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T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic

lymphoma (T-LBL) is an uncommon but highly aggressive hematological

malignancy. It has high recurrence and mortality rates and is challenging to

treat. This study conducted bioinformatics analyses, compared genetic

expression profiles of healthy controls with patients having T-ALL/T-LBL,

and verified the results through serological indicators. Data were acquired

from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL

patients and normal T cells-related differentially expressed genes (DEGs)

were investigated using the online analysis tool GEO2R in GEO, identifying

78 upregulated and 130 downregulated genes. Gene Ontology (GO) and

protein-protein interaction (PPI) network analyses of the top 10 DEGs

showed enrichment in pathways linked to abnormal mitotic cell cycles,

chromosomal instability, dysfunction of inflammatory mediators, and

functional defects in T-cells, natural killer (NK) cells, and immune

checkpoints. The DEGs were then validated by examining blood indices in

samples obtained from patients, comparing the T-ALL/T-LBL group with the

control group. Significant differences were observed in the levels of various

blood components between T-ALL and T-LBL patients. These components

include neutrophils, lymphocyte percentage, hemoglobin (HGB), total

protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer

(DD), and C-reactive protein (CRP). Additionally, there were significant

differences in peripheral blood leukocyte count, absolute lymphocyte

count, creatinine, cholesterol, low-density lipoprotein, folate, and
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thrombin times. The genes and pathways associated with T-LBL/T-ALL were

identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key

molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with

applications for differential diagnosis, treatment, and prognosis.
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1 Introduction

T-cell acute lymphoblastic leukemia (T-ALL)/T-cell

lymphoblastic lymphoma (T-LBL) is a relatively rare and highly

malignant lymphoproliferative disease in the T-cell line of

lymphoblastic tumors. The majority of cases arise from lymph

nodes or extranodal tissues and are classified as T-LBL, but a lesser

proportion of cases originating from the peripheral blood and bone

marrow are referred to as T-ALL. Both forms have similar clinical

and laboratory characteristics, including cellular morphology,

immune phenotype , genotype , cy togenet ics , c l in ica l

manifestations, and prognosis. T-LBL is clinically diagnosed when

there is an absence of malignant cell infiltration in the peripheral

blood or bone marrow or when less than 25% of tumor

lymphoblasts appear in the bone marrow. On the contrary, T-

ALL is identified when there is blood and bone marrow infiltration

and when the levels of lymphoblasts in the bone marrow surpass

25% (1, 2).

T-LBL is much more common than B-lymphoblastic

lymphoma, with 85% -90% of T-LBL cases belonging to the T-cell

lineage (3). T-LBL often presents with mediastinal masses, followed

by invasion of the peripheral lymph nodes, liver, spleen, skin,

pharyngeal lymph nodes, CNS, or gonads (4). T-ALL has a high

degree of invasiveness and primarily affects adolescents, with a

higher prevalence in males, constituting 25% of all cases of ALL in

adults. Large masses and white blood cell lesions in the

mediastinum or other areas, together with relatively reduced bone

marrow hematopoiesis, are the typical presentation of T-ALL (3).

T-ALL/T-LBL is highly invasive and is associated with high levels of

recurrence, poor long-term survival, and unfavorable prognosis.

Hence, relevant bioinformatics and serological research is

urgently needed.

Microarray and sequencing data are combined in the Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/),

which has greatly advanced the understanding of cancer. GEO

incorporates data from independent studies and clinical samples.

Comparative analysis is limited by its inability to combine data

from several independent sources because of variations in research

approaches and microarray platforms. Bioinformatics analysis is

effective for the large-scale evaluation of high-throughput data

across platforms (5).
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Here, the microarray and RNA-seq data were used from the

TCGA to identify differentially expressed genes (DEGs) that could

then be investigated via protein-protein interaction (PPI) network

and Gene Ontology (GO) enrichment analyses. The levels of these

genes were then verified using serological indicators in patient

samples to provide a reference for diagnosing and treating T-

ALL/T-LBL. Due to the differences in prognostic factors and

treatment strategies between T-ALL and T-LBL, it may be

necessary to evaluate related gene abnormalities through

candidate genes or large-scale unbiased methods as treatment

becomes more targeted. The objectives of this research were to

understand the pathogenesis of T-ALL/T-LBL better, identify novel

therapeutic targets, aid in developing medications with increased

potency, less toxicity, and more focused effects, increase the cure

rate, and alleviate pain and side effects.
2 Materials and methods

2.1 Population

The study participants were recruited from the Hematology

Hospital of the Chinese Academy of Medical Sciences (Institute of

Hematology, Chinese Academy of Medical Sciences) after obtaining

consent from the Ethics Committee (KT2020016-EC-2) to perform

this experiment. Moreover, biochemical analysis data were obtained

from the clinical testing center at the same institution. Cumulatively, 91

participants were allocated to different groups according to their

diagnosis, namely, healthy controls (n = 31, including 12 males, aged

32–72 years), the T-LBL group (n = 30, including 21 males, aged 4–82

years) and the T-ALL group (n = 30, including 23 males, aged 6–58

years; Figure 1; Supplementary Tables 1-4). All participants underwent

examinations, including hematological, bone marrow, and cytogenetic

assessments and genotype and immunological phenotype analysis.

Diagnoses were confirmed by experienced hematologists.
2.2 Collection of general clinical data

Data on the medical histories, clinical characteristics, and blood

markers were gathered from the study participants. After fasting for
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10 h, the serum was collected, and peripheral blood biochemical

indicators were measured using a fully automated biochemical

analyzer. These indicators included hemoglobin level (HGB),

platelet (PLT) and white blood cell (WBC) counts, peripheral

blood neutrophil and lymphocyte absolute values and percentages

(NEU# and NEU%, and LYMPH# and LYMPH%, respectively),

total protein (TP), globulin (GLB), phosphorus (P), albumin (ALB),

alkaline phosphatase (ALP), total and direct bilirubin (TBIL and

DBIL), urea (URA), creatinine (CREA), lactate dehydrogenase

(LDH), a-hydroxybutyrate dehydrogenase (a-HBDH), uric acid

(UA), creatine kinase and its isoenzyme (CK and CK-MB), total bile

acid (TBA), amylase (AMY), sodium (Na), potassium (K),

magnesium (Mg), carbon dioxide-combining power (CO2CP),
Frontiers in Immunology 03
glucose (GLU), triglycerides (TG), total cholesterol (TC), high-

density lipoprotein cholesterol (HDL), low-density lipoprotein

cholesterol (LDL), folate (FA), vitamin B12 (B12), aspartate

aminotransferase (AST), ferritin (F), erythropoietin (EPO), iron

(Fe), chlorine (Cl), unsaturated iron-binding capacity (UIBC), total

iron-binding capacity (TIBC), iron saturation (ISAT), glutamyl

transpeptidase (GGT), prothrombin time (PT), international

standardization ratio (INR), partial thromboplastin time (APTT),

thrombin time (TT), fibrinogen (FIB), antithrombin III (ATIII),

fibrinogen decomposition products (FDB), D-dimer (DD), alanine

aminot rans f e ra se (ALT) , immunog lobu l in G (IgG) ,

immunoglobulin A (IgA), immunoglobulin M (IgM),

complement C3 (C3) complement C4 (C4), C-reactive protein
FIGURE 1

Schematic of the study design. **P ≤ 0.01, ***p = 0.001
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(CRP), rheumatoid factor, anti-streptolysin O (ASO), and

calcium (Ca).
2.3 OPLS-DA multivariate statistical
method to establish identification model

Orthogonal partial least squares discriminant analysis (OPLS-

DA) was performed using SIMCA 14.1 to compare indicator levels

between the control, T-LBL, and T-ALL groups. The model

performance was examined using the R2 and Q2 goodness-of-fit

parameters. The null hypothesis posits 200 resamplings of the

model using random alterations in the y-matrix. Model reliability

was assessed using receiver operating characteristic (ROC) curves.

