely, 2015; Kurtz et al., 2017).
Transmission in poultry is typically via the fecal-oral route (Wigley,
2014; Pham and McSorely, 2015). Once ingested, the organism may
adhere to intestinal cells through the pilli or fimbriae where they can
colonize the small intestine (Vegad and Katiyar, 2002; Dar et al.,
2017). Salmonella can then be transported to lymphoid tissues of the
gastrointestinal tract and are disseminated throughout the
bloodstream (Griffin and McSorely, 2011; Pham and McSorely,
2015). Inflammatory processes will occur and lead to increased
expression of cytokines along with an influx of heterophils and
monocytes (Wigley, 2014; Swaggerty et al., 2019).

Cytokines are low molecular weight cell signaling proteins that
are secreted by immune cells to support and regulate inflammation.
They are produced by a variety of cells and play critical roles in
inflammation, acute phase protein production, chemotaxis, cell
proliferation, and differentiation (Kogut, 2000; Zhong et al.,
2019). Pro-inflammatory cytokines are produced by activated
macrophages, T helper 1 (Th1) cells, and dendritic cells and are
involved in the upregulation of immune cells at inflammatory sites
(Wigley and Kaiser, 2003; Rothwell et al., 2012; Kaiser and Staheli,
2014). Anti-inflammatory cytokines are a series of
immunoregulatory molecules that control the pro-inflammatory
responses (Kogut, 2000; Rothwell et al., 2004). Chemotactic
cytokines, or chemokines, play a major role in recruiting
lymphocytes to the site of inflammation (Mohammed et al.,
2007; Sun et al., 2012). They are functionally divided into the CC
and CXC superfamilies. These groups are determined by the
positioning of cysteine residues (Kirkaldy et al., 2003; Kogut
et al., 2005). Colony stimulating factors are a family of growth
factors involved in hematopoiesis, while the family known as growth
factors are reported to play important roles in cell proliferation,
migration, and differentiation during tissue repair and regeneration
(Kogut, 2000; Murphy and Weaver, 2017).

The present study examined multiple cytokines during a
Salmonella infection. We hypothesized that the immune profile
of ST challenged chicks would differ from uninfected neonatal
broilers. The objective of the current report was to characterize
the immune profile of ST infected broilers by evaluating twelve
serum cytokines.

2 Materials and methods

2.1 Experimental design

All experimental procedures were approved by the Texas A&M
University Institutional Animal Care and Use Committee (IACUC
2016-0270 and 2019-0171) and the Institutional Biosafety
Committee (IBC 2016-112 and 2019-073). Serum samples were
used from a previous study (Zhao, 2021). Briefly, day-of-hatch, non-
vaccinated male broiler chicks were placed on clean pine shavings in

two ABSL-2 floor pens with an environmentally controlled and age-
appropriate climate to ensure uniformity. Birds were fed a balanced
unmedicated starter diet that met or exceeded industry
recommendations for nutrition (Cobb-Vantress, 2018). Upon
arrival, chick tray papers were cultured to confirm that the
chicks were Salmonella negative. After 3 days of acclimation,
chicks were orally challenged with 0.5 mL of sterile tryptic soy
broth (TSB) or 5.0 × 108 CFU of ST in TSB to ensure a
successful challenge of all chicks. The level of colonization of ST-
infected chicks was 7.23 ± 0.74 log10 CFU/g of cecal contents
compared to 0 log10 CFU/g of cecal contents observed in the
control group. Twenty-four hours post-challenge, blood samples
were collected from euthanized birds by cardiac puncture. Blood was
collected, kept at room temperature for 2 h, and centrifuged at
2,000 x g for 10 min at 4°C. Serum was separated and transferred
into 2 mL aliquots and stored at −80°C for future use. A total of
30 serum samples per treatment were analyzed.

2.2 Serum preparation

Serum samples were thawed at room temperature the morning
of the experiment. Once unfrozen, serum samples were centrifuged
at 10,000 x g for 15 min at 4°C to remove particulates.

