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Introduction:The prevalence of diabetes, a commonchronic disease, has shown

a gradual increase, posing substantial burdens on both society and individuals.

In order to enhance the e�ectiveness of diabetes risk prediction questionnaires,

optimize the selection of characteristic variables, and raise awareness of diabetes

risk among residents, this study utilizes survey data obtained from the risk factor

monitoring system of the Centers for Disease Control and Prevention in the

United States.

Methods: Following univariate analysis andmeticulous screening, amore refined

dataset was constructed. This dataset underwent preprocessing steps, including

data distribution standardization, the application of the Synthetic Minority

Oversampling Technique (SMOTE) in combination with the Round function for

equilibration, and data standardization. Subsequently, machine learning (ML)

techniques were employed, utilizing enumerated feature variables to evaluate

the strength of the correlation among diabetes risk factors.

Results: The research findings e�ectively delineated the ranking of characteristic

variables that significantly influence the risk of diabetes. Obesity emerges

as the most impactful factor, overshadowing other risk factors. Additionally,

psychological factors, advanced age, high cholesterol, high blood pressure,

alcohol abuse, coronary heart disease or myocardial infarction, mobility

di�culties, and low family income exhibit correlations with diabetes risk to

varying degrees.

Discussion: The experimental data in this study illustrate that, while maintaining

comparable accuracy, optimization of questionnaire variables and the number

of questions can significantly enhance e�ciency for subsequent follow-up

and precise diabetes prevention. Moreover, the research methods employed

in this study o�er valuable insights into studying the risk correlation of other

diseases, while the research results contribute to heightened societal awareness

of populations at elevated risk of diabetes.

KEYWORDS

diabetes, risk prediction, machine learning, feature enumeration, diabetes risk
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1 Introduction

Diabetes is a prevalent chronic disease in modern society, which poses a serious threat

to human health and daily life. Medical statistical and analytical studies have revealed that

diabetes (including type 1 and type 2 diabetes) increases the risk of several complications,

such as cardiovascular disease (1), heart failure (2), depression (3), non-alcoholic chronic

fatty liver disease (4), cognitive decline (5), and functional impairment (5). These

complications continue to impose a significant burden on millions of people with diabetes

(5). Based on estimates from National Health and Nutrition Examination Survey data,
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the prevalence of diabetes among adults in the United States

increased significantly between 1999–2000 and 2017–2018 (6).

The prevalence of diabetes in China increased from <1% in the

1980s to nearly 11% in 2013 and continued to rise from 2013

to 2018 (7). According to big data statistics and inferences from

the International Diabetes Federation (IDF), the global prevalence

of diabetes among the age group of 20–79 is estimated to be

10.5% (536.6 million people) in 2021, and it will rise to 12.2%

(783.2 million people) in 2045, meaning that over 10.5% of adults

worldwide have diabetes (8). Especially in the era of the Corona

Virus Disease 2019 (COVID-19) pandemic, COVID-19 patients

have shown an increased risk and burden of diabetes (9–11),

and COVID-19 patients who have diabetes themselves will have a

significantly increased risk of hospitalization and death (12). Based

on these realities, more measures are needed to increase the public’s

awareness of the hazards of diabetes and enhance the ability to

predict the risk of diabetes.

With the significant improvement in electronic computing

power, the field of artificial intelligence has also ushered in a

wave of development. Machine learning (ML) is a constantly

evolving branch of computer algorithms and the core of artificial

intelligence. Its purpose is to simulate human intelligence by

learning from the surrounding environment (13). Its emergence

has brought about interdisciplinary applications in many fields.

With the increasing attention to “big data,” it has provided

epidemiologists with new tools to solve problems that are not

suitable for classical methods (14). Therefore, in recent years,

many ML models have been proposed for the risk prediction of

diabetes. Xu et al. collected 15,166 health examination data from

eastern China and constructed a multifactorial regression model

(LASSO regression and logistic regression) to predict the risk of

type 2 diabetes. The statistical accuracy of the model was evaluated

using the area under the ROC curve (AUC), which reached

0.865, indicating good predictive performance (15). Gollapalli

et al. (16) used a dataset from a hospital in Saudi Arabia, which

included 897 hospitalized patients with 10 unique features. Among

them, 731 patients had prediabetes, 89 patients were diagnosed

with type 1 diabetes, and 77 patients had type 2 diabetes. By

conducting multiple experiments using support vector machine

(SVM), random forest, K-nearest neighbor (KNN), decision tree,

bagging, and stacking algorithms, a new stacking model combining

bagging KNN, bagging decision tree, and KNN classifiers showed

good performance, with KNN classifier accuracy, weighted recall,

weighted precision, and kappa score of 94.48%, 94.48%, 94.70%,

and 0.9172, respectively (16). Dritsas et al. (17) conducted their

experiment based on patient data from the Sylhet Diabetes Hospital

in Sylhet, Bangladesh. This dataset1 was collected through direct

questionnaires and diagnostic results. In this study, various ML

models were evaluated based on the metrics of precision, recall,

FMeasure, accuracy, and AUC. The models were compared using

10-fold cross-validation and data splitting, and the final results

showed that random forest and KNN were the best-performing

models (17). Currently, the most widely used dataset is the publicly

available Pima Indian dataset, which includes 768 data results

with nine feature variables. Many studies (18–26) have established

1 Available online at: https://www.kaggle.com/datasets/andrewmvd/

early-diabetes-classification.

diabetes risk prediction models based on this dataset, mostly using

classical ML algorithms such as logistic regression, random forest,

SVM, decision tree, KNN, gradient boosting, naive bayes, and

neural networks. These studies provide some direction for the

selection of models in this article.

This study identified several issues in the research of diabetes

risk prediction. First, most of the feature variables used in many

diabetes risk prediction models are patient physical examination

data or various laboratory testing indicators in blood components

(such as blood pressure, creatinine, triglycerides, etc.). These

feature indicators require professional testing in hospitals, thus

the risk models built based on these features are not conducive

to widespread application in the population. Second, the training

dataset still suffers from the problem of a small number of samples.

The widely used Pima Indian dataset only includes data from 768

patients, and the small sample size makes it difficult to validate

the model’s generalizability in the population. Third, the model

construction process lacks relevant correlation studies on risk

factors for diabetes, and the feature variables used in the dataset

lack clear analysis and comparison.