V + S was utilized to evaluate the potential of biomarkers for the

identified indicators. Potential biomarkers were selected from

parameters with Variable Importance (VIP) > 1.0 and top-five p

(cor) ranking, using correlation coefficients and distance from the

center in the V + S plot. Potential biomarkers showing significance

levels of p < 0.05 were identified.
2.4 Identification of DEGs in the T-ALL and
control groups

2.4.1 Data sources
The Homo sapiens dataset GSE48558 from GEO was utilized in

the present study. The dataset included 12 gene expression profile

samples, all obtained using the GPL6244 Affymetrix Human Gene

1.0 ST Array platform.

2.4.2 DEG identification
DEG identification was done using the GEO2R online tool in

GEO, which uses the GEOquery and limma packages in R. The

screening criteria for DEGs were p < 0.05 and | logFC | > 3.

2.4.3 Functional analysis of DEGs
DAVID (https://david.ncifcrf.gov/) was used for gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses using p < 0.05 as the threshold.

2.4.4 PPI networks and identification of
key genes

PPI networks of the DEGs were generated with STRING

(Version: 10.0; http://www.string-db.org/) with a PPI score

threshold of 0.4, indicating medium confidence. The resulting

networks were visualized using Cytoscape version 3.6.0. The

network nodes were scored, and those scoring in the top 10

regarding expression level were designated as key nodes.
2.5 Statistical analysis

Statistical Package for the Social Sciences (SPSS; Version: 26)

was used to analyze the OPLS-DA data. Normally distributed data
Frontiers in Immunology 04
are represented by mean ± standard deviation (SD; x ± s) and

analyzed by one-way analysis of variance (ANOVA). Pairwise

comparisons between groups with homogeneous variance were

done using the LSD method, while pairwise comparisons between

groups with heterogeneous variance were done using Tamhane’s T2

method. Non-normally distributed data are represented by medians

(quartile range) and analyzed using Kruskal Wallis rank-sum tests.

A p < 0.05 was considered statistically significant. In the analysis of

clinical data, c2 tests were used for comparing frequency data.

GraphPad Prism 9 was used to generate graphs in the current study.
3 Results

3.1 Bioinformatics analysis of DEGs
in GSE48558

3.1.1 DEG screening
Based on the DEG screening criteria, a total of 208 DEGs were

detected in the GSE48558 chip data (Figure 2A). Among them, 78

genes were upregulated, and 130 were downregulated

(Supplementary Tables 5, 6). The identified DEGs between the

control and T-ALL groups are shown in a volcano plot (Figure 2B),

where red and green indicate significant upregulation and

downregulation, respectively.

3.1.2 Functional analysis of DEGs
Database for Annotation, Visualization and Integrated

Discovery (DAVID) was used for GO analysis of the DEGs. The

enrichment results are shown in Figure 2. Overall, 93 significant

annotations were found in the biological process (BP) category,

including those associated with cell division, chromosome

aggregation, mitotic cell cycle, G2/M transition of the mitotic cell

cycle, and mitotic spindle organization. Thirty-six annotations were

seen in the cellular component (CC) category, including

centrosome, spindle, external side of the plasma membrane, cell

surface, and kinetochore. Simultaneously, 32 molecular functions

(MF) were identified, most notably associated with microtubule

binding, protein kinase binding, protein homeostasis activity, co-

receptor activity, and protein binding. A total of 14 enriched

pathways were identified by KEGG analysis, including the p53

signaling, cell adhesion molecules, hematopoietic cell lineage, cell

cycle, and cellular sensitivity.

The significantly upregulated DEGs were enriched in 44 BPs,

including positive regulation of natural killer (NK) cell-mediated

cytotoxicity, immune response, cellular response to cytotoxic

stimuli, negative regulation of T-cell apoptotic processes, and cell

surface receptor signaling. Thirteen CCs were identified, including

the external side of the plasma membrane, plasma membrane,

integral component of membrane, cell surface, and receiver

complex, and a further 13 MFs, including protein binding, co-

receptor activity, transmembrane signaling receptor activity,

protein homeostasis activity, and authentic protein binding were

found. The most critical eight KEGG-enriched pathways were cell

adhesion molecules, cytokine-cytokine receptor interaction, graft
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versus host disease, autoimmune thyroid disease, and viral protein

interaction with cytosine-cytosine receptors (Figure 3).

Downregulated DEGs in the GO BP category showed

annotations mainly related to cell division, chromosome

aggregation, mitotic spindle organization, mitotic cell cycle, and

the mitotic spindle assembly checkpoint. Thirty-three CCs were

identified, including centrosome, spindle, nucleus, kinetochore, and

midbody. At the same time, enrichment in 24 MFs was found,

mainly related to protein kinase binding, microtubule binding,

microtubule motor activity, ATP binding, and protein serine/

threonine/tyrosine kinase activity. KEGG analysis showed

enrichment in 14 pathways, of which the cell cycle, cellular

sensitivity, hematopoietic cell lineage, oocyte meiosis, and p53

signaling were the most significant (Figure 4).
Frontiers in Immunology 05
The top five pathways showing the most significant enrichment

were arranged according to their p-values and are listed in

Supplementary Tables 7–9.

3.1.3 PPI networks and network
clustering modules

Three PPI networks were created using STRING and

Cytoscape. The first was composed of overall DEGs, the second

was composed of upregulated DEGs, and the third was composed

of downregulated DEGs. The first PPI network of DEGs contained

150 nodes and 3116 paired interactions and showed a high

topology score, which can thus be used as a significant network

node. The top 10 genes are shown in Supplementary Table 10. The

DEGs used for network construction were cyclin-dependent
B C

D E

F G

H

I

A

FIGURE 2

(A) Volcano plot of genes (B) DEGs between the control and T-ALL groups in the GSE48558 dataset. Symbols represent different genes, with red and
green colors indicating upregulation and downregulation, respectively, using the criteria p < 0.05 and multiple change = 1. (C) Heatmap of DEGs.
(D-G). GO analysis, showing enrichment in the biological process (D), cellular component (E), and molecular function (F) categories, and KEGG
pathway enrichment (G) of DEGs between the control and T-ALL/T-LBL groups. (H) Functions and pathways most likely to differ between the
control and T-ALL/T-LBL groups. (I) Functions and regulatory pathways of the top 10 DEGs.
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kinase 1 (CDK1), cyclin A2 (CCNA2), marker of proliferation Ki-