2.3 Cytokine assays

A workflow of serum preparation and the cytokine procedure is
shown in Figure 1. The study was conducted with the Luminex
MAGPIX® System (EMD Millipore Corp., Millerica, MA,
United States). A MILLIPLEX® Chicken Cytokine/Chemokine
Panel (EMD Millipore Corp.) was used to quantify 12 different
analytes. Interferon alpha (IFNα), interferon gamma (IFNγ),
interleukin 2 (IL-2), interleukin 6 (IL-6), interleukin 10 (IL-10),
interleukin 16 (IL-16), interleukin 21 (IL-21), macrophage
inflammatory protein-1 beta (MIP-1β), macrophage inflammatory
protein-3 alpha (MIP-3α), regulated on activation, normal T cell
expressed and secreted (RANTES), macrophage colony-stimulating
factor (M-CSF), and vascular endothelial growth factor (VEGF) were
evaluated. Detailed definitions of each cytokine are explained in
Table 1. The assay was run according to the manufacturer’s
instructions with standards, samples and quality controls in
duplicate. Premixed antibody immobilized beads, quality controls,
wash buffer, and the serum matrix were prepared prior to use.
Overnight incubation with shaking at 4°C (16–18 h, 500 rpm)
occurred and a handheld magnetic separation block (EMD
Millipore Corp.) was used during the plate washing steps.

2.4 Data analysis

Individual microbeads were identified and quantified based on
fluorescence signals. Data from the beads were analyzed via
Luminex® xPONENT® Acquisition Software (Luminex Corp.,
Austin, TX, United States) and then exported to the Belysa™

Analysis Software (EMD Millipore Corp.) for further
examination. A detection target of 50 beads per region was
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FIGURE 1
Workflow of experimental design. The figure was created in BioRender.com by Allison Milby-Blackledge.

TABLE 1 Analytes observed, where they are produced, their function and type of cytokine response.

Analyte Produced By Response Function

IFNα Neutrophils, Dendritic Cells, Macrophages Anti-inflammatory Anti-viral; MHC I expression

IFNγ Natural Killer Cells, T cells (Th1) Pro-inflammatory Macrophage activation; Ig class switching; anti-viral; anti-tumor

IL-2 T cells (Th1) Pro-inflammatory T cell growth and proliferation; macrophage activation; B cell growth

IL-6 T cells, B cells, Macrophages, Fibroblasts Pro-inflammatory Acute phase protein production; B and T cell activation; hematopoiesis

IL-10 Monocytes/Macrophages, T cells, B cells Anti-inflammatory Downregulate pro-inflammatory responses; tissue homeostasis

IL-16 B cells, Mast Cells, Eosinophils, Macrophages,
Fibroblasts

Pro-inflammatory Chemotactic activity; MHC II expression; induce inflammation

IL-21 Natural Killer Cells, T cells (Th1 or Th2) Pro-inflammatory Regulate proliferation; immunomodulatory; effector functions of B, T, natural
killer, and dendritic cells

M-CSF Bone Marrow, Fibroblasts, Endothelial Cells Colony Stimulating
Factor

Regulates growth, differentiation, and activation of monocytes/macrophages

MIP-1β/CCL4 Monocytes/Macrophages Chemokine Aid in the release of pro-inflammatory cytokines; chemotaxis of neutrophils and
lymphocytes

MIP-3α/
CCL20

Lymphoid Tissues Chemokine Chemotactic activity to epithelial cells surrounding lymphoid tissues

RANTES/
CCL5

T cells, Monocytes, Platelets Chemokine Recruit leukocytes to inflammatory sites; activation and proliferation of natural
killer cells

VEGF Macrophages, Tumor Cells, Platelets Growth Factor Promote growth of new blood vessels

All analyte definitions are comprised from avian immunology literature apart from Janeway’s Immunobiology, ninth Edition.