In response to the above-mentioned issues, this study believes

that constructing a questionnaire-based dataset is more conducive

to statistical analysis of diabetes risk factors and enhancing

residents’ awareness of diabetes risk. Therefore, this study

conducted experiments based on the 2021 behavior risk factor

monitoring system (BRFSS) data from the United States. The

feature variables of this dataset are more concerned about the

disease conditions and behavioral factors of the crowd. After

performing a univariate analysis of the original data, this study

selected the diabetes risk factor-related feature variables and

extracted them to form a new dataset, which included 228,697 data

samples with 21 feature variables per data sample. After conducting

a numerical correlation analysis on the variables in the new dataset,

we can preliminarily observe the impact of each factor on diabetes.

The preprocessed dataset was used to build models using multiple

ML algorithms, and their performance was compared to select the

optimal ML algorithm. Then, by enumerating the feature variables,

this study verified the impact of various risk factors on the risk

of developing diabetes to optimize the number of variables in the

diabetes risk prediction questionnaire.

2 Materials and methods

2.1 Original dataset background and
analysis

To identify risk factors for various human diseases, the Centers

for Disease Control and Prevention in the United States launched

the Behavioral Risk Factor Surveillance System (BRFSS) in 1984,

which is a survey conducted using random landline and mobile

phone numbers, targeting adult populations in all US states (27).

The BRFSS collects data on risk behaviors and preventive health

practices that may affect participants’ health status. The dataset

used in this study was obtained from the 2021 BRFSS survey,2

which includes 303 feature variables and encompasses 438,693

2 Available online at: https://www.cdc.gov/brfss/annual_data/

annual_2021.html.
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FIGURE 1

Number and proportion of participants with and without diabetes.

participants. From these raw data, we summarized the number

of participants with and without diabetes, as shown in Figure 1.

Based on the compiled data, the figure shows that the prevalence of

diabetes among the participants is 13.59%, which is higher than the

estimated global prevalence of 10.5% by the IDF. This indicates that

we should further investigate the related risk factors for diabetes to

improve risk awareness and enhance the predictive capability of big

data ML models for high-risk populations.

In this study, we classified and counted all the feature variables

in the original dataset, as shown in Table 1. The table clearly shows

that the BRFSS survey data covers a wide range of issues related

to human daily life, which is highly relevant to the objectives of

this study.

Although genetic structure may determine to some extent an

individual’s response to environmental changes, medical research

has shown that excessive accumulation of fat (28) and alcohol

addiction (29) can increase the risk of diabetes. In addition,

according to the IDF list, important risk factors for diabetes

include family history of diabetes, overweight, unhealthy diet, lack

of exercise, aging, hypertension, ethnicity, and impaired glucose

tolerance (20). In this study, we conducted univariate analysis of

some common risk factors for diabetes on this dataset, combining

these research conclusions. Finally, 9 variables were found that have

a certain impact on the proportion of diabetic people. The statistical

results of their quantitative distribution are shown in Figure 2. The

figure shows the distribution people with and without diabetes

across nine characteristic variables, so the proportion of diabetic

patients can be analyzed in different variables, where a value of 0

means no diabetes and a value of 1 means diabetes. The analysis of

different feature variables is as follows:

Sex: The prevalence of diabetes in the male population is

14.19%, while in the female population it is 13.06%. From the

perspective of univariate effects, sex has a slight impact on the

probability of developing diabetes, with men being more likely to

develop diabetes.

Age: _AGEG5YR variable in the original dataset divides the

age of adults over 18 into 13 intervals, each interval being

approximately 5 years. As age increases, the number of people

with diabetes gradually increases, and the proportion of people

with diabetes also increases, indicating that age is a risk factor for

diabetes and that the risk of developing diabetes increases with age.

The highest proportion of diabetes occurs in the age group of 75 to

79 years, reaching 23.33%.

Obesity: Body mass index (BMI) is a standard for measuring

the degree of obesity in the human body, which is calculated by

dividing weight by height squared. The _BMI5CAT variable in
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TABLE 1 2021 BRFSS survey data classification statistics.

Classification name Representative characteristic factors Number of features

Questionnaire information The state in which the collection belongs, Date, Whether the access is complete, Serial

number, Questionnaire version

28

Basic personal information Sex, Age, Education, Marriage, Weight, Height 46

Family situation Number of adults, parental relationship, accommodation relationship, family children’s

situation

34

Illness High blood pressure, heart disease, kidney disease, cancer, depression, stroke 72

Medical testing and surgery Frequency of medical examinations, uterine surgery, stool tests, eye tests, medical services 34

Self-health assessment Mental health evaluation, physical health evaluation, physical condition in the past 30 days 5

Eating behaviors Vegetables, fruits, juices, smoking, drinking, salt 47

Problems with daily activities Frequency of exercise, difficulty walking or climbing stairs, difficulty concentrating 9

Identity and income Identity, property, income level 4

Other Military service, sexual contact, firearms, pregnancy, insurance 24

the original dataset classifies BMI values into underweight, normal

weight, overweight, and obese categories based on the standards of

thinness and obesity. From the graph, it can be seen that obesity

increases the number of people with diabetes in the population,

and the proportion of diabetes also increases, with the proportion

of diabetes reaching 22.55% in the obese population, indicating

that the obese population needs to pay more attention to the risk

of diabetes.

Excessive smoking: According to calculations, the proportion of

people with diabetes in the population who smoke more than 100

cigarettes is 4.1% higher than those who smoke <100 cigarettes,

suggesting that smoking is also a possible risk factor for diabetes.

Habit of eating vegetables: The original dataset variable

FVGREEN1 records the frequency of eating green vegetables. The

graph shows four categories: daily, weekly, monthly or yearly, and

not eating. After calculating the proportion of diabetes, it was found

that the higher the frequency of eating green leafy vegetables, the

lower the proportion of diabetes, indicating that eating more green

leafy vegetables can reduce the risk of developing diabetes to a

certain extent.

Difficulty walking: The data indicate that the proportion of

diagnosed diabetes is significantly higher among populations with

difficulty walking or climbing stairs, reaching 36.53%, about 24

percentage points higher than the people without such problems.

Therefore, the population with difficulty walking or climbing stairs

should also be closely monitored for the presence of diabetes.

High blood pressure: The data suggest that the risk of

developing diabetes is particularly high among those with

hypertension. In this group, the proportion of individuals with

diabetes is as high as 25.49%.

