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1 Introduction

1.1 Saline-alkali soils not only a�ect food security but also
hinder human social development

Soil salinization has always been a major threat to the sustainable development of
agriculture and the improvement of land use efficiency (Meena et al., 2019; Kumawat et al.,
2022). Salt-alkali soil, characterized by the accumulation of salt in the surface layer and an
excessively high pH level, can be broadly categorized into three types: saline-alkali soil,
alkaline soil, and saline-alkali soil. When the soil salt ion content is higher than 0.1%,
the soil pH is higher than 8.0 or the sodium alkalinity is higher than 5%, it can be called
saline-alkali soil. In nature, soil salinization and alkalization often occur simultaneously.
Soil salinization is divided into primary salinization and secondary salinization. Primary
salinization is mostly caused by climate, hydrology, and topography, while secondary
salinization is mostly caused by the overuse of fertilizers and pesticides as well as irrational
irrigation methods (Negacz et al., 2022). High salinity and elevated pH levels exert
multifaceted negative impacts on soil. Firstly, salt ions attract and immobilize soil particles,
resulting in soil compaction and decreased porosity, which in turn hinders the exchange
of water, air, and nutrients with plant roots. Additionally, high salinity diminishes the soil’s
capacity to absorb beneficial nutrients. Secondly, elevated pH levels cause cations to bind
to soil particles, further contributing to soil compaction and affecting the availability of
micronutrients as well as organicmatter decomposition. Ultimately, these negative impacts
severely constrain soil fertility and plant growth. Currently, more than 100 countries
around the world are affected by soil salinization. The most severe soil salinization
is primarily found in regions such as North, East, and Southern Africa, the western
United States, the Middle East, Central Asia, western China, the Yellow River basin, as well
as Australia (Li et al., 2019; Negacz et al., 2022). The global map of saline-alkali soils in 2021
shows that 20–50% of irrigated soils in all continents have excessive salinity (FAO, 2021),
which means that more than 1.5 billion people around the world are facing significant
challenges in food production due to soil degradation.Moreover, about 1.5million hectares
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of irrigated land are rendered unfit for cultivation due to severe
salinization every year (Dey et al., 2021). Hence, the urgent need
arises for the improvement and utilization of saline-alkali soils,
given their significance as a crucial reserve land resource for food
production and ecological environment construction.

1.2 Di�culty in utilizing phosphorus (P) is a
non-negligible problem in soil salinization

The negative impact of salinization on soil is multifaceted.
Firstly, the high salt content and high pH value of saline-alkali
soil lead to soil hardening, reducing the soil’s porosity and
nutrient retention capacity (Negacz et al., 2022). Additionally,
soil salinization also reduces the activity of soil microorganisms,
affecting soil respiration and the activity of various enzymes such
as alkaline phosphatase, urease, and catalase (Kumawat et al., 2022).
In terms of plant growth, the high osmotic pressure of saline-alkali
soil can interfere with the water absorption capacity of root cells,
leading to cell dehydration and thus affecting the normal growth
of plants. Additionally, saline-alkali soil can also increase plant
uptake of soluble salt ions, which may have a negative impact on
the material stability within plant cells, reducing photosynthetic
rates and leading to plant wilting or even death (Parida and Das,
2005).More in-depth research has shown that increased salinity can
lead to a series of problems such as ion toxicity, nutrient limitation,
high osmotic stress, and oxidative stress. These problems can cause
serious damage to processes such as enzyme activity, DNA, RNA,
cell division, and protein synthesis in plants (Zhang et al., 2015;
Kumawat et al., 2022).

The issue of P immobilization in saline-alkali soils should be
given high priority because P is an essential element for plant and
microbial growth. Although the total P content in some saline-
alkali soils is relatively high, most of the P (60–90%) is fixed
in the form of cations such as calcium phosphate, magnesium
phosphate, aluminum phosphate, and iron phosphate (Jiang et al.,
2019; Dey et al., 2021). Moreover, phosphorus fertilizers applied to
saline-alkali soils tend to be preferentially fixed in the inorganic
phosphorus pool, rather than being directly utilized by plants.
To mitigate these effects, further research is needed to investigate
how to improve the utilization efficiency of P in soil and mitigate
the negative impact of salinization on plant growth by improving
soil conditions.