Kogut, 2000; Wigley and Kaiser, 2003; Min and Lillehoj, 2004; Mohammed et al., 2007; Coble et al., 2011; Yang et al., 2011; Rothwell et al., 2004; Rothwell et al., 2012; Kaiser and Staheli, 2014;

Murphy and Weaver, 2017; Al-Khalaifah and Al-Nasser, 2018; Van der Eijk et al., 2019.
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inputted into the software; standards, quality controls, and sample
wells with bead counts of less than 36 were excluded. The Belysa™

software was used to examine the standard curve. Raw data was
transferred from the Belysa™ Analysis Software to Microsoft Excel
(Microsoft, Redmond,WA, United States) for statistical analysis and
removal of outliers.

2.5 Statistical analysis

Statistical analysis was performed using JMP Pro 15 (SAS
Institute Inc., Cary, NC, United States). Data were analyzed via a
Student’s t-test and compiled into Microsoft Excel for further
analysis and presented as mean ± the standard error of the mean
(SEM). Substantial outliers that exceeded two standard deviations
from the mean (SD) were removed. A p-value of less than 0.05 was
considered statistically significant.

3 Results

The levels of cytokines, chemokines, colony-stimulating factors,
and growth factors were quantitatively detected. Differences in n

may be seen between the control and ST treatments of each analyte
due to variation from low bead counts, concentrations below the
readable limit, and outliers.

As shown in Figure 2, we observed that ST-challenged
neonatal broilers after 24 h post-infection had significant
increases in pro-inflammatory cytokines- IL-6 (p = 0.0025),
IL-16 (p = 0.0196), and IL-21 (p = 0.0066). No significant
differences were observed in IL-2 (p = 0.1778) and IFNγ (p =
0.1316). It is interesting to note that IL-6 displayed a 2.04 fold
increase in the ST treatment compared to the control.

The concentration of anti-inflammatory cytokine- IL-10 (p =
0.0047) was significantly higher in the ST treatment than in the
control. No significant differences were observed on IFNα (p =
0.5044) concentrations in both groups. Both cytokines in this group
were above the minimum detectable concentrations set forth by the
manufacturer.

All chemokines tested in this experiment: RANTES (p = 0.0002),
MIP-1β (p = 0.0019), and MIP-3α (p = 0.0050), exhibited significant
increases in the ST group compared to the control group.

The mean concentration of the colony stimulating factor-
M-CSF in the ST treatment was significantly higher than the
control group (p = 0.0239) with a 1.26 fold increase in the ST
chicks compared to control chicks.

FIGURE 2
Cytokine and chemokine analysis of the serum of control and Salmonella Typhimurium (ST) challenged chicks. Day-old chicks were divided into
control and ST treatment groups. Birds in the treatment group were challenged with 5.0 × 108 CFU of ST. The levels of cytokines, chemokines, growth
factors, and colony-stimulating factors were analyzed. The target sample size (n) was 30 samples. However, n differs between control and ST treatments
of each analyte due to variation from low bead counts, concentrations that were below the readable limit, as well as outliers causing the actual n to
range from 23 to 27 samples for the control group and 26 to 29 samples for the ST treatment group. An asterisk (*) indicates concentrations that are
considered significant differences at p ≤ 0.05 compared to the control group.
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The mean concentration of the growth factor- VEGF (p =
0.0022) was significantly increased in ST-infected chicks
compared to the control. There were 24 control samples and
29 ST-infected samples that were viable.

4 Discussion

Cytokines represent a diverse array of secreted proteins that
serve as vital communication tools among all cells throughout the
body (Eckmann and Kagnoff, 2001). Data is limited when it comes
to systematic protein expression in poultry. Protein concentration
although generally more conserved than mRNA levels across
species, is not widely used to show cytokine levels in poultry
(Jiang, et al., 2023). This study was performed to better
understand the role the immune system has on combatting ST
infection in chickens, herein we report the significant upregulation
of protein expression in nine out of the twelve serum cytokines
analyzed in ST-infected chicks.