67 (MKI67), topoisomerase II alpha (TOP2A), forkhead box

protein M1 (FOXM1), exonuclease 1 (EXO1), kinesin family

member 11 (KIF11), checkpoint kinase 1 (CHEK1), budding

uninhibited by benzimidazoles 1 (BUB1), and BUB1B, all of

which were overexpressed in T-ALL. The PPI network of the

upregulated DEGs contained 49 nodes and 464 paired

interactions. The topology score was high. The top 10

interactions are shown in Supplementary Table 11. The network

was composed of 10 upregulated DEGs, namely, granzyme A

(GZMA), interleukin 7 receptor (IL7R), GZMK, C-C chemokine

ligand 5 (CCL5), C-C chemokine receptor 7 (CCR7), perforin

(PRF1), T-cell immunoreceptor with Ig and ITIM domains

(TIGIT), cytotoxic T-lymphocyte associated protein 4 (CTLA4),

killer cell lectin-like receptor B1 (KLRB1), and KLRD1. The

PPI network of downregulated DEGs included 94 nodes

and 2498 paired interactions. Supplementary Table 12 shows the

top 10 genes. The DEGs in the network were CCNA2, CDK1,

KIF11, FOXM1, EXO1, TOP2A, MKI67, BUB1B, CHEK1,

and BUB1.
Frontiers in Immunology 06
3.2 Models of markers in different groups
determined by multi-parameter analysis

Indicators associated with the three groups were analysed using

multiple parameter analyses to establish a method for characterising

the control, T-LBL, and T-ALL groups. OPLS-DA was used with

SIMCA-P software for detailed analysis and comparisons. The

efficacy of the model based on the multi-parameter analysis was

assessed using mutation (Figures 5A, D, G, J) and cluster analysis

(Figures 5B, E, H, K) plots, and ROC curves (Figures 5C, F, I, L).

The model’s validity was evaluated by permutation, which revealed

a negative Q2 intercept on the Y-axis. This indicates that the model

is valid and is not prone to overfitting (Figures 5A, D, G, J).

Clustering analysis verified the discrimination between the

different samples. ROC plots examined the effectiveness of the

model by determining the area under the curve (AUC) values.

AUC values close to 1 represent higher reliability of the

identification method. The AUCs for the control vs T-LBL vs T-

ALL model were AUC (control) = 1, AUC (T-LBL) = 1, and AUC

(T-ALL) = 1 (Figure 5C). In the control vs T-LBL model, AUC
B C

D E

F

G

A

FIGURE 3

(A) Significantly upregulated DEGs between the control and T-ALL groups in the GSE48558 dataset. (B–E) Enrichment of upregulated DEGs in the
GO, BP, CC, and MF categories, and KEGG pathway enrichment. (F) Functions and regulatory pathways show the most significant differences
between the control and T-ALL/T-LBL groups. (G) Functions and regulatory pathways of the top 10 upregulated DEGs.
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(control) = 1 and AUC (T-LBL) = 1 (Figure 5F), in the control vs T-

ALL model, AUC (control) = 1 and AUC (T-ALL) = 1 (Figure 5I)

while in the T-LBL vs T-ALL model, AUC (control) = 1 and AUC

(T-ALL) = 1 (Figure 5I), C (T-LBL) = 1, and AUC (T-ALL) = 1

(Figure 5L), indicating the accuracy of the results.

OPLS-DA was used further to evaluate the associations between

the different groups’ indicators and identify potential biomarkers.

The scores are illustrated in Figure 6A, where the horizontal axis

indicates the score values of the main components, and the vertical

axis shows the scores of the orthogonal components. There is a clear

separation and grouping of the samples, indicating differentiation

between the three groups and demonstrating the method’s

effectiveness in distinguishing between the indicators of the

groups and providing a basis for further analysis. Figures 6D, G, J

show the OPLS-DA scores for the control vs T-LBL, control vs T-

ALL, and T-LBL vs T-ALL models, respectively. The locations of the

samples on the horizontal axis and the clustering demonstrate the

model’s effectiveness in differentiating between the samples

according to their indicators. Both sets of samples in the figures

are located in both the positive and negative areas of the X-axis. The

distinction among the various sample sets is demonstrated in

Figures 6D, G, J, illustrating the model’s efficacy in discerning the
Frontiers in Immunology 07
markers of the distinct samples. Figure 6B illustrates the loading

plot that was used for the initial screening of the indicators for the

different groups. The loading plot validates the findings shown in

the score plot, illustrating the correlations between the indicators of

the various samples. In the loading plot, the indicators located in the

Y-axis’s positive region have higher values than those in the X-axis’s

positive region. The negative halves of both axes of the loading plot

also showed correspondence. Indicators such as LYMPH% and

CHO significantly differed in the three groups, indicating that B12

levels in the controls were lower than those in the patient groups

(Figure 6B). Figure 6C shows the OPLS-DA VIP plot, reflecting the

association between the peak VIP values and correlation coefficients

in the model. The red color in the peaks indicates higher correlation

coefficients in the model. The V + S plot shows an integration of the

VIP and correlation coefficient parameters characterizing the

contribution of the indicators in the model. Individual points

represent specific indicators with red color indicating higher

correlation coefficients and thus greater contribution to the

model. The blue color indicates a lower correlation and, thus,

reduced contribution. Moreover, the greater distance between the

indicator’s position and the center of the V + S plot indicates a more

significant contribution to the model. To conduct a more thorough
B C

D E

FA

FIGURE 4

(A) Significantly downregulated DEGs between the control and T-ALL group from the GSE48558 dataset. (B–E) DEG enrichment in GO, BP, CC, MF
categories, and KEGG pathways, respectively. (F) Functions and regulatory pathways show the most significant differences between the control and
T-ALL/T-LBL groups. (G) Functions and regulatory pathways of the top 10 downregulated DEGs.
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analysis of the factors that influence the model, V + S plots were

utilized to identify potential biomarkers and examine the peaks for

accurate distinction of the three groups (Figure 6C). The VIP values

of distinct indicators in the classification model were assessed to

determine the contribution of each indicator to the model. The

primary indicator in the classification model was defined by its

relevance. The V + S plot listed blood indicators in descending

order of VIP value, with those with peaks of VIP > 1.0 and biological

significance identified as potential biomarkers. OPLS-DA was
Frontiers in Immunology 08
conducted based on the control vs. T-LBL vs. T-ALL model by

combining samples from the three groups in pairs (Figures 6D–L).