Depression: Individuals with depression or other mental

disorders are also at an increased risk of developing diabetes, with

a disease prevalence of 17.25%, which is 4.55% higher than that in

the people without such problems. Depression is a comorbidity of

diabetes, and individuals with depression or other mental health

issues should pay special attention to their diabetes risk.

Coronary heart disease (CHD) or myocardial infarction (MI):

The _MICHD variable in the original dataset recorded the

population with coronary heart disease or myocardial infarction.

Both diseases are types of cardiovascular diseases and are also

complications of diabetes. The statistics show that the proportion

of diabetes in this population is as high as 34.62%, meaning

that one-third of people with these diseases also have diabetes.

This proportion is much higher than the prevalence of diabetes

in the people without such problems. Therefore, coronary heart

disease or myocardial infarction is a very high-risk factor

for diabetes.

2.2 Feature variable extraction

To explore the comprehensive impact of various risk factors

on diabetes using ML, this study needs to extract multiple feature

variables from a large original data set to construct a new dataset.

First, based on the results of univariate analysis of the original

data set, we considered which variables were highly relevant

and significant in diabetes risk assessment. For example, factors

such as high blood pressure, high cholesterol, smoking, and

obesity are widely recognized as major risk factors for diabetes.

Second, we focused on variables that reflect lifestyle and behavioral

habits, such as dietary habits (fruit and vegetable intake) and

physical activity, which are key factors affecting individual health

status. Additionally, we considered socioeconomic factors such as

education and income level, as these factors have been shown to

have a significant impact on health status. Finally, considering the

sample size requirements, features with effective data volume of

feature variables >200,000 in the original data set were selected.

Our choices are intended to create a comprehensive model that

accurately reflects an individual’s health status and diabetes risk.

This study finally selected 21 feature variables to construct a new

data set. The names of the feature variables, their meanings, and the

explanations in the original dataset are shown in Table 2. This study

also extracted the healthy population and diabetes patients from the

DIABETE4 variable in the original dataset and used them as labels

for the dataset. The value 0 represents a person who has not had

diabetes, and the value 1 represents a person who has had diabetes.
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FIGURE 2

The distribution of people with and without diabetes across nine characteristic variables (A) Sex, (B) Age, (C) BMI, (D) Smoke, (E) Vegetable, (F)

Di�culty walking, (G) Hypertension, (H) Depression, and (I) CHD or MI.

We also conducted statistical analysis in multiple dimensions

(mean, standard deviation, P value, etc.) on the data set

composed of 21 variables, as shown in Table 3. Based on the

statistical analysis and P values provided, we can see that

specific variables have a significant association with the incidence

of diabetes.
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TABLE 2 Filtered characteristic variable description.

Serial
number

Variable
original name

Replaced
name

Characteristic
variable meaning

Characteristic variable problem statement

1 _RFHYPE6 HighBP High blood pressure Question: adults who have been told they have high blood pressure by a

doctor, nurse, or other health professional.

Value: 1: No high blood pressure; 2: Have high blood pressure; 9: Don’t

know/Not Sure/Refused/Missing.

2 TOLDHI3 HighChol High cholesterol Question: Adults who have had their cholesterol checked and have been told

by a doctor, nurse, or other health professional that it was high.

Value: 1: No high cholesterol; 2: High cholesterol; 9: Don’t know/Not

Sure/Refused/Missing.

3 _CHOLCH3 CholCheck Cholesterol checking habits Question: Cholesterol check within past five years.

Value: 1: Had cholesterol checked in past 5 years; 2: Did not have cholesterol

checked in past 5 years; 3: Have never had cholesterol checked; 9: Don’t

know/Not Sure or Refused/Missing.

4 _BMI5 BMI Fat and thin degree Question: Body Mass Index (BMI).

5 SMOKE100 Smoker Smoking Question: Have you smoked at least 100 cigarettes in your entire life? [Note:

5 packs= 100 cigarettes]

Value: 1: Have smoked more than 100 cigarettes; 2: Have smoked less than

100 cigarettes; 7: Don’t know/Not Sure; 9: Refused.

6 CVDSTRK3 Stroke Stroke Question: (Ever told) (you had) a stroke.

Value: 1: Had a stroke; 2: Never had a stroke; 7: Don’t know/Not sure; 9:

Refused.

7 _MICHD Heartproblems Coronary heart disease or

myocardial infarction

Question: Respondents that have ever reported having coronary heart disease

(CHD) or myocardial infarction (MI).

Value: 1: Reported having MI or CHD; 2: Did not report having MI or CHD.

8 _TOTINDA PhysActivity Physical activity and exercise Question: Adults who reported doing physical activity or exercise during the

past 30 days other than their regular job.

Value: 1: Had physical activity or exercise; 2: No physical activity or exercise

in last 30 days; 9: Don’t know/Refused/Missing.

9 _FRTLT1A Fruits Fruit diet Question: Consume Fruit 1 or more times per day.

Value: 1: Consumed fruit one or more times per day; 2: Consumed fruit <

one time per day; 9: Don’t know, refused or missing values.

10 _VEGLT1A Veggies Vegetable diet Question: Consume Vegetables 1 or more times per day.

Value: 1: Consumed vegetables one or more times per day; 2: Consumed

vegetables < one time per day; 9: Don’t know, refused or missing values.

11 _DRNKWK1 AlcoholConsump Drinking Question: calculated total number of alcoholic beverages consumed per

week.

12 _HLTHPLN AnyHealthcare Health insurance Question: adults who had some form of health insurance.

Value:1: have some form of insurance; 2: Do not have some form of health

insurance; 9: Don’t know, refused or missing insurance response.

13 MEDCOST1 NoDocbcCost No money is to cover visiting

doctor costs

Question: Was there a time in the past 12 months when you needed to see a

doctor but could not because you could not afford it?

Value: 1: Yes; 2: No; 7: Don’t know/Not sure; 9: Refused.

14 GENHLTH GenHlth Self-evaluation of general

health

Question: Would you say that in general your health is:

Value: 1: Excellent; 2: Very good; 3: Good; 4: Fair; 5: Poor; 7: Don’t

know/Not Sure; 9: Refused

15 MENTHLTH MentHlth Mental health Question: Now thinking about your mental health, which includes stress,

depression, and problems with emotions, for howmany days during the past

30 days was your mental health not good?

Value: 1–30: Number of days; 88: None; 77: Don’t know/Not Sure; 99:

Refused

16 PHYSHLTH PhysHlth Physical health Question: Now thinking about your physical health, which includes physical

illness and injury, for how many days during the past 30 days was your

physical health not good?