2 Microbial remediation and mineral
amelioration have received much
attention in the remediation of
saline-alkali soils

Currently, scholars at home and abroad have proposed a
series of improvement measures for saline-alkali soil, including
water conservancy, physics, chemistry, and biology. Physical
improvement is usually achieved by reducing soil salinity, mainly
based on the principles of water and salt movement. Basic methods
include soil leaching, which involves the dissolution of salts in
saline-alkali soils through freshwater irrigation. The resulting salt
components are then transported to deeper soil layers through

infiltration or drained away through drainage measures. These
methods can also be classified as water conservancy engineering
restoration technologies (Kumawat et al., 2022). The chemical
improvement method for saline-alkali soil is mainly achieved by
adding chemical reagents that react with salt-alkali ions (mainly
Na+) in the soil. This reduces the content of soil salt-alkali
components and improves the physical and chemical properties
and soil structure. Commonly used chemical reagents include
gypsum/phosphogypsum, humic acid, superphosphate, peat, and
vinegar residue, etc. The biological improvement method (mainly
plants and microorganisms) can essentially improve the physical
and chemical properties of soil, while increasing soil fertility.
It is a technology that integrates economic, environmental, and
ecological effects. Among them, soil microorganisms are the most
dynamic component of soil, affecting soil energy flow and material
circulation through metabolic activities. Many salt-tolerant and
alkali-tolerantmicroorganisms can not only reduce soil salinity, but
also have the functions of nitrogen fixation, increasing potassium
and phosphate dissolution. Meanwhile, these microorganisms
secrete active substances, including plant hormones, iron carriers,
antioxidants, and extracellular polysaccharides, which can activate
the antioxidant enzyme system in plants and promote their growth.
Compared to conventional physical and chemical improvement
or remediation methods, in agricultural soil improvement, the
choice of technology needs to be very cautious, which also leads to
many physical and chemical improvement methods being rejected
due to cost, environmental protection, etc. In current research,
microbial remediation of saline-alkali soil has occupied a major
position in most countries. Therefore, the introduction of salt-
tolerant functional microorganisms can bolster the remediation of
saline-alkali soils and augment plant resistance to salt stress.

3 The di�culty of P utilization in
saline-alkali soils gives a place to
phosphate solubilizing
microorganisms (PSMs)

PSMs are a type of soil functional microorganism that was first
discovered in the roots of farmland crops (Dey et al., 2021). It
showed that in the community of salt-tolerant microorganisms,
most species of PSMs are considered to be key plant growth-
promoting microorganisms, which have the ability to solubilize P
and K, and produce various metabolites that promote plant growth
under saline conditions (such as plant growth hormones, iron
carriers, ACC deaminase, and antagonists of plant pathogens) (Su
et al., 2023). The most beneficial function of PSMs is to convert
non-biologically available sources of P (both organic and inorganic)
in soil into bio-available forms: 1. solubilization of inorganic P salts
through cell-produced biological functions such as protonation,
acidification, chelation, etc. 2. mineralization of organic P salts
through enzyme activities (such as phosphatase, phosphonate
hydrolase, phytases, and C-P lyase) (Ahemad, 2015; Hu and Chen,
2023). However, we must recognize that high salt concentration
environments can lead to cell dehydration, shrinkage, and loss of
activity (Rath and Rousk, 2015). Therefore, in order to improve
the effect of microorganism’s application in saline-alkali soil, it is
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necessary to screen out and select highly tolerant PSMs in saline-
alkali soil during the process, and to use other technologies to
maintain the activity of PSMs and their effect.

4 Phosphogypsum is a low-cost
material for ameliorating saline-alkali
soils

The application of gypsum in improving saline-alkali soil has
been widely recognized, and the key lies in effectively reducing
soil salt content through the displacement of Ca2+ and Na+

(Basak et al., 2022). Non-renewable natural gypsum minerals
pose challenges for large-scale agricultural use. Meanwhile, due to
industrial growth, government subsidies have decreased (especially
in developing countries), and the quality of gypsum raw materials
has decreased, leading to high costs of chemical remediation and
further impeding the repair of saline-alkali soils (Qadir and Oster,
2004).

With the rapid development of industry, the production of
gypsum and its similar by-products (such as PG and desulfurization
gypsum) is gradually increasing, and the main component of
these by-products is CaSO4 · 2H2O. PG is a solid waste from
the wet phosphoric acid process, and its treatment is difficult. It
is usually only stored or discarded in a centralized manner. The
environmental hazards of PG mainly come from the release of
P and heavy metals that are enriched in the soil or water body
after large-scale accumulation, leading to high local concentrations
and ecological damage. However, with the progress of process
technology and the implementation of relevant policies, the content
of polluting elements in PG produced in industrial production has
been significantly reduced. For example, the weight percentage of
heavy metals such as Pb, Cd and Cr in the PG used in the study
of Chen et al. (2021) was ≤0.002 wt%. Additionally, countries
such as Brazil, Spain and Lebanon have widely used PG as a soil
amendment (Abril et al., 2009; Kassir et al., 2011; Costa et al., 2021).