Figures 6D, G, J represent the score plots of three pairwise

combination models. The scatter points of the control, T-LBL,

and T-ALL pairwise combinations are situated in the positive and

negative regions, respectively, of the horizontal axis and show

obvious separation. Figures 6E, H, K illustrate the loading plots of

the three pairwise combinations. The control group exhibits lower

levels of CRP and LYMPH, while displaying higher HGB values
B C

D E F

G H I

A

J K L

FIGURE 5

(A) OPLS-DA shows the permutation graph of the control, T-LBL, and T-ALL groups. (B) Cluster analysis of the three groups. (C) ROC curves of the
three groups. AUC (control) = 1, AUC (T-LBL) = 1, AUC (T-ALL) = 1. (D) Permutation graph of control and T-LBL groups. (E) Cluster analysis of
control and T-LBL groups. (F) ROC plot of control and T-LBL groups. AUC (control) = 1, AUC (T-LBL) = 1. (G) Permutation graph of control and T-
ALL groups. (H) Cluster analysis of control and T-ALL groups. (I) ROC plot of control and T-ALL groups. AUC (control) = 1, AUC (T-ALL) = 1.
(J) Permutation graph of T-LBL and T-ALL groups. (K) Cluster analysis graph of T-LBL and T-ALL groups. (L) ROC plot of T-LBL and T-ALL groups.
AUC (T-LBL) = 1, AUC (T-ALL) = 1.
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compared to the T-LBL group (Figure 6E). In addition, the controls

had lower levels of CRP, DD, and LYMPH in comparison to the T-

ALL patients, although their levels of Cr, HGB, CHO, and TT were

higher (Figure 6H). Indicators such as TT and CRP help distinguish

between T-LBL and T-ALL, as seen in Figure 6K. Figures 6F, I, L,

respectively, represent the V + S plots of three pairwise

combinations, providing an ordered list of blood indicators

ranging from high to low VIP value that can be used for the

identification of potential biomarkers in the models. A VIP value >
Frontiers in Immunology 09
1.0, p (corr) > 0.35, and biological significance suggest a potential

biomarker. A comprehensive consideration of the control vs. T-LBL

vs. T-ALL model and three pairwise combination models using the

parameters of VIP (VIP > 1.0), correlation coefficients, load, and

distance from the center in the V + S graph identified various

indicators affecting the sample classification, including CRP,

LYMPH, DD, Cr, HGB, CHO, and TT. Indicators lacking

significant differences were subsequently excluded from the list,

resulting in the identification of EPO, FA, HGB, LDL, and TT as
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FIGURE 6

(A) Hotelling’s T2 ellipse score map of 95% confidence zone of control, T-LBL, and T-ALL groups identified by OPLS. (B) Loading plot of control, T-
LBL, and T-ALL groups. (C) V + S plot of control, T-LBL, and T-ALL groups. (D) Hotelling’s T2 ellipse score map of 95% confidence zone of control
and T-LBL groups. (E) Loading plot of control and T-LBL groups. (F) V + S plot of control and T-LBL groups. (G) Hotelling’s T2 ellipse score map of
95% confidence zone of control and T-ALL groups. (H) Loading plot of control and T-ALL groups. (I) V + S plot of control and T-ALL groups.
(J) Hotelling’s T2 ellipse score map of 95% confidence zone of T-LBL and T-ALL groups. (K) Loading plot of T-LBL and T-ALL groups. (L) V + S plot
of T-LBL and T-ALL groups.
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significant markers for distinguishing sample classification

(Supplementary Tables 3, 4).
3.3 Serological data results of three groups

Comparisons of the results of the peripheral blood routine

analyses in the three groups (Figure 7) indicated significant

differences in the white blood cell counts, neutrophil percentages

and absolute values, hemoglobin levels, and lymphocyte

percentages and absolute values (p < 0.05). In contrast, the

comparison of biochemical indices (Figure 8) indicated marked

differences in the levels of TP, GLB, TBIL, Cr, Na, CHO, LDL, FA,

EPO, TT, DD, and CRP (p < 0.05). Comparison of clinical

peripheral blood biochemical indicators analysis data among

three groups showed no statistically significant differences in

ASO, C3, C4, IgA, IgG, IgM, RF, F, Iron, ISAT, TIBC, UIBC,

APTT, AT III, FDB, FIB, INR, PT, B12, Ca, CL, K, Mg, and P (p >

0.05), as shown in Supplementary Figures S1, S2.

Leukocyte counts in the peripheral blood were elevated in the T-

LBL group relative to the T-ALL group (p = 0.004; Figure 7A). The

neutrophil percentages in the T-LBL and T-ALL groups were

reduced in comparison to controls (p = 0.006, p = 0.047;

Figure 7B). The absolute value of neutrophils was lower in the T-
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ALL group than in the controls (p = 0.017; Figure 7C), while

hemoglobin levels in both patient groups were significantly reduced

(p = 0.004, p = 0.001; Figure 7D), as well as the percentage of

peripheral blood lymphocytes (p = 0.026, p = 0.035; Figure 7E).

Lymphocyte counts were elevated in the T-LBL group relative to the

T-ALL group (p = 0.022; Figure 7F).

In terms of the biochemical indices, higher levels of ALB were

observed in the control and T-LBL groups relative to the T-ALL

group (p = 0.013, p = 0.047; Figure 8A), with a similar pattern seen

for GLOB (p = 0.014, p = 0.039; Figure 8B). TB levels were higher in

the controls relative to the T-ALL group (p = 0.020; Figure 8C),

while CR levels were elevated in the T-LBL group relative to T-ALL

(p = 0.048; Figure 8D). Furthermore, Na levels were reduced in both

the T-LBL and T-ALL groups (p = 0.036, p = 0.021; Figure 8E),

while CHO concentrations were higher in the T-LBL group

compared to T-ALL (p = 0.013; Figure 8F), LDL concentrations

in the T-LBL group were increased (p = 0.032, p = 0.005; Figure 8G),

and FA was raised in T-LBL rather than T-ALL (p = 0.000;

Figure 8H). The EPO concentrations were significantly elevated

in T-ALL patients but not in others (p = 0.001, p = 0.001; Figure 8I).

The TT levels were decreased in T-ALL patients (p = 0.008, p =

0.001; Figure 8J), DD concentrations in both the T-LBL and T-ALL

groups (p = 0.001, p = 0.048; Figure 8K), and CRP was elevated in T-

ALL in comparison to controls (p = 0.044; Figure 8L).
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FIGURE 7

Comparison of routine blood measurements between the control, T-LBL, and T-ALL groups. Normally distributed data are shown as
mean ± standard deviation, while non-normally distributed data are shown as median with quartile range. (A) WBC, (B) NEUT%, (C) NEUT, (D) HGB,
(E) LYMPH%, (F) LYMPH. *p ≤ 0.05, **p ≤ 0.01, ***p = 0.001.
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4 Discussion

This study demonstrated that T-ALL is more likely to have

relatively immature immunological phenotypes compared to T-

LBL, but there is some similarity between the two. Interestingly, T-

ALL and T-LBL are part of the same biological disorder, and their

categorization is entirely arbitrary. When the patient only presents a

tumor mass without bone marrow and blood involvement, it is

diagnosed as lymphoma. However, if there is a tumor mass along

with a smaller percentage (≤ 25%) of bone marrow infiltration, it is

still considered lymphoma rather than leukemia. On the other

hand, if there is extensive bone marrow involvement (≥ 25%) and
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blood involvement, it is diagnosed as lymphoblastic leukemia. Here,

the white blood cell, red blood cell, lymphocyte counts, and absolute

and percentage neutrophils did not differ between the T-ALL and

T-LBL groups. However, more significant reductions were seen in

T-ALL patients than controls, indicative of increased white blood

cell counts typical of T-ALL. Even with the same white blood cell

counts and tumor loads, T-ALL patients show reduced

hematopoiesis compared to ALL types. In contrast to the

controls, T-ALL patients had lower levels of ALB, GLOB, CR,

CHO, LDL, and erythropoietin in the peripheral blood, while T-

LBL patients had higher CHO, LDL, and folate levels. Based on the

results of the multi-parameter analysis, HGB, EPO, TT, and DD
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FIGURE 8