In poultry Salmonella infections, intestinal colonization can
cause inflammation, specifically to the distal ileum and ceca of
birds (Broz et al., 2012; Dar et al., 2017). This can cause rapid
expression of pro-inflammatory cytokines in newly hatched
chicks (Withanage et al., 2004). Interleukin 6 is a common
pleiotropic cytokine associated with Salmonella infection
(Kaiser et al., 2000). It is a cytokine that stimulates acute
phase protein production, inflammation, B cell proliferation
and differentiation (Wigley and Kaiser, 2003; Nishimichi
et al., 2006; Al-Khalaifah and Al-Nasser, 2018). Many studies
performed on mammalian species after Salmonella infection or
LPS challenge have been evaluated (Franchi, 2011; Abos et al.,
2016; Suksungworn et al., 2020; Huang, 2021). Previous studies
on mice support our findings of the significant increases in IL-6
protein concentrations following ST infection (Mathur et al.,
2012; Febriza et al., 2020). However, many experiments in
poultry focus on mRNA levels (Shebl et al., 2010). For
example, our study differs from Pineda et al.‘s study, where no
significant differences in IL-6 or IFNγ mRNA expression were
observed in the broiler cecal tonsils or liver when inoculated with
SK, ST, and SE (Pineda et al., 2021). However, our data correlates
to Kaiser and associates in vitro study, when specifically looking
at IL-6 (Kaiser et al., 2000). This study focused on primary chick
kidney cells (CKC) to determine the levels of pro-inflammatory
cytokines against ST and SE. Interleukin-6 mRNA levels were
significantly increased in the ST-infected CKC compared to
controls (Kaiser et al., 2000). In the current study, no
significant differences were observed in IL-2 which is
responsible for T-cell proliferation and activation of
macrophages or the antiviral type II interferon, IFNγ (Wigley
and Kaiser, 2003). Although parameters were not the same (2 h of
contact time with the cells instead of 24 h challenge to the chick),
our findings contradict what is found in the literature, as mRNA
expression of IFNγ and IL-2 were significantly downregulated
nearly fivefold when exposed to ST compared to the control
(Kaiser et al., 2000). Interleukin 16 is generated by B cells,
epithelial cells, macrophages, mast cells, fibroblasts, and
eosinophils. It is considered an inflammatory cytokine in
chickens that induces lymphocyte chemotaxis (Min and

Lillehoj, 2004; Kaiser and Staheli, 2014). Cytokines have been
reported to be expressed in the serum following a Salmonella
enterica challenge (Song et al., 2020). Our data not only correlates
to this statement but also is similar to Swaggerty et al.’s
experiment, where the addition of antioxidants in breeder hen
diets were used to protect against SE in the progeny. In Swaggerty
et al.’s study, cytokine and chemokine production was measured
in the serum using the MILLIPLEX® Chicken Cytokine/
Chemokine Panel and analyzed using the Luminex 200 xMAP
Technology. Chicks from the control fed hens had increased
levels of IL-16 in the serum (Swaggerty et al., 2023). Since chicks
in the protected biofactors and antioxidant (P(BF + AO)) feed
additive-fed hen group had a 32.6 percent reduction of SE, the
increase in IL-16 levels could be because the immune system is
having to work harder to fight off infection which could also be
linked to why we are seeing an increase in our ST group
(Swaggerty et al., 2023). Interleukin 21 is a cytokine of the cell
mediated immune system with immunomodulatory properties. It
regulates proliferation, differentiation, and effector functions on
T cells, B cells, and natural killer cells (Murphy and Weaver,
2017). In the present study, increases (p = 0.0066) of IL-21
concentrations were observed in the ST treatment, indicating
the involvement of immune cells. Although interesting, the body
of literature for avian IL-21 is limited to a characterization paper
(Rothwell et al., 2012) and the effect that Mycoplasma synoviae
and lentogenic Newcastle disease virus (NDV) coinfection have
on gene expression of chick embryos where it was concluded that
IL-21 mRNA expression of the liver and spleen were significantly
downregulated and the mRNA expression of the thymus was
significantly upregulated in NDV-infected embryos (Bolha
et al., 2013).