Value: 1-30: Number of days; 88: None; 77: Don’t know/Not Sure; 99:

Refused

17 DIFFWALK DiffWalk Difficulty in action Question: Do you have serious difficulty walking or climbing stairs?

Value: 1: Yes; 2: No; 7: Don’t know/Not sure; 9: Refused

18 _SEX Sex Sex Question: Calculated sex variable.

Value:1: Male; 2: Female.

19 _AGEG5YR Age Age rating Question: Fourteen-level age category. The last level indicates a minor

(Continued)
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TABLE 2 (Continued)

Serial
number

Variable
original name

Replaced
name

Characteristic
variable meaning

Characteristic variable problem statement

20 EDUCA Education Educational attainment Question: What is the highest grade or year of school you completed?

Value: 1: Never attended school or only kindergarten; 2: Elementary; 3:

Some high school; 4: High school graduate; 5: Some college or technical

school; 6: College graduate; 9: Refused.

21 INCOME3 Income Household income Question: Annual household income

Value: Income is divided into 11 levels.

TABLE 3 Statistics of each characteristic variable of the new dataset.

Feature variable mean std min 25% 50% 75% max P-Value

Diabetes 0.15 0.35 0 0 0 0 1 /

HighBP 0.42 0.49 0 0 0 1 1 0

HighChol 0.40 0.49 0 0 0 1 1 0

CholCheck 0.96 0.19 0 1 1 1 1 1.4295E-250

BMI 28.88 6.51 12 24 28 32 99 0

Smoker 0.41 0.49 0 0 0 1 1 3.1136E-173

Stroke 0.04 0.19 0 0 0 0 1 0

Heartproblems 0.09 0.28 0 0 0 0 1 0

PhysActivity 0.22 0.41 0 0 0 0 1 0

Fruits 0.38 0.48 0 0 0 1 1 9.42128E-46

Veggies 0.17 0.38 0 0 0 0 1 2.0393E-113

AlcoholConsump 298.52 825.44 0 0 23 300 53,200 2.8686E-228

AnyHealthcare 0.04 0.19 0 0 0 0 1 4.25319E-40

NoDocbcCost 0.06 0.24 0 0 0 0 1 3.25676E-13

GenHlth 1.47 1.03 0 1 1 2 4 0

MentHlth 3.90 7.85 0 0 0 3 30 6.15104E-77

PhysHlth 3.72 8.22 0 0 0 2 30 0

DiffWalk 0.15 0.36 0 0 0 0 1 0

Sex 0.48 0.50 0 0 0 1 1 1.68085E-51

Age 7.86 3.24 1 5 8 10 13 0

Education 0.86 0.94 0 0 1 2 5 0

Income 4.06 2.37 0 2 4 6 10 0

2.3 Feature variable optimization

From the feature variable descriptions in Table 2, it can be seen

that the original dataset’s feature variable values are not consistently

standardized. Therefore, this study has set uniform distribution

standards for some variable values, starting from zero. In the case of

disease variables, lower values, such as zero, indicate better health.

The variable _AGEG5YR in the original dataset represents the 14th

level age group, which includes minors or other cases that are not

relevant to the objectives of this study. Therefore, data samples

contained in this age group were excluded from the analysis.

Additionally, data samples with missing or incomplete answers,

such as “do not know” or “refuse to answer,” were removed from

the dataset. Redundant samples with identical values for all feature

variables and labels were also eliminated. As a result, a new dataset

containing 225,998 data samples and 21 different feature variables

was created. This dataset includes 192,486 non-diabetic individuals

and 33,512 diabetic individuals, with a diabetic prevalence rate of

14.82%, which is similar to the initial large dataset’s prevalence

rate. Table 4 explains the meanings of the feature variables in the

new dataset.

From According to Table 4, it can be seen that the different

feature variables represented in the new dataset have inconsistent

units and real-world attributes. For example, the HighBP feature

variable only includes two values, 0 and 1, while the BMI feature

variable has a wide range of values. This difference in value

magnitude between different feature variables can significantly

affect the performance of the ML model. In order to improve the
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TABLE 4 Description of new dataset variable values.

Serial number Feature variable name Characteristic variable value description

1 HighBP 0: No high blood pressure; 1: High blood pressure.

2 HighChol 0: No high cholesterol; 1: High cholesterol.

3 CholCheck 0: Not checked; 1: Checked.

4 BMI Weight/(height ∗ height).

5 Smoker 0: The number of cigarettes smoked is <100 sticks (5 boxes). 1: The number of

cigarettes smoked is not <100 sticks (5 boxes).

6 Stroke 0: No stroke; 1: Stroke.

7 Heartproblems 0: Normal; 1: Coronary heart disease or Myocardial infarction.

8 PhysActivity 0: Physical exercise; 1: No physical exercise.

9 Fruits 0: Consume fruit once or more times a day; 1: No daily consumption habit.

10 Veggies 0: Consume vegetables once or more times a day; 1: No daily vegetable habits.

11 AlcoholConsump Total number of alcoholic beverages consumed per week.

12 AnyHealthcare 0: Participation in health insurance; 1: No health insurance.

13 NoDocbcCost 0: Can afford medical expenses; 1: Inability to afford medical expenses.

14 GenHlth 0: Excellent; 1: Very good; 2: Good; 3: Fair; 4: Poor.

15 MentHlth Number of mentally unhealthy days in a month.

16 PhysHlth Number of days of physical unhealthiness in a month.

17 DiffWalk 0: No difficulty walking or climbing stairs; 1: Severe difficulty walking or

climbing stairs.

18 Sex 0: Female; 1: Male.

19 Age The age categories are divided into 13 levels, with level 0 starting from 18 years

old and level 12 representing people over 80 years old.

20 Education 0: College graduate; 1: Some college or technical school; 2: High school graduate;

3: Some high school; 4: Elementary; 5: Never attended school or only

kindergarten.

21 Income Annual household income level (level 0 is not <$200,000, level 10 is <$10,000).

generalization performance of the classifier and the convergence

speed of the algorithm, in the subsequent experiments, each feature

dimension of the training set is standardized using Equation 1 by

subtracting the mean and dividing by the standard deviation. For

the test set, the standardization is performed using the mean and

variance obtained from the training set.