Comparison of peripheral blood biochemical indices between the control, T-LBL, and T-ALL groups. Normally distributed data are shown as
mean ± standard deviation, while non-normally distributed data are shown as median with quartile ranges. (A) TP, (B) GLB, (C) TBIL, (D) Cr, (E) Na, (F)
TC, (G) LDL, (H) FA, (I) EPO, (J) TT, (K) DD, (L) CRP. *P ≤ 0.05, **P ≤ 0.01, ***p = 0.001, ****p = 0.000.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1341255
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2024.1341255
were considered essential indicators for sample classification, as

depicted by Figure 1; Supplementary Tables 1, 2.

EPO is a glycoprotein hormone that can increase the

production of red blood cells. Tissue oxygenation governs the

synthesis of EPO, which is responsible for the prompt generation

of a significant quantity of red blood cells to alleviate the symptoms

of hypoxia (6). It was observed that the T-ALL patients had more

severe anemia than those with T-LBL. In hypoxic environments, the

levels of EPO gradually rise due to the activity of the transcription

factor complex HIF. This enables the body to adjust progressively to

hypoxic situations like anemia, and it aligns with the finding that

elevated levels of EPO are found in patients with T-ALL. It was

speculated that supplementation of EPO to treat anemia in T-ALL

patients requires assessing the risks and benefits. The degradation of

cross-linked fibrin produces DD, and increased concentrations can

result in both embolism and coagulation in the vasculature; thus,

the determination of DD levels is useful in evaluating thrombotic

disease. In the present study, significantly higher levels of DD were

seen in both T-LBL and T-ALL patients (p = 0.001, p = 0.048). The

TT is one of the screening indicators for coagulation,

anticoagulation, and fibrinolytic functions. TT is a measure of the

ability of exogenous thrombin to hydrolyze FIB, and can be used to

evaluate the function of FIB and determine whether there is a defect

in its function. Although the peripheral blood FIB levels did not

show any significant changes in the present study, it was found that

the TT time in T-ALL patients was considerably shorter than that in

the controls and T-LBL patients (p = 0.008, p = 0.001). Thus, there

was speculation that people with T-ALL are more prone to

developing coagulation abnormalities compared to patients with

T-LBL. However, there were no statistically significant differences in

peripheral blood F, Iron, and ISAT levels among the three groups in

this study. Ferroptosis has garnered interest as a potential broad-

spectrum anti-cancer approach in leukemia studies, as it is a kind of

cell death that relies on iron regulation. Studies have shown that

adult T-cell leukemia/lymphoma (ATL) is a highly invasive

malignant tumor caused by human T-cell leukemia virus type I

(HTLV-1). Wang et al. used bioinformatics analysis and dataset

GSE33615 to identify 46 DEGs associated with ferroptosis and 26

autophagy associated DEGs in ATL cells. These DEGs were

associated with various cellular responses, chemical stress, and

iron related pathways. Autophagy-related DEGs were associated

with autophagy, cell apoptosis, nucleotide oligomerization domain

(NOD)-like receptor signaling, tumor necrosis factor (TNF)

signaling, and insulin resistance pathways. PPI network analysis

revealed 10 central genes and related biomolecules. Researchers

found that the ATL specific ferroptosis signal is unique by

comparing the ferroptosis characteristics of other T-cell

lymphomas. This study establishes an innovative link between

ATL treatment and ferroptosis, providing a promising pathway

for novel treatment strategies for ATL (7).

T-LBL and T-ALL are relatively rare and highly aggressive

hematological malignancies. Advances in research have led to the

deve lopment o f many therapeut i c drugs , inc lud ing

hypomethylation drugs, drug-antibody conjugates, kinase

inhibitors, and allogeneic hematopoietic stem cell transplantation

(HSCT) (8, 9). However, over 50% of patients fall below the criteria
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for intensive chemotherapy. In addition, induced remission

chemotherapy and HSCT have also led to a large number of

treatment-related complications, recurrence, and even death.

These represent significant challenges for diagnosing, managing,

and prognostic predicting hematological malignancies, requiring

intensive further investigation. In clinical practice, the NHL

standard treatment plan CHOP can be chosen for the initial

treatment of T-LBL without bone marrow or other organ

invasion. However, once a lump or involvement of bone marrow

and other organs occurs during the treatment period, treatment for

T-ALL must be instigated. Tumor heterogeneity may be one of the

reasons for the failure of treatment for refractory T-ALL. Targeted

and total RNA sequencing methods are effective techniques for

identifying gene fusion events caused by chromosomal

rearrangements. These methods can detect various types of

fusions, including those defined by the World Health

Organization and the International Consensus Classification of

Hemolymph Tumors, as well as cryptic fusions that are often

missed by traditional cytogenetics. Additionally, these methods

can identify rare cytogenetic fusion events that may be

responsible for the lack of response to targeted therapy. The

samples of targeted RNA NGS studied by Tsai, H.K., et al. were

selected from total nucleic acids extracted from bone marrow,

peripheral blood, extramedullary disease sites, or cell lines and

subjected to bioinformatics processing. Outlier analysis revealed a

rare deletion of the NOTCH1 gene in T-ALL, and screening of

NOTCH1 subtypes revealed two cases of T-ALL with abnormal

expression of e2e28 (10). Tan, K. et al. identified a subset of bone

marrow progenitor-like (BMP-like) leukemia associated with

treatment failure and poor overall survival through a

comprehensive analysis of T-ALL mother cells and normal T cell

precursors. Using a large amount of RNA sequencing data from

over 1300 patients, single-cell derived molecular features of BMP-

like mother cells were used to predict adverse outcomes for multiple

T-ALL subtypes in two independent patient cohorts. This study

defined the mutation status of BMP-like T-ALL and found that the

NOTCH1 mutation additionally drives T-ALL mother cells away

from the BMP-like state. The data suggests that the NOTCH1

mutation status is a key biomarker of traditional treatment

response (11). The results of this work can serve as a clinical

guide for studying efficient therapy alternatives for T-ALL/T-LBL

and, therefore, enhancing unfavorable prognosis (12, 13).