Anti-inflammatory cytokines act as immunoregulatory
molecules that return the immune system to baseline or
inhibit the Th1 response (Opal and DePalo, 2000; Kogut and
Arsenault, 2017). Interleukin 10 is primarily produced by T cells,
B cells, and monocytes/M2 macrophages (Chuang et al., 2016;
Murphy and Weaver, 2017). Much of our understanding
regarding the role of IL-10 in infectious disease originates
from observations in the murine model. It is generally
recognized that decreased IL-10 levels can promote resistance
to primary infection, while elevated levels can increase
susceptibility to intracellular pathogens (Rothwell et al., 2004).
Although some poultry studies demonstrate reduced IL-10 gene
expression, post-ST or SE challenge (Fasina et al., 2008; Redmond
et al., 2009; Crhanova et al., 2011), our findings correlate to
previous research conducted in ST-infected mice where increased
IL-10 production results are indicative of B cells and T cells
promoting and developing immune tolerance induced by ST
(Salazar et al., 2017).

Macrophages can produce a small heparin-binding class
(molecules that bind growth factors and promote tissue repair) of
cytokine that acts as a chemoattractant to bring leukocytes to
infected tissues, better known as chemokines (Martino et al.,
2012). The observed outcomes of the current study demonstrated
significant increases in MIP-1β (CCL4), MIP-3α (CCL20), and
RANTES (CCL5), which suggest the movement of immune cells
toward areas of inflammation (Hughes and Nibbs, 2018).
Macrophage inflammatory protein-1 beta is an inflammatory

Frontiers in Physiology frontiersin.org05

Milby-Blackledge et al. 10.3389/fphys.2024.1359722

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1359722


chemokine secreted by chicken monocytes/macrophages that
induces a pro-inflammatory response and chemotactic migration
of heterophils and lymphocytes (Yang et al., 2011; Van der Eijk et al.,
2019). A previous investigation performed by Kogut, He, and Kaiser
that centered on examining the activation of chicken heterophils
triggered by lipopolysaccharide (LPS), showcased the generation of
CXC and CC chemokines, notably MIP-1β, in response to infection
(Kogut et al., 2005). Our current findings are consistent with the
literature, implying that these outcomes indicate the ability of
chemokines to guide heterophil recruitment to the inflammation
site (Kogut et al., 2005). Macrophage inflammatory protein-3 alpha
is a chemokine that recruits dendritic cells during an inflammatory
response (Aziz et al., 2016). It is produced by activated epithelial cells
and attracts T cells to the site of inflammation (Akahoshi et al.,
2003). Reports of MIP-3α in poultry Salmonella infection are
limited. Recent studies of MIP-3α expression are mainly found in
human medicine (Aziz et al., 2016) However, a study performed by
Withanage and others, showed increased expression of the MIP
family chemokines in the ileum and cecal tonsils of ST infected
birds. Although this is not specific to MIP-3α, their results correlate
to what is seen in the current study and they speculated that the MIP
family chemokines are involved in the recruitment of T cells to the
intestines and protective immunity to the host (Withanage et al.,
2005). The chemokine RANTES, acts as a pro-inflammatory
chemokine, attracts T cells and basophils to the site of
inflammation, and induces natural killer cell proliferation and
activation (Maghazachi et al., 1996; Coble et al., 2011). Coble and
others measured a significant increase in RANTES mRNA levels in
broilers infected with Salmonella compared to hens (Coble et al.,
2011). Dorner and associates found that when looking at the initial
expression of all of these chemokines combined in the murine
immune system, the role of chemoattractants MIP-1β and
RANTES paired with MIP-1α amount to coactivation of
macrophages; and when these chemokines are then paired with
IFNγ, they act as cell mediated cytokines used by the natural killer
cells to bridge components of the Th1 response (Dorner et al., 2002).