X =
x− µ

σ
(1)

In the equation, X represents the sample data of a certain

feature column in the training set; µ represents the mean value

of the sample data of the corresponding feature column of x;

σ represents the standard deviation of the sample data of the

corresponding feature column of x. By standardizing the data

so that the mean of each feature dimension is 0 (as seen in

Equation 2) and the standard deviation is 1 (as seen in Equation 3),

the features of the dataset are made to conform to a standard

normal distribution.

µ
∗ =

∑

X

n
=

∑

x−
∑

∑

x
n

nσ
=

∑

x−
∑

x

nσ
= 0 (2)

σ ∗ =

√

∑

(X− 0)2

n
=

√

∑

(x− µ)2

nσ 2
=

√

∑

(x− µ)2

∑

(x− µ)2
= 1 (3)

In the above equations: X represents the sample data of the

standardized feature column; n represents the number of samples

of the feature column.

2.4 Hardware and algorithm

This study utilized multiple ML algorithms to train the new

dataset and construct models, in order to select the optimal

ML algorithm for feature variable enumeration experiments.

The computational efficiency of ML algorithms is related

to both the hardware performance of the computer and

the complexity of the algorithm. The hardware information

of the computer equipment used in the experiments is

as follows:

Central Processing Unit (CPU): 11th Gen Intel(R) Core (TM)

i5-1135G7 @ 2.40 GHz.

Random Access Memory (RAM):

Win32_PhysicalMemory 16G.
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FIGURE 3

Related heat map of variable value. Factors that have shown strong correlation with diabetes include high blood pressure, high cholesterol, obesity,

coronary heart disease or myocardial infarction, self-rated health, di�culty walking or climbing stairs, age, etc.

Solid State Drives (SSD): NVMe wDC PC SN530 SDBPNPZ-

512G-1002.

The range of ML algorithms studied and compared in this

article is relatively comprehensive, including the Gaussian naive

Bayes (GaussianNB) algorithm suitable for data with gaussian

distribution, logistic regression (LR) algorithm, SVM, KNN,

classification and regression tree (CART) algorithm based on

feature selection using the Gini index, bagging algorithm based

on ensemble learning (30), random forest algorithm with decision

tree as weak classifier (RF), gradient boosting decision tree (GBDT)

algorithm (31), extreme gradient boosting (XGBoost) algorithm

based on GBDT optimization (32), and light gradient boosting

machine (LightGBM) algorithm based on XGBoost to improve

operating efficiency (33). In this study, the dataset was split into

training and testing sets with a ratio of 0.75:0.25, and the testing set

consisted of 56,500 samples.

3 Results

3.1 Featured numerical correlation

Numerical correlation analysis was conducted on the diabetes

label variable and variables in the new dataset, and the resulting heat

map of numerical correlation is shown in Figure 3. Based on the

purpose of studying the risk factors for diabetes, this study focused

more on the first row of data, namely the correlation between

the numerical values of 21 feature variables and the numerical

values of the diabetes label variable. It can be seen from the figure

that factors with strong correlations include high blood pressure,

high cholesterol, obesity, coronary heart disease or myocardial

infarction, self-rated health status, difficulty walking or climbing

stairs, and age. This indicates that from the perspective of numerical

correlation analysis, age, obesity, and high blood pressure do indeed

have a greater impact on the incidence of diabetes. In addition,

income also has a certain degree of correlation, which indicates

that diabetes prevention needs to pay more attention to low-

income populations. To achieve the goal of simplifying the number

of feature variables in the model more accurately, subsequent

experiments will adopt the method of combining ML with feature

variable enumeration to verify whether the prediction effect of

diabetes risk after combining strongly correlated feature variables

can approach that of the full variable prediction effect.

3.2 Algorithm comparison

As the model constructed from the dataset in this study

is a binary classification model and the proportion of diabetes

label samples in the dataset is imbalanced, it was found in the

experiment that ML algorithms tend to predict the class with

a higher proportion of labels (non-diabetic) more. For example,

the classification confusion matrix of the models established by

GaussianNB, LR, KNN, CART, RF, and GBDT after prediction

is shown in Figure 4. It can be seen from the figure that the
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FIGURE 4

Classification confusion matrices for prediction results of six common machine learning models based on imbalanced datasets (A) GaussianNB, (B)

LR, (C) KNN, (D) CART, (E) RF, and (F) GBDT.

imbalanced dataset results in lower recall performance of the

model in predicting the minority class samples (people with

diabetes), indicating insufficient risk detection ability for the people

with diabetes.

To improve the recall ability of the model for the people with

diabetes, this study used the synthetic minority oversampling

technique (SMOTE) to balance the number of samples

corresponding to the dataset labels, thereby reducing the

impact of sample imbalance on the recall performance of the

people with diabetes in the ML model. The SMOTE algorithm

uses the k-nearest neighbor approach to synthesize new samples

by calculating the Euclidean distance between minority class

samples. The feature variables of the new samples are calculated

and generated using the following Equation 4.

xn = xi + ζ (xk − xi) (4)

In the equation, xi represents the feature vector corresponding

to the i-th sample in the minority class; xn represents the new

feature vector synthesized based on xi ; xk represents a randomly

selected sample vector from the nearest neighbor vectors of xi ;

and ζ represents a uniform random variable between 0 and 1. The

newly generated sample variables are composed of finite decimals,

so all feature variables except for BMI are rounded to integers

to make their values more realistic. The experiment found that

the dataset was more ideal when the number of nearest neighbor

vectors was 7, and the balanced dataset, after numerical correlation

tests, was found to be more consistent with the influence of feature

variables on diabetes in the unbalanced dataset. To minimize the

impact of duplicate values on the accuracy of the dataset, this

article underwent five rounds of balancing to ensure that it did

not contain any duplicate values. The confusion matrix of the

classification, tested using multiple ML algorithms, is shown in

Figure 5. By analyzing the confusion matrices before and after

equalization, a reduction in variability between categories can be

clearly observed. The balanced confusion matrix shows a more

balanced distribution of true positives and true negatives, especially

the model’s performance in identifying diabetes samples (category

1) has been significantly improved. This shows that data balancing

has a positive impact on improving the model’s ability to identify

the minority class (people with diabetes).