T-LBL and T-ALL arise from the lymphoid tissue in the

thymus, originating from the same tumor clone and representing

the same biological disease. Therefore, their categorization into

separate entities is entirely arbitrary. Both conditions may develop

due to anomalies in antigen receptor genes, chromosomal

abnormalities, inactivation of tumor suppressor genes, and

activation of oncogenes. This study aimed to identify abnormally

expressed genes at the molecular level. The data on T-cell

hematological malignancies from separate research in the GEO

database were collected and subjected to normalization

preprocessing. A total of 208 genes showing significant differential

expression were identified between the controls and T-ALL

patients; 78 of these DEGs were upregulated, with 130

downregulated. The DEGs were found to be linked to processes
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involving cell division, chromosome aggregation, mitotic cell cycle,

microtubule binding, protein kinase binding, cell adhesion

molecules, cellular senescence, and p53 signaling. Bioinformatics

analysis, including PPI networks and identification of key genes,

identified 10 key DEGs that were expressed at significantly higher

levels in T-ALL/T-LBL patients, namely, CDK1, CCNA2, MKI67,

TOP2A, FOXM1, EXO1, KIF11, CHEK1, BUB1B, and BUB1. A

further 10 key DEGs showing significant downregulation in T-ALL/

T-LBL patients were also identified, namely, GZMA, IL7R, GZMK,

CCL5, CCR7, PRF1, TIGIT, CTLA4, KLRB1, and KLRD1. The top 10

key DEGs identified from the network analysis and multi-

parameter and statistical analyses explore potential biomarkers or

key DEGs that could be used in clinical applications.

Ten DEGs that exhibited increased expression in T-ALL were

found. Extensive evidence supports the notion that the aberrant

expression of genes involved in tyrosine phosphorylation pathways

is strongly connected with several human cancers. Cyclin-

dependent kinases (CDKs) are a kind of kinase that specifically

phosphorylates serine and threonine residues. They are highly

regarded as potential targets for cancer therapy (14). CDK1 is a

crucial CDK for cell cycle progression, associated with mitotic

progression and cell division, such as cytoskeletal recombination,

nuclear membrane rupture, chromosome condensation, mitotic

spindle assembly, chromosome separation, and cytoplasmic

division (15). Studies have shown that mutations in certain genes

can induce overexpression of CDK1, promote tumor cell growth,

migration, or invasion, and promote the occurrence of leukemia

(14). CDK1 was also shown to be over-expressed in T-ALL/T-LBL.

Therefore, CDK1 is a potential therapeutic target for cancer

treatment (16). This gene is associated with the initiation of

mitosis, which may exacerbate disease progression by promoting

the cell cycle and inhibiting the P53 pathway (17, 18). CCNA2

encodes a strongly conserved cell cycle-associated protein

responsible for cell cycle regulation (19, 20). CCNA2 belongs to

the highly conserved cyclin family, located on human chromosome

4 and expressed in almost all human body tissues. Generally

speaking, the protein encoded by CCNA2 can activate CDK2,

which may participate in the occurrence and progression of

various tumors by affecting epithelial-mesenchymal transition

(EMT), metastasis, and may enhance cancer invasion, recurrence,

and chemotherapy resistance (21). MKI67 plays a role in

controlling the separation of chromosomes during cell division

and is a reliable marker for identifying the growth of cancer cells. It

may be utilized to evaluate the malignancy and prognosis of the

disease (22, 23). MKI67 is a nuclear protein expressed in the

proliferating cell nucleus, closely related to cell proliferation, and

plays an important role in the formation of mitotic spindles and

mitosis. Its abnormal expression is closely related to the onset and

development of tumors (24). The expression of MKI67 represents

the state of cell proliferation and plays an important role in tumor

migration, invasion, and progression (25). Studies have shown that

P53 exerts inhibitory effects on the Ki-67 promoter by regulating

the P53 and sp1 dependent pathways, and have also demonstrated

the close relationship between Ki-67/MKI67 and the P53 signaling

pathway (26). TOP2A is involved in chromosome aggregation, the

separation of chromatids, and reducing torsional stress during
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DNA replication and transcription (27, 28). TOP2A is an

important nuclear protein that is essential for cell division and

highly expressed during mitosis, as it is responsible for chromosome

aggregation and separation. It can regulate and modify the

topological state of DNA during transcription, promote

chromatid separation, chromosome condensation, reduce

torsional stress during transcription and DNA replication, alter

the structure of DNA, and is related to cell invasion, migration, and

cell cycle (29). TOP2A, as a target of chemotherapy drugs, has been

proven to be widely involved in the invasion and prognosis of

various human cancers (30). FOXM1 is a Forkhead box

transcription factor that participates in various cellular processes,

such as proliferation, cell cycle progression, cell differentiation,

DNA damage repair, tissue homeostasis, angiogenesis, apoptosis,

and redox signal transduction (31). FOXM1 is a promising

candidate for therapeutic intervention in several human

malignancies (32) and has a role in developing and treating

several immune-related and vascular disorders (33). FOXM1

encodes a protein associated with the mitotic cell cycle (34, 35).

The product of EXO1 gene has exonuclease activity, and its function

is mainly involved in mismatch repair and recombination. It is

upregulated in tumor tissues, including gastric cancer, lung

adenocarcinoma, and ovarian cancer (36–38). Tumor occurrence

and development can be mediated through involvement in hypoxia

related pathways, which are usually caused by an imbalance in the

supply and demand of nutrients in the tumor microenvironment.

Hypoxia is a common physiological hallmark of most tumors,

especially those with malignant traits like metastasis and invasion.

However, the prevalence and severity of hypoxia might differ

among different patient groups (39–41). Under hypoxic

conditions, cancer cells secrete angiogenic factors to promote

abnormal angiogenesis. In addition, hypoxia increases the

malignancy of tumors and allows cancer cells to invade and

metastasize, leading to the insensitivity of cancer cells to

chemotherapy or radiotherapy (37, 42). In contrast, the depletion

of EXO1 inhibits cell proliferation, migration, and invasive activity

of tumors (37). This study determined that the concentrations of

HGB and EPO in the peripheral blood of patients with T-ALL/T-

LBL are clinically significant in assessing these conditions. It has

been proposed that T-ALL/T-LBL patients may experience hypoxia

in the tumor microenvironment due to aberrant expression of the

EXO1 gene. The functions of KIF11 gene products include

chromosome localization, centrosome separation, and the

establishment of bipolar spindles during mitosis (43, 44). KIF11

has a low expression level in most tissues, but a high expression level

in immune related tissues such as thymus, bone marrow, tonsils,

and lymph nodes. On the contrary, KIF11 is usually expressed at

high levels in cancer cell lines and promotes tumor occurrence and

progression (45). In addition, the function of KIF11 in the

lymphatic system suggests the possibility that KIF11 may

indirectly affect tumor progression via immune functions.