Colony stimulating factors are a family of growth factors
involved in the development, proliferation, and survival of
hematopoietic cells (Kogut, 2000). In this experiment, M-CSF is
the colony-stimulating factor of interest, which is derived from bone
marrow fibroblasts and endothelial cells. Macrophage-colony
stimulating factor is a growth factor that regulates the
development, proliferation, and differentiation of macrophages
(Kogut, 2000; Al-Khalaifah and Al-Nasser, 2018). Previous
research has shown that Salmonella can cause impairment to
M-CSF-induced macrophage recruitment and decreases levels of
M-CSF secreted by epithelial cells in mice (Zhang et al., 2014).
However, M-CSF has not been widely observed in poultry
Salmonella infections and data to compare to this study are
limited. Other researchers have found M-CSF-like activity in the
chicken embryo specifically the egg yolk, amniotic fluid, and
chorioallantoic fluid during development (Shao et al., 1994; Shao
et al., 1996). Levels in these studies were downregulated after
incubation of the egg. These results contradict what is viewed in
the current experiment where M-CSF was significantly upregulated
in ST infected broilers compared to control broilers. In another
study conducted by Sakurai et al., the administration of M-CSF was
found to control antigen-specific immune responses due to increases

in B cells, natural killer cells, and the activation of murine
macrophages for tumor killing (Sakurai et al., 2008). Our results
in the current study showed that M-CSF could be an analyte of
interest for further research on Salmonella infection of poultry,
because it could be involved in regulating macrophage and
monocyte populations or myeloid cells (Ushach and Zlotnik, 2016).

Growth factors are biologically activated molecules that are
secreted in response to cell proliferation, migration, and
differentiation during tissue repair and regeneration (Stone et al.,
2022). Vascular endothelial growth factor is specifically involved in
promoting endochondral ossification and angiogenesis (Zhang et al.,
2013; Murphy and Weaver, 2017). Vascular endothelial growth
factor is not a typical cytokine of interest for Salmonella
infection. Previous research uses VEGF for exploring avian
diseases like tibial dyschondroplasia (TD; Zhang et al., 2013;
Huang et al., 2017), tumor angiogenesis (Duffy et al., 2013), and
increasing angiogenesis in chicken embryo membranes (Fernandez
and Bonkovsky, 2003). In the current study, we saw significant
increases of this growth factor in ST infected broiler chicks
compared to the control. We are unsure why VEGF was
upregulated in Salmonella infected poultry, however, it is
plausible that it could be linked to possible tissue repair and
blood vessel growth during ST infection.

Our research characterized the immune profile of ST infected
neonatal broilers. As we know, immune cells are an important part
of the avian lymphatic system, they move systemically through the
blood looking for foreign invaders, or they can reside and function
in lymphoid tissues (Farber, 2021). Inflammation is a complex
process that occurs in response to foreign bodies. It recruits cells
from the blood and lymph to infected tissues and produces
cytokines (French et al., 2020). After testing serum cytokine
levels, these data suggest that the anti-inflammatory properties
of IL-10 and the pivotal role IL-6 has in T cell and B cell mediated
immunity, could be associated with the switch from cell mediated
immunity to humoral immunity (Tan and Coussens, 2007; Choy
and Rose-John, 2017; Huang, 2021). Increased concentrations of
IL-10 could also be linked to developing tolerance to ST
colonization by preventing damage to the host without affecting
pathogen numbers (Opal and DePalo, 2000; Dorner et al., 2002;
Tan and Coussens, 2007; Kogut and Arsenault, 2017).
Furthermore, the increase in VEGF could potentially be linked
to promoting restoration of damaged tissues and angiogenesis in
ST infected birds based on previous research performed in TD
(Zhang et al., 2013; Huang et al., 2017). Although 24 h post-
infection is typically viewed as premature for the onset of
humoral immunity, elevated IL-6, IL-10, and chemokine levels
are compelling and we believe future trials will allow us to further
examine these cytokines by using antibody titers to determine
B cell development and immune reactions occurring in the body.
We also believe that further investigation into cell populations and
their involvement with cytokine expression could support the
current data that is being presented.
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