This study uses accuracy and F1 score as metrics to evaluate

model performance. The accuracy rate is the ratio of the number

of samples correctly predicted by the model to the total number

of samples. It is an intuitive indicator to measure whether

the model prediction is correct. The F1 score is the harmonic

mean of precision and recall, which provides a more balanced

assessment of model performance, with higher values indicating

better performance. In addition, considering the algorithm running

time cost of enumerating feature variables, this study also takes

the time spent on model training and construction as one of

the evaluation criteria. To obtain better prediction results, during

the parameter selection process, we first set the initial parameters

based on the theoretical basis of each algorithm and experience

in previous literature to ensure that the selected parameters can

maintain good stability on the test set and accuracy. In terms of

fine-tuning, we adjusted the core parameters of the algorithm, such

as the regularization term, kernel function type (for SVM), number

of neighbors (for KNN), tree depth and number of leaves (for

decision trees and tree-based ensemble algorithms), and learning
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FIGURE 5

Classification confusion matrices for predictions of six common machine learning models based on balanced datasets (A) GaussianNB, (B) LR, (C)

KNN, (D) CART, (E) RF, and (F) GBDT.

TABLE 5 Performance comparison of various machine learning (ML)

models.

Algorithmic
model

Accuracy
(Unit: %)

F1 (Unit:
%)

Calculation
time (Unit: s)

GaussianNB 72.31 72.35 0.22

LR 75.04 75.52 0.31

SVM 76.67 77.74 6,406.89

KNN 79.07 80.26 45.93

CART 86.99 87.24 2.07

Bagging 90.75 91.1 247.77

RF 92.47 90.46 73.51

GBDT 83.05 83.43 36.93

XGBoost 90.64 90.19 14.53

LightGBM 90.26 89.72 1.39

rate. These fine tunings are designed to optimize the model’s

performance on a specific data set while preventing overfitting

and ensuring that the model has good generalization capabilities.

Finally, the best set of prediction results are obtained, as shown in

Table 5.

Due to the balanced processing of the dataset, the model’s

classification accuracy and F1 score (the combined effect of

precision and recall) will show relatively consistent results on the

test set. As shown in Table 5, the Bagging, RF, XGBoost, and

LightGBM algorithms performed well in terms of accuracy and

F1 on the test set, indicating that the ensemble learning approach

performed well in handling these one-dimensional vector data with

multiple variables. The bagging and random forest algorithms are

based on the bagging idea in the ensemble learning framework,

using data sampling to build multiple base classifiers for parallel

computation. By integrating the predictions of multiple decision

trees to obtain the final prediction result, the variance of the model

can be reduced. For the dataset in this study, the random forest

used as the base classifier for the bagging algorithm yielded the best

results. However, implementing the bagging idea requires training

multiple decision trees, and each decision tree needs to process a

portion of the training data, resulting in a higher computational

cost for datasets with a large sample size and a high number of

features, as demonstrated by the computational time in the table.

This does not meet the needs of feature enumeration in this study.

The XGBoost and LightGBM algorithms are optimizations of

the GBDT algorithm, which is an ensemble learning technique

based on decision trees. These algorithms utilize the boosting

method in the ensemble learning framework, which involves using

a series of base classifiers to continuously improve and ultimately

create strong classifiers for ensemble learning. The core principle

of GBDT, XGBoost, and LightGBM is to gradually reduce the loss

function using gradient descent to approach the true value of the

predicted result. Their prediction functions can be expressed as

the sum of the predicted values from multiple trees, and they all

incorporate a learning rate to control the contribution of each tree.
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Equation 5 can be used to represent their core formulas.

Fm (x) = Fm−1 (x) + ηhm (x) (5)

Where Fm−1 (x) represents the sum of predicted values from

the first m-1 trees; hm (x) represents the predicted value of the

m-th tree; η represents the learning rate which controls the

contribution of each tree. By iteratively training multiple trees, the

final prediction function F(x) can be represented by Equation 6:

F (x) =

M
∑

m=0

ηhm (x) (6)

In the equation: M represents the number of trees. When the

decision tree depth is too large, the model is overly matched to the

training data, and GBDT is prone to overfitting, which reduces the

model’s generalization ability. This can be seen from Table 5, where

the accuracy of the GBDT model is 7 percentage points lower than

that of the XGBoost and LightGBM models. XGBoost addresses

this issue by adding L1 or L2 regularization terms to the objective

function and using techniques such as feature subsampling and row

sampling to effectively reduce the risk of overfitting and improve

the model’s generalization ability (32). For the dataset in this

study, experiments show that using L1 regularization improves the

model’s performance. This allows some feature weights to be zero,

achieving the effect of feature selection. The objective function is

represented by Equation 7:

obj(t) =

n
∑

i=1

l
(

yi, ŷi
(t−1) + ft (xi)

)

+ λ1

K
∑

j=1

|ωj| (7)

In the equation: t represents the current iteration number; n

represents the number of samples; l represents the loss function;

yi represents the true label of the i-th sample; ŷ
(t−1)
i represents

the predicted value of the model for sample i after t-1 rounds

of iteration; ft (xi) represents the predicted value of the t-th base

learner for the i-th sample; λ1 represents the L1 regularization

coefficient, the larger its value, the stronger the regularization, and

the smaller the complexity of the model; K represents the number

of leaf nodes; ωj represents the output of the j-th leaf node. The

LightGBM algorithm used in this article also uses L1 regularization

to achieve the best classification performance. In terms of data

sampling, LightGBM uses gradient-based one-side sampling [36],

which only samples the part of data with larger sample gradients

during the construction process of each decision tree, reducing

computational complexity and improving performance.

Based on the analysis of algorithm computation time,

gaussian naive Bayes and logistic regression algorithms have low

computation costs since they don’t require extensive adjustment

of feature values. However, they may exhibit underfitting when

confronted with multiple feature dimensions and large data

volume. On the other hand, the training process of SVM

algorithm involves a significant number of matrix operations and

optimization calculations, resulting in high computation costs for

the large dataset used in this article. As indicated in Table 5, its

computation time cost exceeds that of other algorithms by far. The

KNN algorithm needs to compute the distance between the target

sample and all training samples, and this computation cost escalates

rapidly with dataset size, causing high computational complexity

TABLE 6 Performance comparison of 6 algorithms before and after using

data standardization.

Algorithmic model Accuracy
(Unit:
%)

F1
(Unit:
%)

Calculation
time

(Unit: s)

GaussianNB Not

standardized

72.23 72.11 0.22

Standardization 72.31 72.35 0.22

LR Not

standardized

70.72 71.98 2.93

Standardization 75.04 75.52 0.31

KNN Not

standardized

78.88 80.08 58.24

Standardization 79.07 80.26 45.93

CART Not

standardized

86.81 87.05 2.53

Standardization 86.99 87.24 2.07

RF Not

standardized

92.41 90.21 90.48

Standardization 92.47 90.46 73.51

LightGBM Not

standardized

83.02 82.03 46.25

Standardization 83.05 83.43 36.93

and impacting algorithm efficiency. Conversely, Boosting-based

algorithms have demonstrated their advantage in terms of runtime.