Besides reducing salinity by replacing Na+, PG can also
improve soil pore structure, increase water permeability, reduce
soil redox potential (reduce negative values), and reduce CH4

emissions in saline-alkali soils (Khatun et al., 2021). Armstrong
(1989) compared the solubility, exchangeable sodium replacement,
and clay dispersion inhibition of three calcium amendments (PG,
rock gypsum, saturated gypsum solution), and the results showed
that PG was the most effective in saline-alkali soil improvement.
Additionally, the total P content in PG is about 2.5–7.5%, and its
reuse as a P fertilizer can reduce the damage to the environment
and natural resources caused by P mining. However, under alkaline
soil conditions, the application of PG can lead to the precipitation
of Ca–P, thereby limiting the utilization efficiency of P in PG.

5 The combination of PSMs and PG for
saline-alkali soil improvement is a
measure for resource utilization

It is gratifying that the utilization of PSMs to solubilize
insoluble P minerals and enhance P release has been proven
to be feasible. The secretion of multiple organic acids makes

PSMs more suitable for working with mineral soil adsorbents
than other types of plant growth-promoting bacteria. For instance,
the PSMs (Burkholderia sp. strain PH10) can completely dissolve
apatite crystals within 22 h (Fontaine et al., 2016). The phosphate-
solubilizing B. megaterium (TBRC 1396) can solubilize up to 835.45
± 11.76 mg/L phosphorus from struvite in 14 days (Jokkaew et al.,
2022).

Multiple studies have confirmed that oxalic acid, citric acid,
acetic acid, lactic acid, gluconic acid, and malic acid, which are
organic acids secreted by PSMs, are the main means for dissolving
inorganic insoluble phosphorus sources because these organic acids
have strong acidity. Tian et al. (2022) found that Aspergillus niger
(ANG) released up to 1,103 mg/L P from PG in 7 days. In
addition, the rich P, Ca and organic matter in PG have been
confirmed to be useful as fertilizers to promote plant growth.
For example, adding 30 g/kg PG and a mixed microbial agent
containing phosphate-solubilizing bacteria Bacillus megaterium

var. phosphaticum and Pseudomonas fluorescens to the soil can
increase the available phosphorus in the soil by∼80%, and increase
the dry weight of corn (mg per plant) from 398 to 624 (Al-Enazy
et al., 2017). Meanwhile, the application of PG (9 t ha−1) and
bacteria (A. lipoferum+ B. circulance) can significantly improve the
physiological status, antioxidant enzyme activity, microbial activity,
nutrient absorption, and productivity of maize plants under saline-
sodic soil conditions (Khalifa et al., 2021). It is worth noting
that the combination of microorganisms and PG can also reduce
potentially harmful elements in PG, such as Fe, Al, F, etc., through
their own cells and secretions (such as, extracellular polymers)
(Jalali et al., 2016; Chen et al., 2021). Therefore, the combined
application of PSMs and PG for saline-alkali soil remediation is
feasible and effective, as the combination of the two not only
leverages their respective advantages, but also leads to mutual
enhancement (Figure 1).

6 Prospects for the combined
application of PSMs and PG

The improvement of saline-alkali soil with PSMs and PG,
and the promotion of plant growth in saline-alkali soil, is a
potentially efficient and economic measure in the future. However,
when trying to implement both technologies simultaneously
in practical engineering applications, we should consider the
following aspects. Firstly, attention should be paid to microbial
diversity, and the beneficial microbial communities should be
protected and utilized to achieve comprehensive soil improvement
and ecological restoration. Secondly, the utilization of waste PG
should be optimized (including raw material composition, usage
amount, application frequency, application process, etc.) to reduce
its negative impact on soil and the environment, while exploring
its potential phosphorus resource value. Thirdly, long-term effect
evaluation should be emphasized, and the impact of improvement
measures on soil physical and chemical properties, microbial
community structure, crop growth, and other aspects should be
continuously monitored to ensure the stability and sustainability
of the improvement measures. Fourth, emphasis should be placed
on assessing environmental risks, particularly the damage and
residual effects of radioactive elements on plants, to ensure that
the improvement measures do not have negative impacts on
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FIGURE 1

Phosphate solubilizing microorganisms (PSMs) combined with phosphogypsum (PG) can e�ectively repair saline-alkali soil remediation.

the environment and human health. Finally, attention should
be paid to technological innovation and application, exploring
new composite improvement technologies and methods, and
improving the utilization rate and improvement effect of PSMs
and PG resources, thusmaking greater contributions to agricultural
sustainable development and ecological environmental protection.
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