Cytological experiments were conducted to determine the

regulatory effects of KIF11 on the proliferation and cell cycle

progression of ALL in vitro (46). In addition, the KIF11

interaction and co expression network are mainly involved in the

regulation of cell cycle, cell division, p53 signaling pathway, DNA
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repair and recombination, chromatin tissue, antigen processing and

presentation, and drug resistance. In addition, tumor related

neutrophils can support tumor progression by stimulating tumor

cell invasion, migration, and movement, promoting angiogenesis,

and regulating other immune cells (47–50). KIF11 may play

multiple roles in tumors by influencing the infiltration of

neutrophils. The protein encoded by CHEK1 gene affects DNA

repair and mitosis. Many solid tumors, especially those lacking

TP53, significantly rely on CHEK1 mediated cell cycle arrest (51),

and CHEK1 expression levels are upregulated in various cancers

(52). The BUB1B and BUB1 genes encode mitotic checkpoint

proteins involved in chromosomal segregation (53, 54). BUB1 has

been demonstrated to be a pivotal protein in the process of mitosis,

playing a role in the initiation and progression of several types of

malignancies (55–57). BUB1 vs. TGF-b dependent signaling has

important effects (57), which can block the phosphatidylinositol 3-

kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK)

signaling pathways, significantly inhibit cell proliferation, tumor

growth, cell migration, and invasion (58). The bioinformatics

analyses showed that p53 is closely involved in the division cycle

in T-ALL/T-LBL cells. Cellular levels of p53 are normally low, as it

is a tumor suppressor. In cancer cells, however, expression is

significantly increased, often accompanied by mutational burden.

Patients with high p53 expression usually respond poorly to

treatment. Therefore, the high expression of CDK1 and CHEK1

in T-ALL patients may be related to their poor prognosis. In

summary, abnormalities in any stage of the mitotic cell cycle can

lead to chromosomal instability, including increased expression of

the CDK1, CCNA2, MKI67, TOP2A, FOXM1, KIF11, CHEK1,

BUB1B, and BUB1 genes in T-ALL/T-LBL patients, might be

linked with the unfavorable prognosis.

The present work identified 10 key downregulated DEGs in T-

ALL. GZMA participates in typical apoptotic features such as

chromatin concentration, phosphatidylserine inversion, nuclear

fragmentation, and reduced mitochondrial transmembrane

potential in cells (59, 60). IL7R encodes the interleukin-7 (IL-7)

receptor. IL-7 serves as a growth factor in the process of

hematopoiesis, promoting the proliferation and differentiation of

hematological malignancies and stimulating immunological

responses in fully developed T-cells. The signal transduction of IL-

7R is essential for the input, proliferation, and survival of early T-cell

progenitor cells. IL7R is activated by the ligand IL7, and over 10% of

T-ALL cases have acquired mutations in IL7R, leading to continuous

activation of Janus kinase/signal transducers and activators of

transcription (JAK/STAT) signaling cascade (61). The

downregulation of IL7R in T-ALL/T-LBL might cause a rise in

tyrosine kinase activity inside the leukemia cells, leading to

continuous stimulation of cytokine receptor signaling pathways and

ultimately culminating in significant impairments in T-cell function

(61, 62). The GZMK gene product is a serine protease produced in

cytoplasmic granules in cytotoxic lymphocytes (63, 64). The PRF1

gene encodes perforin 1, involved in the formation of pores in

membranes and T- and NK-cell mediated cell lysis of various cell

types. Perforin is a pore-forming protein stored in acidic secretory

granules of cytotoxic lymphocytes. Perforin is crucial for immune

homeostasis and tumor immune surveillance. The mediated
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cytotoxicity is essential for eliminating altered cells and cells

harboring intracellular infections. Additionally, it suppresses

immunological responses by triggering apoptosis of effector

lymphocytes and antigen-presenting cells. Perforins have also been

shown to play an important role in NK cell-mediated inhibition of

tumor metastasis and control of carcinogen-induced sarcoma growth.

Jaworowska et al. investigated the impact of perforin gene mutations

on clinical outcomes in children with ALL. This study suggests that

mutations in the perforin gene alter the mortality rate of childhood

ALL (65). In T-ALL/T-LBL, reduced expression of the cytotoxic

GZMK and PRF1 genes adversely affects killing by cytotoxic T-

lymphocytes as well as the immune response (65, 66). Although

the lymphocyte percentages were higher in T-ALL/T-LBL patients

compared to controls, the absolute lymphocyte level did not change

(as shown in Figures 7E, F). Granulase-mediated cell death is a key

mechanism by which cytotoxic lymphocytes eliminate malignant

cells in anti-tumor immunity (67). GZMK (formerly known as

trypsin-2) is involved in one of the mechanisms by which cytotoxic

T-lymphocytes and NK cells induce tumor cell apoptosis. GZMK and

GZMA show significant homology, being situated in the same

chromosomal locus, displaying a high degree of conservation in

their sequence, and sharing the same cleavage specificity

resembling trypsin activity. Research has demonstrated that GZMK

is markedly upregulated in patients who do not have recurrence.

Furthermore, the level of GZMK expression might serve as a valuable

indicator for identifying individuals with a favorable prognosis in

high-risk recurrence groups (64). It was speculated that reduced

expression of GZMK in the patients was associated with decreased

cytotoxic T-lymphocyte activities. The CCL5 and CCR7 genes are

involved in the expression of chemokines and their receptors and in

immune regulation and inflammatory processes. A link exists

between the formation of tumors and the movement of cells in

response to chemical signals (chemotaxis) in the body. In this study,

individuals with T-ALL had elevated levels of CRP compared to the

control group (p = 0.044). It was proposed that T-ALL patients may

be more prone to inflammatory mediator dysfunction. The TIGIT

gene encodes T-cell immunoglobulin and immune receptor tyrosine

inhibitory motif domain (TIGIT) receptors, which can promote

tumor cell immune evasion (68, 69). The chimeric antigen receptor

(CAR) T-cell therapy using brexucabtagene autotoll (BA) can induce

remission in many patients with mantle cell lymphoma (MCL). BA is

the only FDA-approved CAR T-cell therapy for MCL. Following the

recurrence of BA, there is a drop in the number of T-cells, particularly

cytotoxic T-lymphocytes (CTL), in non-tumor cells, while the

proportion of myeloid cells increases accordingly. Following

recurrence, there was a notable increase in TIGIT expression on

depleted T-cells. Additionally, CTL tumor cells also displayed TIGIT

expression after recurrence, resulting in a heightened interaction

between TIGIT on tumor cells and CD155/PVR on monocytes. The

expression of TIGIT on tumor cells is particular to MCL, and when

paired with targeted TIGIT, it can limit the recurrence of CAR T-

cells. This ultimately promotes long-term progression-free survival in

MCL patients (68). CTLA4 belongs to the immunoglobulin

superfamily and encodes a protein that inhibits T-cell activity, thus

providing negative regulation (70, 71). In the tumor

microenvironment of patients with T-ALL/T-LBL, the
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immunosuppressive components TIGIT and CTLA4 show reduced

expression. Single-cell RNA sequencing was performed on T-cells

isolated from the peripheral blood of healthy individuals and patients

with B-cell acute lymphoblastic leukemia (B-ALL). Two depleted T-

cell populations were specifically identified in B-ALL patients,

characterized by upregulation of TIGIT, PDCD1, HLADRA, LAG3,

and CTLA4 (Wang and Chen et al., 2021). Therefore, it was

speculated that these patients will likely respond poorly to immune

checkpoint drugs. KLRB1 is a gene that codes for a killer lectin-like

receptor (KLR) receptor. This receptor belongs to the superfamily of

C-type lectins and is associated with good prognosis. It encodes

CD161 and is present on T-cells and specific subsets of NK cells (72,

73). KLRD1 (CD94) is expressed on NK cells, which appears to

regulate NK cell functions (74, 75). Cancer immunotherapy surpasses

traditional therapies in terms of its ability to selectively target cancer

cells while minimizing adverse effects on healthy cells. T-cells have

traditionally been the primary focus, but NK cells possess comparable

capabilities. The T-ALL NK cells have a deficiency in the two

prominent genes, CD69 and KLRD1, and the consequences of their

deletion on T-ALL remain uncertain. The ALL subtype can hinder

the activity of NK cells through numerous mechanisms (74). It was

speculated that KLRB1 and KLRD1 show reduced expression in the

tumor microenvironment of patients with T-ALL/T-LBL, which can

lead to immune response deficits.