XGBoost utilizes the data block structure parallel split and

search, along with cache-aware prefetching algorithms, to improve

algorithm efficiency (32). LightGBM continues to use the histogram

algorithm to discretize continuous features on the selection of

optimal split points, thereby converting continuous features that

require sorting into discrete feature values, significantly reducing

memory consumption. It also applies gradient-based one-side

sampling and exclusive feature bundling techniques (33) to reduce

the number of data samples that require computation. Table 5

data shows that LightGBM has greatly improved its computational

efficiency for large data compared to its original GBDT algorithm.

To clearly understand the effectiveness of data standardization

measures, comparative experiments were also conducted using

6 representative machine learning algorithms under the same

conditions. The experimental results in the Table 6 show that

after applying data standardization, the accuracy and F1 score

of multiple algorithm models have been improved to a certain

extent, and the convergence speed of the algorithm has been greatly

accelerated. For example, the calculation time of the random forest

model was reduced by about 17s. Experiments show that using data

normalization does improve the performance and convergence

speed of the model.

When choosing the most suitable model, this study considers

the trade-off between accuracy and execution efficiency. For

application scenarios that require fast processing, LightGBM may

be a better choice, although some accuracy is sacrificed. In cases

where higher accuracy is required, RF may be a more suitable

choice, although it requires longer calculation time. Considering

that the subsequent enumeration experiments of this study require

high computational efficiency of the algorithm, the LightGBM
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TABLE 7 Comparison of the e�ects of 5 equalization methods based on

LightGBMmodel.

Balancing
method

Accuracy
(Unit: %)

F1
(Unit:
%)

Balanced
dataset time

(Unit: s)

SMOTE 88.56 86.66 3.94

KNNOR 83.89 81.82 95.37

Borderline-SMOTE 88.23 86.05 21.64

KMeansSMOTE 90.31 89.07 10.02

SVMSMOTE 88.83 86.7 2,047.24

algorithm was selected to be used in subsequent experiments

to study the impact of feature vector combinations on model

prediction performance.

3.3 Comparison of equilibrium methods

To optimize the recall rate of the machine learning model for

the people with diabetes, this study further compared a variety of

advanced oversampling techniques. These techniques include K-

Nearest Neighbors Over-sampling (KNNOR) and several variants

of SMOTE, which are comprehensively compared with the

original SMOTE method to evaluate their performance in data

set balancing. The KNNOR method uses the K nearest neighbor

algorithm to generate new synthetic samples for the area around

minority class samples. The core of this method is to give priority to

minority class samples that are difficult to classify correctly on the

classification boundary. KNNOR provides a more efficient way to

handle highly imbalanced data sets by defining the neighborhoods

of minority class samples more accurately.

In addition to the standard SMOTE method, there are

also various SMOTE variants, such as Borderline-SMOTE,

KMeansSMOTE, and SVMSMOTE. The Borderline-SMOTE

method focuses on processing minority class samples that are close

to the majority class boundary, identifying these boundary samples

and generating new samples around them to enhance the model’s

ability to discriminate boundary areas. KMeansSMOTE combines

K-means clustering and SMOTE technology. By clustering

minority class samples and then applying the SMOTE method

in each cluster, it can cover the distribution of minority class

samples more evenly. SVMSMOTE uses support vector machines

(SVM) to identify samples that are difficult to classify, and then

applies the SMOTE algorithm in the neighborhoods of these

samples to enhance the model’s learning effect on these difficult

samples. This study applies SMOTE, KNNOR, Borderline-SMOTE,

KMeansSMOTE and SVMSMOTE technologies to balance the

diabetes data set, and uses the excellent LightGBM algorithm to

test the effect. To ensure the authenticity and validity of the data,

we only retain unique samples after each equalization process

and exclude duplicate values. The experimental results, shown in

Table 7, provide a performance comparison of these techniques on

balanced datasets.

In this study, we compare the performance of five oversampling

methods, SMOTE, KNNOR, Borderline-SMOTE, KMeansSMOTE,

and SVMSMOTE, in balancing diabetes datasets. Metrics we

focus on include accuracy, F1 score, and time required for

data set balancing. Combining these indicators, KMeansSMOTE

performed the most outstandingly among all methods, leading

with an accuracy of 90.31% and an F1 score of 89.07%. At the

same time, it only took 10.02 seconds to complete data balancing,

showing high efficiency and effectiveness. Although SVMSMOTE

performs well in terms of accuracy and F1 score, the time

required (2,047.24 seconds) is too long, which limits its practical

application. On the other hand, although SMOTE and Borderline-

SMOTE process faster, they are not as good as KMeansSMOTE in

performance. KNNOR performs the worst in terms of accuracy and

F1 score, possibly due to its limitations in dealing with extremely

imbalanced data sets. For this research data set, KMeansSMOTE

is an efficient and effective choice to improve the recall rate and

overall classification performance of the diabetes data set, and

this study believes that KMeansSMOTE is particularly suitable for

application scenarios that require a balance between processing

speed and accuracy.

3.4 Feature variable enumeration

To investigate the impact of multiple combinations of

diabetes risk factors on diabetes risk and the correlation between

each feature vector and its impact on risk prediction, this

study employed a combination of enumerating feature variable

combinations with the LightGBM algorithm. The accuracy of

the model was used to determine the strength of the impact of

feature variable combinations on diabetes risk prediction, and

to verify the ranking of individual feature variables in relation

to their correlation with diabetes. Initially, six feature variable

combinations were selected from the 21 available, resulting in a

total of 54,264 combination methods, with their corresponding

accuracy changes shown in Figure 6. The figure indicates that

different feature variable combinations can cause a range of

approximately 35 percentage points in model prediction accuracy,

suggesting that different feature variable combinations can have a

significant impact on the performance of diabetes risk prediction

models. The waveform in the figure shows a high accuracy

waveform change at regular intervals, indicating that these diabetes

feature combinations contain feature variables that have a strong

correlation with diabetes risk. This not only demonstrates the

feasibility of the approach proposed in this article to use the efficient

LightGBM algorithm to enumerate feature variables to explore the

strength of their impact on diabetes, but the peak values in the

figure also indicate that this method can indeed be used to simplify

the number of feature variables in risk questionnaires.

The analysis of the experimental data of the six feature

variables shows that the combination of HighChol, BMI, GenHlth,

MentHlth, PhysHlth, and Age has the highest accuracy, reaching

89.89 %, which is close to the accuracy of the full variable of 90.26

%. This indicates that the feature variables with strong diabetes

correlation are in this variable combination, and the feature variable

combination with a simplified variable number of 6 can still achieve

higher accuracy. To test the strength of correlation between feature

variables and diabetes risk prediction, this study extracted all

feature combinations represented by accuracy values in the top

10% based on generated experimental data, and counted the total

number of occurrences of each feature variable. Figure 7 shows
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FIGURE 6

Changes in accuracy under enumeration of 6 feature variables.

the occurrence frequency and ranking of the feature variables.

From the figure, it is evident that the feature variables with higher

occurrence frequency include BMI, PhysHlth, MentHlth, Age, and

GenHlth. This finding suggests that obesity, poor mental health,

and advanced age are the most relevant risk factors for judging

whether a person suffers from diabetes when six variables are

enumerated to generate multiple combinations. It also suggests

that the more frequent the occurrence of physical and mental

discomfort in daily life, the higher the likelihood of developing

diabetes. Based on multiple experiments, this study also found that

the higher the accuracy of the combination of feature variables, the

gap between the occurrence frequency of these highly correlated

feature factors and other feature will increase, which means that

they have a stronger impact on the prediction of diabetes risk.

4 Discussion

This study conducted multiple enumeration experiments with

various feature variables, and the accuracy waveform obtained was

consistent with the trend in Figure 6. Furthermore, the lower limit

of accuracy in the waveform increases as the number of variables

increases, while the upper limit approaches the accuracy of the full-

variable model. This trend change can be clearly seen in Figure 8.

The model’s performance almost reached that of the full-variable

model after increasing the number of feature variables from 6 to 11,

and further increasing the number of variables had little effect on

themodel’s generalization performance. After counting the number

of feature variables with higher accuracy included in the statistical

experimental data, Table 8 shows the ranking and proportion of the

correlation between the optimized feature variables in the dataset

and diabetes. According to the experimental data, obesity is the

most significant risk factor affecting the incidence of diabetes,

and its impact is much greater than that of other risk factors.

Therefore, people with obesity should pay extra attention to their

own risk of diabetes. Age, high cholesterol, high blood pressure,

coronary heart disease, or myocardial infarction are also high-

risk factors for diabetes. On the other hand, factors such as

smoking, gender, vegetables, and fruits have a weak correlation

with diabetes and relatively little impact on the performance of

the diabetes risk model. Therefore, these factors can be removed

from the diabetes survey questionnaire to improve the efficiency

of data collection without affecting the overall performance of

the model. The experiment also found that people with lower

income are at a higher risk of developing diabetes, indicating that

they need to be more concerned about diabetes health, and the

theoretical mechanisms underlying their indirect influence require

more extensive social research.

The performance of the hardware equipment used in this

research is not strong enough, so only 21 feature variables are

selected to carry out the enumeration feature experiment combined

with the efficient LightGBM algorithm. If you face a data set with

a large number of data samples and increase the number of data

features, the time cost of the experiment will be greatly increased,

and the requirements for hardware computing performance will

be higher.

SMOTE is used in this study to solve the problem of unbalanced

number of data samples. Although the balanced data set has been

tested to show that the magnitude of the numerical correlation of

the character variables on diabetes does not cause large changes,

the synthetic samples generated by the SMOTE are created by

interpolating the original samples, which may lead to some unreal

samples appear. These synthetic samples may not fully reflect

the distribution of real samples, thus introducing some bias. We

will conduct further optimization research on this to reduce the

synthesis error. In the future, we also will hope to consider

threshold shifting and category weighting methods to increase the

recall ability of the model for minority categories.

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1328353
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jiang et al. 10.3389/fpubh.2024.1328353

FIGURE 7

Statistics and ranking of occurrences of feature variables. The figure shows that the characteristic variables with higher frequency include BMI,

PhysHlth, MentHlth, Age, and GenHlth.

FIGURE 8

Changes in accuracy under enumeration of 11 feature variables.

5 Conclusion

Based on 2021 BRFSS survey data, this study utilized the

efficient LightGBM algorithm and enumerated feature variables

to demonstrate the correlation ranking of various risk factors

with the risk of diabetes. The results show that obesity has the

strongest impact on the risk of diabetes, far exceeding other risk

factors. In addition, psychological factors, advanced age, high

cholesterol, high blood pressure, alcohol abuse, coronary heart

disease or myocardial infarction, mobility difficulties, and low

family income are also correlated with the risk of diabetes to

some extent. The experimental data in this study demonstrate

that, while maintaining a comparable level of accuracy, the

questionnaire variables and the number of questions can be

significantly optimized, making follow-up more efficient and better

suited for precise diabetes prevention. Furthermore, the research

methods employed in this study have certain reference value for

studying the risk correlation of other diseases, and the research
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TABLE 8 Feature variables ranking for diabetes risk relevance.

Ranking Feature
variables

Proportion Risk meaning

1 BMI 17.69% Obesity

2 PhysHlth 6.56% Poor Physical health

days/month

3 MentHlth 6.56% Poor mental health

days/month

4 Age 5.75% advanced age

5 GenHlth 4.87% Self-health perception

6 HighChol 4.33% High cholesterol

7 HighBP 4.30% High blood pressure

8 AlcoholConsump 4.14% Alcoholism

9 Heartproblems 4.02% Coronary heart disease or

myocardial infarction

10 DiffWalk 3.94% Difficulty in walking

11 Income 3.76% Low family income

12 PhysActivity 3.48% Lack of physical activity

13 Stroke 3.46% Stroke

14 Education 3.44% Low education

15 CholCheck 3.42% No cholesterol checking

16 Smoker 3.40% Smoker

17 Sex 3.39% Sex

18 Veggies 3.38% No habit of eating veggies

every day

19 AnyHealthcare 3.38% No health insurance

20 Fruits 3.37% No habit of eating fruit

every day

21 NoDocbcCost 3.36% No money to see a doctor

results help to increase society’s attention to populations at greater

risk of diabetes. This is especially important in the context of the

current COVID-19 pandemic, where the construction of diabetes

risk models and the problem of precise disease prevention should

be given more attention.
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