To summarize, the tumor microenvironment of T-ALL/T-LBL

exhibits impaired inflammatory mediators and functional

abnormalities in T-cells, NK cells, and immunological

checkpoints. The expression levels of GZMA, IL7R, GZMK, CCL5,

CCR7, PRF1, TIGIT, CTLA4, KLRB1, and KLRD1 are decreased in

these individuals, which is associated with an unfavorable prognosis

and inadequate long-term clinical immunological response.

Although scholars have an increasing understanding of the role

of the aforementioned key genes in tumor-related diseases, many

areas still need to be explored in terms of their activation,

regulation, benefits, and improved cancer immunotherapy or

reduced treatment-related toxicity. Moreover, the mechanisms

and specific applications of these genes in T-ALL/T-LBL patients

still require further in-depth research. Targeted therapy shows

potential as an effective treatment for Retired/Recovery (R/R) T-

ALL. According to a recent study by ASH 2023, efforts have been

made to customize R/RT ALL therapy by focusing on specific

mutated genes and cellular signaling pathways that are excessively

active in cancer cells. These endeavors have resulted in some

positive outcomes. Researchers have initiated the ALL-TARGET

project as a specialized medical platform for R/R T-ALL and T-cell

lymphoblastic lymphoma (T-LL). Its primary purpose is to assess

therapy choices by considering gene mutation lineages and

alterations in intracellular signaling networks (76). T-ALL/T-LBL

shows high heterogeneity, and despite some advances in the

treatment of hematological tumors, patient prognosis remains

poor. Current research on T-ALL/T-LBL has focused mainly on

identifying the underlying pathways, indicating anti-leukemia

therapy’s future (77–79). Targeted therapy for T-ALL/T-LBL

could involve multiple aspects, including targeting apoptosis,

RTKs, hedgehog-associated signaling, mitochondrial metabolism

and respiration, transcriptional control, and immunotherapy (80–
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83). In addition, leukemia stem cells (LSCs) are also involved in the

persistence and development of diseases. The current investigation

employed serummetabolomics analysis and statistical techniques to

examine these indicators. Additionally, bioinformatics analysis

tools were utilized to identify crucial genes, compare variations in

biomarkers across samples, and determine appropriate peripheral

blood biomarkers for clinical utilization. Additionally, this serves as

a foundational framework for future research endeavors.

This study re-examined the dataset, especially for errors, outliers,

or duplicate samples. The conclusion was that all raw data was

accurate and performed well on the training set. Furthermore, cross-

validation methods were used to divide the dataset into multiple non-

overlapping subsets for various training and validation. In summary,

it was determined that the model in this study did not show

overfitting by observing the performance of the training and

validation sets, comparing training and validation errors, using

cross-validation, and observing the learning curve. The samples for

this study were from a specialized hospital for hematology, and all

samples were collected with high reliability and authenticity. This

study aims to recognize the increasing importance of molecular

genetic analysis in the diagnosis and prognosis of T-ALL/T-LBL.

Hence, in the investigation of lymphoblastic lymphoma, the diagnosis

of T-ALL and T-LBL was established by employing conventional

histology, immunophenotype, conventional cytogenetic analysis,

fluorescence in situ hybridization, and other techniques and

meticulously categorizing them.

After introducing intensive therapy, the cure rates of T-ALL/T-LBL

patients in children and adults reached over 60% and 80%, respectively.

However, the prognosis of patients with primary drug resistance and

refractory recurrence is still poor. The current research objective was to

understand the pathogenesis of T-ALL/T-LBL, search for new

therapeutic targets, help develop drugs with lower toxicity, more

potent efficacy, more specific effects with improved cure rate, and

reduce pain and complications. The research design of this study was

based on bioinformatics analysis, combined with patient serological

analysis data for validation, which increases the reliability of the results.

Despite the limitation of sample size, the study validated the results

with multiple parameter analysis and statistical methods. It combined

the screened genes with the hematological and biochemical indicators

obtained from statistical analysis to explore potential therapeutic

targets for T-ALL/T-LBL. This study is only an initial investigation;

further support regarding sample size and other data is required.

However, it is essential to note that the samples used in this study

were obtained from a specialized hospital that focuses on hematology.

These samples were carefully selected and diagnosed, ensuring the

reliability of the results, which align with the research goals. However,

more extensive investigations supporting in vitro cell functional tests

are needed to confirm the validity of these findings.

Limitations of this study: Patient histories of past symptoms,

medication, smoking, and alcohol consumption were not addressed,

which may have influenced the experimental results. Future

investigations should include increased sample sizes and standardized

data collection methods. The typical manifestation of T-ALL is

increased white blood cell counts. However, in the present study,

these counts did not differ significantly between T-ALL and T-LBL,

nor did the blood biochemical indices (Supplementary Figures 1–3).
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5 Conclusions

Despite new treatments for T-ALL/T-LBL, including small-

molecule drugs and targeted treatments, the prognosis remains

poor. Combining serum metabolomics multi-parameter analysis

and statistical results, it was found that the peripheral blood levels of

HGB, EPO, TT, DD, and CRP may have clinical value for evaluating

the disease. Gene enrichment analyses identified key genes,

including CDK1, CCNA2, MKI67, TOP2A, FOXM1, EXO1, KIF11,

CHEK1, BUB1B, BUB1, GZMA, IL7R, GZMK, CCL5, CCR7, PRF1,

TIGIT, CTLA4, KLRB1, and KLRD1 which may modulate T-ALL

pathogenesis. These genes were associated with abnormal mitotic

cell cycles, chromosomal instability, dysfunction of inflammatory

mediators, functional defects in T-cells, NK cells, and immune

checkpoints. They were linked to poor prognosis and treatment

response. While more extensive experimental research is required,

this work can serve as a clinical point of reference for investigating

efficient therapy choices for T-ALL/T-LBL and the precise targeting

of particular cell types to enhance patient prognosis. Furthermore,

an additional comprehensive study is needed to investigate the

processes and particular uses of these genes in patients with T-ALL/

T-LBL. The future efforts will be directed towards identifying and

characterizing recurring anomalies in specific leukemia pathways,

as well as oncogenes and tumor suppressor genes that may be used

as diagnostic biomarkers for T-ALL. In addition, the focus is on

exploring the practical use of the intricate genomic map of T-ALL to

develop and evaluate novel and tailored therapeutic approaches.
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